1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
3
|
Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat Commun 2022; 13:7577. [PMID: 36481615 PMCID: PMC9732346 DOI: 10.1038/s41467-022-34489-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
A key challenge for fuel cells based on phosphoric acid doped polybenzimidazole membranes is the high Pt loading, which is required due to the low electrode performance owing to the poor mass transport and severe Pt poisoning via acid absorption on the Pt surface. Herein, these issues are well addressed by design and synthesis of effective catalyst binders based on polymers of intrinsic microporosity (PIMs) with strong hydrogen-bonding functionalities which improve phosphoric acid binding energy, and thus preferably uphold phosphoric acid in the vicinity of Pt catalyst particles to mitigate the adsorption of phosphoric acid on the Pt surface. With combination of the highly mass transport microporosity, strong hydrogen-bonds and high phosphoric acid binding energy, the tetrazole functionalized PIM binder enables an H2-O2 cell to reach a high Pt-mass specific peak power density of 3.8 W mgPt-1 at 160 °C with a low Pt loading of only 0.15 mgPt cm-2.
Collapse
|
4
|
Suppression of radical attack in polymer electrolyte membranes using a vinyl polymer blend interlayer with low oxygen permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang Y, Wang Y, Guo M, Ban T, Zhu X. High performance poly(isatin alkyl-terphenyl)s proton exchange membranes with flexible alkylsulfonated side groups. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221089570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrocarbon-based polymer proton exchange membranes (PEMs) free of heteroatom linkages are supposed to be an attractive alternative for the most advanced perfluorosulfonic acid PEMs, but it is challenging to synthesize them. Here we disclosed a series of aliphatic chain-containing poly(isatin diphenyl-co-terphenyl)(PIDT) copolymers, which were conveniently prepared by superacid-catalyzed Friedel-Crafts polycondensation. Subsequently, the sulfonated copolymer (SPIDT) membranes were prepared by the grafting of side-chain sulfonic acid groups. Due to the formed continuous and efficient nanoscale proton transport channel, these PEMs exhibited excellent proton conductivity showing 186 mS/cm at 80°C, higher than Nafion115 (150 mS/cm). Meanwhile, the prepared membranes exhibited good oxidative stability. The residual weight of the membranes is still greater than 98 wt % after 1 h immersion in Fenton’s reagent at 80°C. Notably, the direct borohydride-hydrogen fuel cell (DBHFC) equipped with SPIDT-50 membrane as the diaphragm showed the peak power density of 71 mW•cm−2 at 25°C, which was greater than that of Nafion115 (63 mW•cm−2). Therefore, the hydrocarbon-based PEMs prepared in this study show promise for application in fuel cells.
Collapse
Affiliation(s)
- Yannan Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian, P R China
| |
Collapse
|
6
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
8
|
Flexible cationic side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
|
10
|
Pagels MK, Adhikari S, Walgama RC, Singh A, Han J, Shin D, Bae C. One-Pot Synthesis of Proton Exchange Membranes from Anion Exchange Membrane Precursors. ACS Macro Lett 2020; 9:1489-1493. [PMID: 35653668 DOI: 10.1021/acsmacrolett.0c00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton exchange membranes (PEMs) play a critical role in many electrochemical devices that could solve the shortcomings of current energy storage and conversion systems. Hydrocarbon-based PEMs are an attractive alternative for replacing the state-of-the-art perfluorosulfonic acid PEMs; however, synthetic routes are generally limited to sulfonation of aromatic units (pre- or postpolymerization functionalization). Here we disclose a facile and scalable one-pot synthetic method of converting an alkyl halide functionality to a sulfonate in polymer systems. With this method, sulfonated hydrocarbon PEMs can be conveniently prepared from a precursor polymer of anion exchange membranes which have recently experienced significant advances. Polyphenylene type PEMs (BPSA and mTPSA in this report) were generated in one-pot SN2 reaction of bromoalkyl side chains of polymers followed by oxidation. These PEMs showed excellent proton conductivity with BPSA showing 250 mS/cm in water at 80 °C, nearly 1.5 times higher than that of Nafion 212. Furthermore, the separation of the sulfonic acid group from the rigid backbone with a flexible alkyl chain mitigates excessive water uptake and in-plane swelling ratio of the polymer, despite having a high ion exchange capacity of 2.6 mequiv/g. Oxidative stability was also shown to be superior for hydrocarbon-based PEMs with negligible changes in mass, NMR, and proton conductivity.
Collapse
Affiliation(s)
- Michael K Pagels
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Santosh Adhikari
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ramali C Walgama
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Asheesh Singh
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Junyoung Han
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Dongwon Shin
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
11
|
Roy S, Ghorai A, Komber H, Voit B, Banerjee S. Synthesis of 2,2′-hindered pyridine containing semifluorinated polytriazoles and investigation for low-temperature proton exchange membrane application with enhanced oxidative stability. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat Commun 2019; 10:842. [PMID: 30783091 PMCID: PMC6381100 DOI: 10.1038/s41467-019-08622-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Proton exchange membranes with short-pathway through-plane orientated proton conductivity are highly desirable for use in proton exchange membrane fuel cells. Magnetic field is utilized to create oriented structure in proton exchange membranes. Previously, this has only been carried out by proton nonconductive metal oxide-based fillers. Here, under a strong magnetic field, a proton-conducting paramagnetic complex based on ferrocyanide-coordinated polymer and phosphotungstic acid is used to prepare composite membranes with highly conductive through-plane-aligned proton channels. Gratifyingly, this strategy simultaneously overcomes the high water-solubility of phosphotungstic acid in composite membranes, thereby preventing its leaching and the subsequent loss of membrane conductivity. The ferrocyanide groups in the coordinated polymer, via redox cycle, can continuously consume free radicals, thus helping to improve the long-term in situ membrane durability. The composite membranes exhibit outstanding proton conductivity, fuel cell performance and durability, compared with other types of hydrocarbon membranes and industry standard Nafion® 212. Proton exchange membranes with short-pathway through-plane proton conductivity are attractive for proton exchange membrane fuel cells. Here the authors align proton conducting channels orthogonal to the plane of composite proton exchange membranes using a magnetic field for improved fuel cell performance.
Collapse
|
13
|
Umukoro EH, Peleyeju MG, Idris AO, Ngila JC, Mabuba N, Rhyman L, Ramasami P, Arotiba OA. Photoelectrocatalytic application of palladium decorated zinc oxide-expanded graphite electrode for the removal of 4-nitrophenol: experimental and computational studies. RSC Adv 2018; 8:10255-10266. [PMID: 35540454 PMCID: PMC9078825 DOI: 10.1039/c8ra00180d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
A novel Pd-ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd-ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd-ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm-2. Optical studies revealed that the Pd-ZnO-EG absorbed strongly in the visible light region. The Pd-ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd-ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.
Collapse
Affiliation(s)
| | - Moses G Peleyeju
- Department of Applied Chemistry, University of Johannesburg South Africa
| | - Azeez O Idris
- Department of Applied Chemistry, University of Johannesburg South Africa
| | - Jane C Ngila
- Department of Applied Chemistry, University of Johannesburg South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg South Africa
| | - Nonhlangabezo Mabuba
- Department of Applied Chemistry, University of Johannesburg South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg South Africa
| | - Lydia Rhyman
- Department of Applied Chemistry, University of Johannesburg South Africa
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Ponnadurai Ramasami
- Department of Applied Chemistry, University of Johannesburg South Africa
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Omotayo A Arotiba
- Department of Applied Chemistry, University of Johannesburg South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg South Africa
| |
Collapse
|
14
|
Salleh MT, Jaafar J, Mohamed MA, Norddin M, Ismail A, Othman M, Rahman MA, Yusof N, Aziz F, Salleh W. Stability of SPEEK/Cloisite ® /TAP nanocomposite membrane under Fenton reagent condition for direct methanol fuel cell application. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2016.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|