1
|
Wang Q, Dong Y, Zhu J, Han J, Li Z, Xu D, Fischer L, Ulbricht M, Ren Z, Wang P. Critical review on emerging photocatalytic membranes for pollutant removal: From preparation to application. Talanta 2025; 287:127561. [PMID: 39818044 DOI: 10.1016/j.talanta.2025.127561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Due to synergistically enhanced separation and degradation performances, photocatalytic membranes offer an environmentally friendly and energy-sustainable method for water purification. However, a comprehensive review on preparation and application of photocatalytic membranes is still lacking. Systematically comparing different photocatalytic membrane fabrication methods and revealing the underlying mechanisms of their respective applications are of particular interest. In this review, we first discuss the common preparation methods for photocatalytic membranes in detail, focusing on the main approaches to improve their photocatalytic performance. We elucidate the mechanisms of photocatalytic membrane-based degradation processes, and describe some representative applications of photocatalytic membranes in water treatment. At the same time, the influencing factors that are critical for achieving high removal efficiency are also proposed. In the end, the practical applications and the perspectives for future studies and implementation of photocatalytic membranes are evaluated. This review will serve as a summary to advance researchers' understanding of the advantages of photocatalytic membranes, with the ultimate goal of achieving large-scale relevant applications of photocatalytic membranes in water treatment.
Collapse
Affiliation(s)
- Qiuwen Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yilin Dong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinyu Zhu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinlong Han
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zexun Li
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Dongyu Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117, Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117, Essen, Germany
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang, 830017, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
2
|
Kang J, Kwon O, Kim JP, Kim JY, Kim J, Cho Y, Kim DW. Graphene Membrane for Water-Related Environmental Application: A Comprehensive Review and Perspectives. ACS ENVIRONMENTAL AU 2025; 5:35-60. [PMID: 39830720 PMCID: PMC11741062 DOI: 10.1021/acsenvironau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025]
Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Collapse
Affiliation(s)
- Junhyeok Kang
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeong Pil Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghwi Cho
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Ji Y, Dong S, Huang Y, Yue C, Zhu H, Wu D, Zhao J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. MEMBRANES 2024; 14:32. [PMID: 38392659 PMCID: PMC10890694 DOI: 10.3390/membranes14020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.
Collapse
Affiliation(s)
- Yufan Ji
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Shurui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiping Huang
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Changhai Yue
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Hao Zhu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Dan Wu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Liang B, Hu H, Zhu H, Yu Y, He W, Li G. Separation performance of graphene oxide nanofiltration membrane intercalated by MWCNTs and α -Fe 2O 3 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168466. [PMID: 37951252 DOI: 10.1016/j.scitotenv.2023.168466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Nanofiltration (NF) technology is used in the field of water treatment due to its advantages of low energy consumption, high efficiency, and simple process flow. However, the problems of membrane fouling and trade-off (i.e., high flux with low rejection or high rejection with low flux) exist in NF technology, which limit its wide-scale popularization and application. The emphasis of this work is to improve the performance of graphene oxide (GO)-based NF membranes. Multi-walled carbon nanotubes (MWCNTs) and α-Fe2O3 were selected to modify the GO-based membrane by expanding the interlayer spacing and enhancing its antifouling and rejection abilities. Our composite membranes exhibit an increased interlayer spacing of 0.787 nm to 1.1 nm, achieving a high pure water permeation flux of 138.96 Lm-2 h-1, as well as satisfactory rejection rates for salts and dyes (Na2SO4, NaCl, MgCl2, Congo red, and methylene blue). Additionally, the membranes exhibit a relatively good antifouling property. After five cycles of rejection tests, the flux and rejection rate could be recovered to 90 % from 80 % with a 4-h irradiation under visible light. This study provides valuable insights into the development of high-efficiency and advanced NF membranes.
Collapse
Affiliation(s)
- Baowen Liang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Han Hu
- Shanghai CEO Environmental Protection Technology Co., Ltd, 1688 Guoquan North Road, Shanghai 200438, China
| | - Haochen Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yunhan Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Sohail Ahmad M, Inomata Y, Kida T. Energy Application of Graphene Based Membrane: Hydrogen Separation. CHEM REC 2024; 24:e202300163. [PMID: 37489627 DOI: 10.1002/tcr.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 07/26/2023]
Abstract
Hydrogen gas (H2 ) is a viable energy carrier that has the potential to replace the traditional fossil fuels and contribute to achieving zero net emissions, making it an attractive option for a hydrogen-based society. However, current H2 purification technologies are often limited by high energy consumption, and as a result, there is a growing demand for alternative techniques that offer higher H2 purity and energy efficiency. Membrane separation has emerged as a promising approach for obtaining high-purity H2 gas with low energy consumption. Nevertheless, despite years of development, commercial polymeric membranes have limited performance, prompting researchers to explore alternative materials. In this context, carbon-based membranes, specifically graphene-based nanomaterials, have gained significant attention as potential membrane materials due to their unique properties. In this review, we provide a comprehensive overview of carbon-based membranes for H2 gas separation, fabrication of the membrane, and its characterization, including their advantages and limitations. We also explore the current technological challenges and suggest insights into future research directions, highlighting potential ways to improve graphene-based membranes performance for H2 separations.
Collapse
Affiliation(s)
- Muhammad Sohail Ahmad
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yusuke Inomata
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
6
|
Wang LT, Chen YH, Chang WT, Kumar SR, Chen CC, Lue SJ. Separation Mechanisms and Anti-Fouling Properties of a Microporous Polyvinylidene Fluoride-Polyacrylic Acid-Graphene Oxide (PVDF-PAA-GO) Composite Membrane with Salt and Protein Solutions. MEMBRANES 2022; 13:40. [PMID: 36676847 PMCID: PMC9860620 DOI: 10.3390/membranes13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This research demonstrates the preparation of composite membranes containing graphene oxide (GO) and investigates the separation mechanisms of various salts and bovine serum albumin (BSA) solutions. A microporous polyvinylidene fluoride-polyacrylic acid-GO (PVDF-PAA-GO) separation layer was fabricated on non-woven support. The GO-incorporating composite resulted in enlarged pore size (0.16 μm) compared with the control membrane (0.12 μm). The zeta potential of the GO composite was reduced to -31 from -19 mV. The resulting membranes with and without GO were examined for water permeability and rejection efficiency with single salt and BSA solutions. Using the non-woven/PVDF-PAA composite, the permeance values were 88-190 kg/m2hMPa, and the salt rejection coefficients were 9-28% for Na2SO4, MgCl2, MgSO4, and NaCl solutions. These salt removals were based on the Donnan exclusion mechanism considering the ion radii and membrane pore size. Incorporating GO into the separation layer exhibited limited impacts on the filtration of salt solutions, but significantly reduced BSA membrane adhesion and increased permeance. The negatively charged protein reached almost complete removal (98.4%) from the highly negatively charged GO-containing membrane. The GO additive improved the anti-fouling property of the composite membrane and enhanced BSA separation from the salt solution.
Collapse
Affiliation(s)
- Li-Ting Wang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Yu-Han Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Wei-Ting Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chien-Chang Chen
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Orthopedics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
7
|
Wang C, Park MJ, Yu H, Matsuyama H, Drioli E, Shon HK. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
PES membrane surface modification via layer-by-layer self-assembly of GO@TiO2 for improved photocatalytic performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Recent Progress of Adsorptive Ultrafiltration Membranes in Water Treatment—A Mini Review. MEMBRANES 2022; 12:membranes12050519. [PMID: 35629845 PMCID: PMC9144780 DOI: 10.3390/membranes12050519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Adsorptive ultrafiltration mixed matrix membranes (MMMs) are a new strategy, developed in recent years, to remove harmful cations and small-molecule organics from wastewater and drinking water, which achieve ultrafiltration and adsorption functions in one unit and are considered to be among the promising technologies that have exhibited efficiency and competence in water reuse. This mini review concerns the research progress of adsorptive ultrafiltration MMMs for removing heavy metal ions and small-molecule organics. We firstly introduce the types and classifications of adsorptive ultrafiltration MMMs (their classifications can be established based on the type of the adsorbent used). Furthermore, we discuss the removal mechanism of adsorptive ultrafiltration MMMs, as well as summarizing the main fabrication techniques for adsorptive ultrafiltration membranes. In addition, we identified some of the issues and challenges of the practical application for adsorptive ultrafiltration.
Collapse
|
10
|
Cha M, Boo C, Song IH, Park C. Investigating the potential of ammonium retention by graphene oxide ceramic nanofiltration membranes for the treatment of semiconductor wastewater. CHEMOSPHERE 2022; 286:131745. [PMID: 34364232 DOI: 10.1016/j.chemosphere.2021.131745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Ceramic membranes with high chemical and fouling resistance can play a critical role in treating industrial wastewater. In the present study, we demonstrate the fabrication of graphene oxide (GO) assembled ceramic nanofiltration (NF) membranes that provide effective ammonium retention and excellent fouling resistance for treating semiconductor wastewater. The GO-ceramic NF membranes were prepared via a layer-by-layer (LbL) assembly of GO and polyethyleneimine (PEI) on a ceramic ultrafiltration (UF) substrate. The successful fabrication of the GO-ceramic NF membranes was verified through surface characterization and pore size evaluation. We also investigated the performance of GO-ceramic NF membranes assembled with different numbers of bilayers for the rejection of ammonium ions. GO-ceramic NF membranes with three GO-PEI bilayers exhibited 8.4- and 3.2-times higher ammonium removal with simulated and real semiconductor wastewater, respectively, compared to the pristine ceramic UF substrate. We also assessed flux recovery after filtration using real semiconductor wastewater samples to validate the lower fouling potential of the GO-ceramic NF membranes. Results indicate that flux recovery increases from 39.1 % in the pristine UF substrate to 71.0 % and 90.8 % for the three- and ten-bilayers GO-ceramic NF membranes, respectively. The low-fouling GO-ceramic NF membranes developed in this study are effective and promising options for the removal of ammonium ions from semiconductor wastewater.
Collapse
Affiliation(s)
- Minju Cha
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Chanhee Boo
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Hyuck Song
- Ceramic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam, 51508, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
11
|
Singh S, Anil AG, Khasnabis S, Kumar V, Nath B, Adiga V, Kumar Naik TSS, Subramanian S, Kumar V, Singh J, Ramamurthy PC. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. ENVIRONMENTAL RESEARCH 2022; 203:111891. [PMID: 34419468 DOI: 10.1016/j.envres.2021.111891] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 05/19/2023]
Abstract
Metal-based adsorbents are limited for hexavalent chromium [Cr(VI)] adsorption from aqueous solutions because of their low adsorption capacities and slow adsorption kinetics. In the present study, decorated zinc oxide (ZnO) nanoparticles (NPs) on graphene oxide (GO) nanoparticles were synthesized via the solvothermal process. The deposition of ZnO NPs on graphene oxide for the nanohybrid (ZnO-GO) improves Cr(VI) mobility in the nanocomposite or nanohybrid, thereby improving the Cr(VI) adsorption kinetics and removal capacity. Surface deposition of ZnO on graphene oxide was characterized through Fourie Transform Infra-red (FTIR), UV-Visible, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) techniques. These characterizations suggest the formation of ZnO-GO nanocomposite with a specific area of 32.95 m2/g and pore volume of 0.058 cm2/g. Batch adsorption analysis was carried to evaluate the influence of operational parameters, equilibrium isotherm, adsorption kinetics and thermodynamics. The removal efficiency of Cr(VI) increases with increasing time and adsorbent dosage. FTIR, FESEM and BET analysis before and after the adsorption studies suggest the obvious changes in the surface functionalization and morphology of the ZnO-GO nanocomposites. The removal efficiency increases from high-acidic to neutral pH and continues to decrease under alkaline conditions as well. Mathematical modeling validates that the adsorption follows Langmuir isotherm and fits well with the pseudo 2nd order kinetics (Type 5) model, indicating a homogeneous adsorption process. The thermodynamics study reveals that Cr(VI) adsorption on ZnO-GO is spontaneous, endothermic, and entropy-driven. A negative value of Gibb's Free Energy represents the thermodynamic spontaneity and feasibility of the sorption process. To the best of our knowledge, this is the first study of Cr(VI) removal from aqueous solution using this hybrid nanocomposite at near-neutral pH. The synthesized nanocomposites prove to be excellent candidates for Cr(VI) removal from water bodies and natural wastewater systems.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Amith G Anil
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Sutripto Khasnabis
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute, Jhansi, U.P, India
| | - Bidisha Nath
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore, 56001, India
| | - Varun Adiga
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore, 56001, India
| | - T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - S Subramanian
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| |
Collapse
|
12
|
Liu Y, Coppens MO, Jiang Z. Mixed-dimensional membranes: chemistry and structure-property relationships. Chem Soc Rev 2021; 50:11747-11765. [PMID: 34499074 DOI: 10.1039/d1cs00737h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tremendous progress in two-dimensional (2D) nanomaterial chemistry affords abundant opportunities for the sustainable development of membranes and membrane processes. In this review, we propose the concept of mixed dimensional membranes (MDMs), which are fabricated through the integration of 2D materials with nanomaterials of different dimensionality and chemistry. Complementing mixed matrix membranes or hybrid membranes, MDMs stimulate different conceptual thinking about designing advanced membranes from the angle of the dimensions of the building blocks as well as the final structures, including the nanochannels and the bulk structures. In this review, we survey MDMs (denoted nD/2D, where n is 0, 1 or 3) in terms of the dimensions of membrane-forming nanomaterials, as well as their fabrication methods. Subsequently, we highlight three kinds of nanochannels, which are 1D nanochannels within 1D/2D membranes, 2D nanochannels within 0D/2D membranes, and 3D nanochannels within 3D/2D membranes. Strategies to tune the physical and chemical microenvironments of the nanochannels as well as the bulk structures based on the size, type, structure and chemical character of nanomaterials are discussed. Some representative applications of MDMs are illustrated for gas molecular separations, liquid molecular separations, ionic separations and oil/water separation. Finally, current challenges and a future perspective on MDMs are presented.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. .,EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Marc-Olivier Coppens
- EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Huang Y, Zhu G, Zou K, Tian F, Prasad Yadav T, Xu H, Yang G, Li H, Qu L. Highly efficient removal of organic pollutants from wastewater using a recyclable graphene oxide membrane intercalated with g-C3N4@TiO2-nanowires. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Wang D, Li S, Li F, Li J, Li N, Wang Z. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145370. [PMID: 33736376 DOI: 10.1016/j.scitotenv.2021.145370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Triple-layered thin film composite (TFC) forward osmosis (FO) membranes prepared on interlayer-based supports have overcome the limitations of conventional porous substrates due to the formation of ultrathin and highly selective polyamide (PA) layers. However, mitigating the internal concentration polarization (ICP) and biofouling of TFC membranes remain a great challenge. Herein, we designed a novel triple-layered thin film nanocomposite (TFN) FO membrane with incorporation of silver (Ag) decorated graphene oxide quantum dots (GOQD) into PA layer via interfacial polymerization on a carbon nanotube (CNT) interlayer-based polyether sulfone substrate. By contrast with the TFC membranes, the newly developed GOQD/Ag incorporated triple-layered TFN membrane (TFN-GOQD/Ag) exhibited a great alleviation for ICP accompanied with a prominently enhanced water flux of 65.8 L·m-2·h-1 and decreased specific reverse salt flux of 1.4 g·m-2·h-1 by employing 1 M NaCl solution as draw solution. Moreover, the TFN-GOQD/Ag membrane possessed prominent antibacterial activity against both E. coli (99.8%) and S. aureus (97.3%). Noteworthy, the obtained TFN membrane demonstrated a controlled release of Ag+ along with long-term antibacterial potential and outstanding fouling resistance during the FO process. This work provides a new avenue to fabricate newly FO membranes with superior performance for water cleaning treatment.
Collapse
Affiliation(s)
- Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Shuya Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan 250014, Shandong, PR China.
| | - Jinmei Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
16
|
Modification Approaches to Enhance Dehydration Properties of Sodium Alginate-Based Pervaporation Membranes. MEMBRANES 2021; 11:membranes11040255. [PMID: 33916137 PMCID: PMC8066153 DOI: 10.3390/membranes11040255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Transport characteristics of sodium alginate (SA) membranes cross-linked with CaCl2 and modified with fullerenol and fullerene derivative with L-arginine for pervaporation dehydration were improved applying various approaches, including the selection of a porous substrate for the creation of a thin selective SA-based layer, and the deposition of nano-sized polyelectrolyte (PEL) layers through the use of a layer-by-layer (Lbl) method. The impacts of commercial porous substrates made of polyacrylonitrile (PAN), regenerated cellulose, and aromatic polysulfone amide were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), standard porosimetry method, and water filtration. The effects of PEL combinations (such as poly(sodium 4-styrene sulfonate) (PSS)/SA, PSS/chitosan, PSS/polyacrylic acid, PSS/poly(allylamine hydrochloride)) and the number of PEL bilayers deposited with the Lbl technique on the properties of the SA and SA/fullerene derivative membranes were studied by SEM, AFM, and contact angle measurements. The best characteristics were exhibited by a cross-linked PAN-supported SA/fullerenol (5%) membrane with five PSS/SA bilayers: permeation flux of 0.68–1.38 kg/(m2h), 0.18–1.55 kg/(m2h), and 0.50–1.15 kg/(m2h), and over 99.7, 99.0, and 89.0 wt.% water in the permeate for the pervaporation dehydration of isopropanol (12–70 wt.% water), ethanol (4–70 wt.% water), and tetrahydrofuran (5.7–70 wt.% water), respectively. It was demonstrated that the mutual application of bulk and surface modifications essentially improved the membrane’s characteristics in pervaporation dehydration.
Collapse
|
17
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Petukhov DI, Kapitanova OO, Eremina EA, Goodilin EA. Preparation, chemical features, structure and applications of membrane materials based on graphene oxide. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Halakoo E, Feng X. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Hao W, Tong Z, Liu X, Zhang B. Optimizing nanostrands-inserted graphene oxide membrane with polyelectrolyte protective layer for enhanced ethanol pervaporation dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Yan X, Tao W, Cheng S, Ma C, Zhang Y, Sun Y, Kong X. Layer-by-layer assembly of bio-inspired borate/graphene oxide membranes for dye removal. CHEMOSPHERE 2020; 256:127118. [PMID: 32460162 DOI: 10.1016/j.chemosphere.2020.127118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Dye wastewater is harmful to the ecological environment because of its potential biological toxicity, teratogenicity, carcinogenicity, and mutagenicity. We fabricated a layered graphene oxide (GO) membrane through layer-by-layer (LBL) self-assembly. We used borate to crosslink with GO on a polyethyleneimine (PEI)-coated hydrolyzed polyacrylonitrile (hPAN) support. Fourier transform infrared (FTIR) spectrometry, Raman spectra, and x-ray photoelectron spectroscopy (XPS) confirmed the presence of a crosslinking reaction. The dynamic thermomechanical analysis (DMA) results indicated that the introduction of borate can significantly improve the mechanical properties of the membrane. The Young's modulus, ultimate tensile strength, and proportional limit of borate that was assembled twice as the outermost layer were increased by 110.81%, 62.37%, and 53.72%, respectively, as compared to those of a single-layered GO membrane. Moreover, the pure water fluxes of the layered GO membrane did not obviously decrease with an increase in the number of layers. The flux of the membrane with an outermost layer of borate was greater than that of the previous GO layer. The salt and dye rejection of the membranes was augmented with an increase in the number of layers. For the GO membrane assembled three times, rejection to methyl orange (MO), methylene blue (MB), NaCl, MgCl2, and MgSO4 reached 74.02%, 88.56%, 14.55%, 27.50%, and 41.95%, respectively. The use of borate as an inorganic crosslinker can avoid the environmental pollution caused by organic agents, and improve the mechanical properties as well as the filter capability of the layered GO membrane. Therefore, this study presents a novel method of membrane preparation for dye removal.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wen Tao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yan Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Yue Sun
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Xiangji Kong
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| |
Collapse
|
23
|
Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
|
25
|
Tang L, Lu Y, Yao L, Cui P. A highly hydrophilic benzenesulfonic-grafted graphene oxide-based hybrid membrane for ethanol dehydration. RSC Adv 2020; 10:20358-20367. [PMID: 35520457 PMCID: PMC9054239 DOI: 10.1039/d0ra02668a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023] Open
Abstract
A new type of hybrid membrane was prepared by blending sodium alginate (SA) with benzenesulfonic-grafted graphene oxide (BS@GO), which showed higher hydrophilicity and more defects or edges than GO to create channels for the transfer of water molecules. BS@GO was synthesized by reacting aryl diazonium salts with graphene oxide (GO). The BS@GO sheets were aligned parallelly to the membrane surface and affected the interactions between the SA chains. BS@GO could improve the hydrophilicity and pervaporation properties of SA-based hybrid membranes. Also, compared to GO fillers, BS@GO fillers could supply higher water permeance to improve the pervaporation flux and separation factor. For the pervaporation of 90 wt% aqueous ethanol at 343 K, the optimum hybrid membrane with 1.5 wt% BS@GO in the SA matrix showed the maximum permeate flux of 703 ± 89 g m-2 h-1 (1.4 times higher than that of an SA membrane), and the highest separation factor was 5480 ± 94 (5.6 times higher than that of the SA membrane). Moreover, the hybrid membrane exhibited good stability and separation ability during long-term testing.
Collapse
Affiliation(s)
- Lin Tang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering Hefei 230009 China
| | - Yingying Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering Hefei 230009 China
| | - Lulu Yao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering Hefei 230009 China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering Hefei 230009 China
| |
Collapse
|
26
|
Wang J, Liu Y, Dang J, Zhou G, Wang Y, Zhang Y, Qu L, Wu W. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Muraru S, Ionita M. Computational methods towards increased efficiency design of graphene membranes for gas separation and water desalination. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The potential impact of climate change is widely known as having serious consequences. The themes of water desalination and gas separation are closely related to the environment and energy industry. Graphene-based membranes are promising filtration devices for the two tasks. This review aims to supply a comprehensive overview of the recent computational studies investigating the performance of graphene-based membranes used in water desalination or gas separation. With the use of computational methods, the literature covered finds evidence for key factors, such as pore shape and density, affecting the performance of the investigated membranes. The reviewed studies are expected to act as an impulse towards more computational studies and eventually actual design of graphene-based membranes for water desalination and gas separation.
Collapse
Affiliation(s)
- Sorin Muraru
- Advanced Polymer Materials Group , University Politehnica of Bucharest , Gh Polizu 1-7, 011061 , Bucharest , Romania
| | - Mariana Ionita
- Advanced Polymer Materials Group , University Politehnica of Bucharest , Gh Polizu 1-7, 011061 , Bucharest , Romania
- Faculty of Medical Engineering , University Politehnica of Bucharest , Gh Polizu 1-7, 011061 , Bucharest , Romania
| |
Collapse
|
28
|
Cha-Umpong W, Hosseini E, Razmjou A, Zakertabrizi M, Korayem AH, Chen V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117687] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Improved water permeability and structural stability in a polysulfone-grafted graphene oxide composite membrane used for dye separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117547] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Yang H, Wu H, Pan F, Wang M, Jiang Z, Cheng Q, Huang C. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Layer-by-layer self-assembly of polyethyleneimine and poly(4-styrene sulfonic acid-co-maleic acid) forming composite polyelectrolyte membranes for pervaporation of aqueous alcohol solutions. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Rajesh S, Bose AB. Development of Graphene Oxide Framework Membranes via the "from" and "to" Cross-Linking Approach for Ion-Selective Separations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27706-27716. [PMID: 31305985 DOI: 10.1021/acsami.9b05465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) membranes with well-defined nanochannels formed between the stacked GO nanosheets find great interest in molecular separations. However, GO membranes are unstable in aqueous solution environments because of weak interactions between the stacked nanosheets. Herein, we developed a preparation method by diminishing the self-contained oxidized functional groups in GO and subsequent cross-linking to form GO framework (GOF) membranes with excellent aqueous solution stability. GOF membranes were fabricated by alternate deposition of branched polyethylenimine (BPEI) and a mixed solution of GO and thiourea (TU). Structural elucidation illustrated that the TU partially reduced the GO molecules and acted as a "to" cross-linker by bridging adjacent GO nanosheets through in-plane and out-of-plane of interactions. During the GO deposition, BPEI performed the role as a "from" cross-linker by binding the TU-linked GO laminates to form stable GOF membranes with well-defined nanochannels. Morphological studies confirmed the formation of the tightly packed structure for BPEI/GO_TU membranes due to the high Π-Π interactions between the GO nanosheets and bridging effect of TU. The GOF membranes exhibited a rejection of 99.5% for anionic dye methyl orange and cationic dye rhodamine B. The BPEI/GO_TU membranes fabricated from 12 bilayers using 0.25 mg/mL of GO solution have a pure water flux of 24 L m-2 h-1 and a Na2SO4 rejection of 94%; this permeability is 2.5 times higher than that of commercial nanofiltration membranes. Moreover, (BPEI/GO_TU)12 GOF membranes exhibited excellent aqueous solution stability in acidic and basic conditions. The excellent separation performance and aqueous solution stability of the BPEI/GO_TU membranes are intricately linked to the partial reduction and cross-linking of GO nanosheets in GOF membranes. Thus, the "from" and "to" cross-linking approach developed in this work can be extended for the fabrication of structurally stable membranes from other 2D materials.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Engineering Technology and Texas Center for Superconductivity (TcSUH) , University of Houston , Houston , Texas 77204 , United States
| | - Anima B Bose
- Department of Engineering Technology and Texas Center for Superconductivity (TcSUH) , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
34
|
An QF, Ang MBMY, Huang YH, Huang SH, Chiao YH, Lai CL, Tsai HA, Hung WS, Hu CC, Wu YP, Lee KR. Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Du W, Zhang Z, Li Z. Influence of the weight ratio of polydimethylsiloxane modified gelatin to silicone rubber on the potential performance of asymmetric bilayer membranes as wound dressings. POLYM INT 2019. [DOI: 10.1002/pi.5881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weining Du
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zetian Zhang
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zhengjun Li
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| |
Collapse
|
36
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
37
|
Nakagawa K, Sera T, Kunimatsu M, Yamashita H, Yoshioka T, Shintani T, Kamio E, Tsang SCE, Matsuyama H. Two-dimensional niobate nanosheet membranes for water treatment: Effect of nanosheet preparation method on membrane performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Hyun T, Jeong J, Chae A, Kim YK, Koh DY. 2D-enabled membranes: materials and beyond. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0012-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Li L, Hou J, Chen V. Pinning Down the Water Transport Mechanism in Graphene Oxide Pervaporation Desalination Membranes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Li
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jingwei Hou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, U.K
| | - Vicki Chen
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Chemical Engineering, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
41
|
High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Liu G, Jiang Z, Li C, Hou L, Chen C, Yang H, Pan F, Wu H, Zhang P, Cao X. Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Nakagawa K, Araya S, Kunimatsu M, Yoshioka T, Shintani T, Kamio E, Matsuyama H. Fabrication of Stacked Graphene Oxide Nanosheet Membranes Using Triethanolamine as a Crosslinker and Mild Reducing Agent for Water Treatment. MEMBRANES 2018; 8:E130. [PMID: 30551593 PMCID: PMC6315452 DOI: 10.3390/membranes8040130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022]
Abstract
Two-dimensional (2D) nanosheets show promise for the development of water treatment membranes with extraordinary separation properties and the advantages of atomic thickness with micrometer-sized lateral dimensions. Stacked graphene oxide (GO)-based membranes can demonstrate unique molecular sieving properties with fast water permeation. However, improvements to the structural stability of the membranes in water to avoid problems such as swelling, disruption of the ordered GO layer and decreased rejection are crucial issues. This study reports the fabrication of stacked GO nanosheet membranes by simple vacuum filtration using triethanolamine (TEOA) as a crosslinker and mild reducing agent for improved structural stability and membrane performance. Results show that GO membranes modified with TEOA (GO-TEOA membranes) have a higher structural stability in water than unmodified GO membranes, resulting in improved salt rejection performance. Furthermore, GO-TEOA membranes show stable water permeance at applied pressures up to 9 bar with Na₂SO₄ rejection of 85%, suggesting the potential benefits for water treatment applications.
Collapse
Affiliation(s)
- Keizo Nakagawa
- Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Shintaro Araya
- Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Misato Kunimatsu
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Takuji Shintani
- Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Eiji Kamio
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
45
|
Zhao D, Zhao J, Ji Y, Liu G, Liu S, Jin W. Facilitated water-selective permeation via PEGylation of graphene oxide membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Dudek G, Turczyn R. New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol. RSC Adv 2018; 8:39567-39578. [PMID: 35558028 PMCID: PMC9091010 DOI: 10.1039/c8ra07868h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023] Open
Abstract
A new type of composite alginate membranes filled with chitosan (CS) and three different modified chitosan submicron particles, i.e. phosphorylated (CS-P), glycidol (CS-G) or glutaraldehyde (CS-GA) crosslinked ones, were prepared, and the pervaporation of water/ethanol mixture was investigated. The influence of various chitosan particles and their content on the transport properties of membranes was discussed. It was found that the addition of chitosan particles into the alginate matrix has a prominent effect on the ethanol/water separation efficiency. All tested membranes are characterized simultaneously by a high flux and selectivity, exhibiting advantageous properties, and outperforming numerous conventional materials. The best results were achieved for alginate membranes filled with phosphorylated chitosan particles at 10 wt%, for which separation factor, flux and PSI were equal to 136.2, 1.90 kg m-2 h-1 and 256.9 kg m-2 h-1, respectively.
Collapse
Affiliation(s)
- Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland +48 32 2371509 +48 32 2371427
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland +48 32 2371509 +48 32 2371427
| |
Collapse
|
47
|
Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z, Cao X. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
|
49
|
Zhang P, Gong JL, Zeng GM, Song B, Liu HY, Huan SY, Li J. Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure. CHEMOSPHERE 2018; 204:378-389. [PMID: 29674150 DOI: 10.1016/j.chemosphere.2018.04.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Here we demonstrated an alternative partial reduction graphene oxide/metal-organic frameworks nano-scale laminated membrane for dyes and heavy metal ions removal at low pressure. Compared with pure prGO membranes, the novel UiO-66-(COOH)2/prGO membranes with loose structure and excellent selective permeability demonstrated significant enhancements of permeation for low-pressure nanofiltration. The UiO-66-(COOH)2/prGO membranes possess more nanochannels structure, high surface charge and stability, which were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The experiment result indicated that the flux of composite membranes for pure water was 20.0 ± 2.5 Lm-2h-1bar-1, about 2.9 times higher than that (6.5 ± 1.2 Lm-2h-1bar-1) of the pristine prGO membranes at the same prGO loading. The high rejection of UiO-66-(COOH)2/prGO membranes for organic dyes (98.2 ± 1.7% for negatively charged congo red and 92.55 ± 2.5% for positively charged methylene blue) were exhibited. Moreover, the rejection for heavy metal ions also can be efficiently improved up to 96.5-83.1% for Cu2+ and 92.6-80.4% for Cd2+, indicating the positive effect of the electrostatic interaction on the nanochannels for ions. Therefore, it is reasonable to believe that novel UiO-66-(COOH)2/prGO membranes have great potential application in water treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Guang-Ming Zeng
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Biao Song
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong-Yu Liu
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Shuang-Yan Huan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Juan Li
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
50
|
Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|