1
|
Huang TY, Laysandra L, Chen NCR, Prasetyo F, Chiu YC, Yeh LH, Wu KCW. MOF composites for revolutionizing blue energy harvesting and next-gen soft electronics. Adv Colloid Interface Sci 2025; 340:103444. [PMID: 39999516 DOI: 10.1016/j.cis.2025.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials with highly ordered and crystalline structures, which have earned tremendous attention in the academic community in recent years owing to their high tunability in porosity and pore structure. By integrating MOFs with soft colloids or polymers to form MOF composites, the rigidity and brittle nature of MOFs can be compensated for, thus achieving synergistic effects for a wide variety of applications. In particular, the past decade has seen the advancement of MOF composites in the budding fields of blue energy harvesting and soft electronics, which have received growing interest in the past 5 years. This review focuses on the applications of MOF composites in these two fields, and starts by examining the nanoarchitectures of MOFs, followed by the fabrication of MOF composites. Furthermore, topical advances of MOF composites in blue energy harvesting and soft electronics are reviewed and summarized, and their challenges and future opportunities are discussed as the final touch. This article provides comprehensive review and valuable insights into the development of MOF composites, which may open up new avenues for blue energy harvesting and soft electronics to solve the imminent energy crisis and to advance the wearable technology in healthcare.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Norman C-R Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| | - Fery Prasetyo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli District, Taoyuan 32003, Taiwan; Department of Chemical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
| |
Collapse
|
2
|
Nadeem TB, Imran M, Tandis E. Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:205. [PMID: 39940181 PMCID: PMC11820813 DOI: 10.3390/nano15030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions.
Collapse
Affiliation(s)
- Talha Bin Nadeem
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Muhammad Imran
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Energy Systems Group, Energy and Bioproduct Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Emad Tandis
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
| |
Collapse
|
3
|
Tricarico M, Mollick S, Kachwal V, Sherman DA, Tan JC. Exploring the Photophysical and Mechanical Behavior of Fluorescent Metal-Organic Framework Monoliths. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8247-8254. [PMID: 39279904 PMCID: PMC11393794 DOI: 10.1021/acs.chemmater.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Luminescent metal-organic frameworks exhibit great potential as materials for nanophotonic applications because of their programmable properties and tunable structures. In particular, luminescent guests (LG) can be hosted by metal-organic frameworks due to their porosity and guest confinement capacity, forming LG@MOF composite systems. However, such guest-host systems are mainly produced as loose powders, preventing their widespread use in practical devices and technological applications that require implementation of a stable continuum solid. In this regard, using monolithic MOF hosts might be a workable option to solve this challenge. Herein, we reported the facile synthesis and fabrication of novel prototypical sol-gel monolithic systems, designated as LG@monoMOF. Red (rhodamine B), blue (7-methoxycoumarin), and yellow (fluorescein) emitting dyes were encapsulated in a robust UiO-66 monolithic host, resulting in the red, blue, and yellow light-emitting luminescent monoliths. The mechanical and photophysical characterization of the three LG@monoMOF systems was systematically carried out in order to unravel the role of guest-host interactions in the mechanical and optical response of the bespoke LG@monoMOF composites.
Collapse
Affiliation(s)
- Michele Tricarico
- Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Samraj Mollick
- Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Vishal Kachwal
- Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Dylan A Sherman
- Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Jin-Chong Tan
- Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| |
Collapse
|
4
|
Jia Y, Chen K, Liu P, Liu Y, Pi X, Zhang X, Zhang Y. Thermally Annealed High-Aspect-Ratio ZIF-8 Nanoplates-Incorporated Mixed Matrix Membranes for Improved H 2/CO 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37100-37110. [PMID: 38968215 DOI: 10.1021/acsami.4c07974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The main challenge in the preparation of MOF-based mixed matrix membranes is to construct a good interface morphology to improve the gas separation performance and stability of the membranes. Herein, high-aspect-ratio ZIF-8 nanoplates for H2/CO2 separation membranes were synthesized by direct template conversion. The ZIF-8 nanoplates were prepared with the commercial Matrimid polymer to form MMMs by the flat scraping method. The homogeneous dispersion of high-aspect-ratio nanoplates in the membrane and the good compatibility between the filler and the matrix caused by the thermal annealing operation improve the gas separation performance and mechanical properties of MMMs. The H2/CO2 selectivity of MMMs loaded with 30 wt % ZIF-8 nanoplates increased to 10.3, and the H2 permeability was 330.1 Barrer. This synthesis method can be extended to prepare various ZIF nanoplates with elevated aspect ratios to obtain excellent performance fillers for gas separation of MMMs. In addition, the thermal annealing operation allows more efficient gas separation in polymer membranes and is a feasible way to design excellent and stable MMMs.
Collapse
Affiliation(s)
- Yan Jia
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Kaiyi Chen
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Pengxiao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Yubo Liu
- China Offshore Oil Engineering (Qingdao) Co., limited, Huangdao District, Qingdao 266400, PR China
| | - Xingjian Pi
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Xiaocan Zhang
- College of Science, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Ying Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| |
Collapse
|
5
|
Erba A, Desmarais JK, Casassa S, Civalleri B, Donà L, Bush IJ, Searle B, Maschio L, Edith-Daga L, Cossard A, Ribaldone C, Ascrizzi E, Marana NL, Flament JP, Kirtman B. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J Chem Theory Comput 2023; 19:6891-6932. [PMID: 36502394 PMCID: PMC10601489 DOI: 10.1021/acs.jctc.2c00958] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 12/14/2022]
Abstract
The Crystal program for quantum-mechanical simulations of materials has been bridging the realm of molecular quantum chemistry to the realm of solid state physics for many years, since its first public version released back in 1988. This peculiarity stems from the use of atom-centered basis functions within a linear combination of atomic orbitals (LCAO) approach and from the corresponding efficiency in the evaluation of the exact Fock exchange series. In particular, this has led to the implementation of a rich variety of hybrid density functional approximations since 1998. Nowadays, it is acknowledged by a broad community of solid state chemists and physicists that the inclusion of a fraction of Fock exchange in the exchange-correlation potential of the density functional theory is key to a better description of many properties of materials (electronic, magnetic, mechanical, spintronic, lattice-dynamical, etc.). Here, the main developments made to the program in the last five years (i.e., since the previous release, Crystal17) are presented and some of their most noteworthy applications reviewed.
Collapse
Affiliation(s)
- Alessandro Erba
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Jacques K. Desmarais
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Silvia Casassa
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Bartolomeo Civalleri
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Lorenzo Donà
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Ian J. Bush
- STFC
Rutherford Appleton Laboratory, Chilton Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Barry Searle
- SFTC
Daresbury Laboratory, Daresbury, Cheshire WA4 4AD, United Kingdom
| | - Lorenzo Maschio
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Loredana Edith-Daga
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Alessandro Cossard
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Chiara Ribaldone
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Eleonora Ascrizzi
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Naiara L. Marana
- Dipartimento
di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| | - Jean-Pierre Flament
- Université
de Lille, CNRS, UMR 8523 — PhLAM — Physique des Lasers, Atomes et Molécules, 59000 Lille, France
| | - Bernard Kirtman
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
6
|
Sen Gupta R, Samantaray PK, Bose S. Going beyond Cellulose and Chitosan: Synthetic Biodegradable Membranes for Drinking Water, Wastewater, and Oil-Water Remediation. ACS OMEGA 2023; 8:24695-24717. [PMID: 37483250 PMCID: PMC10357531 DOI: 10.1021/acsomega.3c01699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Membrane technology is an efficient way to purify water, but it generates non-biodegradable biohazardous waste. This waste ends up in landfills, incinerators, or microplastics, threatening the environment. To address this, research is being conducted to develop compostable alternatives that are sustainable and ecofriendly. Bioplastics, which are expected to capture 40% of the market share by 2030, represent one such alternative. This review examines the feasibility of using synthetic biodegradable materials beyond cellulose and chitosan for water treatment, considering cost, carbon footprint, and stability in mechanical, thermal, and chemical environments. Although biodegradable membranes have the potential to close the recycling loop, challenges such as brittleness and water stability limit their use in membrane applications. The review suggests approaches to tackle these issues and highlights recent advances in the field of biodegradable membranes for water purification. The end-of-life perspective of these materials is also discussed, as their recyclability and compostability are critical factors in reducing the environmental impact of membrane technology. This review underscores the need to develop sustainable alternatives to conventional membrane materials and suggests that biodegradable membranes have great potential to address this challenge.
Collapse
Affiliation(s)
- Ria Sen Gupta
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka560012, India
| | - Paresh Kumar Samantaray
- International
Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, U.K.
| | - Suryasarathi Bose
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka560012, India
| |
Collapse
|
7
|
Hu L, Chen K, Lee WI, Kisslinger K, Rumsey C, Fan S, Bui VT, Esmaeili N, Tran T, Ding Y, Trebbin M, Nam CY, Swihart MT, Lin H. Palladium-Percolated Networks Enabled by Low Loadings of Branched Nanorods for Enhanced H 2 Separations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301007. [PMID: 37002918 DOI: 10.1002/adma.202301007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/18/2023] [Indexed: 05/21/2023]
Abstract
Nanoparticles (NPs) at high loadings are often used in mixed matrix membranes (MMMs) to improve gas separation properties, but they can lead to defects and poor processability that impede membrane fabrication. Herein, it is demonstrated that branched nanorods (NRs) with controlled aspect ratios can significantly reduce the required loading to achieve superior gas separation properties while maintaining excellent processability, as demonstrated by the dispersion of palladium (Pd) NRs in polybenzimidazole for H2 /CO2 separation. Increasing the aspect ratio from 1 for NPs to 40 for NRs decreases the percolation threshold volume fraction by a factor of 30, from 0.35 to 0.011. An MMM with percolated networks formed by Pd NRs at a volume fraction of 0.039 exhibits H2 permeability of 110 Barrer and H2 /CO2 selectivity of 31 when challenged with simulated syngas at 200 °C, surpassing Robeson's upper bound. This work highlights the advantage of NRs over NPs and nanowires and shows that right-sizing nanofillers in MMMs is critical to construct highly sieving pathways at minimal loadings. This work paves the way for this general feature to be applied across materials systems for a variety of chemical separations.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Won-Il Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Clayton Rumsey
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Vinh T Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Narjes Esmaeili
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Thien Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in Energy, Environment, and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
8
|
Li C, Qi A, Ling Y, Tao Y, Zhang YB, Li T. Establishing gas transport highways in MOF-based mixed matrix membranes. SCIENCE ADVANCES 2023; 9:eadf5087. [PMID: 37000883 PMCID: PMC10065440 DOI: 10.1126/sciadv.adf5087] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Achieving percolation pathways in a metal-organic framework (MOF)-based mixed matrix membrane (MMM) without compromising its mechanical properties is challenging. We developed phase separated (PS)-MMMs with an interconnected MOF domain running across the whole membrane. Through demixing two immiscible polyimides, the MOF particles were selectively partitioned into one of the preferred polymer domains at over 50 volume % local packing density, leading to a percolated network at only 19 weight % MOF loading. The CO2 permeability of this PS-MMM is 6.6 times that of the pure polymer membrane, while the CO2/N2 and CO2/CH4 selectivity remain largely unchanged. Meanwhile, benefiting from its unique co-continuous morphology, the PS-MMM also exhibited markedly improved membrane ductility compared to the conventional MMM at similar MOF loading. PS-MMMs offer a practical solution to simultaneously achieve high membrane permeability and good mechanical properties.
Collapse
Affiliation(s)
- Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anheng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Li G, Si Z, Yang S, Zhuang Y, Pang S, Cui Y, Baeyens J, Qin P. A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Effects of activation parameters on Zeolitic imidazolate framework JUC-160-derived, nitrogen-doped hierarchical nanoporous carbon and its volatile iodine capture properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Loloei M, Kaliaguine S, Rodrigue D. CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hu L, Bui VT, Pal S, Guo W, Subramanian A, Kisslinger K, Fan S, Nam CY, Ding Y, Lin H. In Situ Growth of Crystalline and Polymer-Incorporated Amorphous ZIFs in Polybenzimidazole Achieving Hierarchical Nanostructures for Carbon Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201982. [PMID: 35567438 DOI: 10.1002/smll.202201982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mixed matrix materials (MMMs) hold great potential for membrane gas separations by merging nanofillers with unique nanostructures and polymers with excellent processability. In situ growth of the nanofillers is adapted to mitigate interfacial incompatibility to avoid the selectivity loss. Surprisingly, functional polymers have not been exploited to co-grow the nanofillers for membrane applications. Herein, in situ synergistic growth of crystalline zeolite imidazole framework-8 (ZIF-8) in polybenzimidazole (PBI), creating highly porous structures with high gas permeability, is demonstrated. More importantly, PBI contains benzimidazole groups (similar to the precursor for ZIF-8, i.e., 2-methylimidazole) and induces the formation of amorphous ZIFs, enhancing interfacial compatibility and creating highly size-discriminating bottlenecks. For instance, the formation of 15 mass% ZIF-8 in PBI improves H2 permeability and H2 /CO2 selectivity by ≈100% at 35 °C, breaking the permeability/selectivity tradeoff. This work unveils a new platform of MMMs comprising functional polymer-incorporated amorphous ZIFs with hierarchical nanostructures for various applications.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Vinh T Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Sankhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wenji Guo
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
13
|
Rico-Martínez S, Álvarez C, Hernández A, Miguel JA, Lozano ÁE. Mixed Matrix Membranes Loaded with a Porous Organic Polymer Having Bipyridine Moieties. MEMBRANES 2022; 12:membranes12060547. [PMID: 35736254 PMCID: PMC9228454 DOI: 10.3390/membranes12060547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
Mixed matrix membranes (MMMs), derived from three aromatic polyimides (PIs), and an affordable porous organic polymer (POP) having basic bipyridine moieties were prepared. Matrimid and two fluorinated polyimides, which were derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride and 2,2′-bis(4-aminophenyl)hexafluoropropane (6F6F) or 2,4,6-trimethyl-m-phenylenediamine (6FTMPD), were employed as polymer matrixes. The used POP was a highly microporous material (surface area of 805 m2 g−1) with excellent thermal and chemical stability. The MMMs showed good compatibility between the PIs and POP, high thermal stabilities and glass transition temperatures superior to those of the neat PI membranes, and good mechanical properties. The addition of POP to the matrix led to an increase in the gas diffusivity and, thus, in permeability, which was associated with an increase in the fractional free volume of MMMs. The increase in permeability was higher for the less permeable matrix. For example, at 30 wt.% of POP, the permeability to CO2 and CH4 of the MMMs increased by 4- and 7-fold for Matrimid and 3- and 4-fold for 6FTMPD. The highest CH4 permeability led to a decrease in CO2/CH4 selectivity. The CO2/N2 separation performance was interesting, as the selectivity remained practically constant. Finally, the POP showed no molecular sieving effect towards the C2H4/C2H6 and C3H6/C3H8 gas pairs, but the permeability increased by about 4-fold and the selectivity was close to that of the matrix. In addition, because the POP can form metal ion bipyridine complexes, modified POP-based MMMs could be employed for olefin/paraffin separations.
Collapse
Affiliation(s)
- Sandra Rico-Martínez
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
| | - Cristina Álvarez
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
- Correspondence: (C.Á.); (J.A.M.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| | - Jesús A. Miguel
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Correspondence: (C.Á.); (J.A.M.)
| | - Ángel E. Lozano
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| |
Collapse
|
14
|
Ozeiry F, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G. Multi-walled CNT decoration by ZIF-8 nanoparticles: O-MWCNT@ZIF-8/epoxy interfacial, thermal–mechanical properties analysis via combined DFT-D computational/experimental approaches. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Yang M, Yang H, Wang X, Lu Y, Yu X, Chen F, Gao J, Di N. Design, Synthesis and Characterization of 2‐Methylimidazole/Zeolitic Imidazolate Framework‐8 for Curing with Epoxy Resin. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mengxiao Yang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Haiming Yang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xue Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Yunfeng Lu
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Xigao Yu
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Fengfeng Chen
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| | - Ningyu Di
- Zhejiang Bofay Electric Co., LTD Haining 314400 China
| |
Collapse
|
16
|
Dai Y, Chen Z, Liu X, Xing J, Jiao Y, Fan D, Zhu Z, Cui P, Lu Y, Wang Y. Extraction mechanism analysis and energy saving enhancement of extraction separation of methyl tert-butyl ether and methanol by ionic liquid based on molecular dynamics simulation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
|
18
|
van Essen M, Thür R, van den Akker L, Houben M, Vankelecom IF, Nijmeijer K, Borneman Z. Tailoring the separation performance of ZIF-based mixed matrix membranes by MOF-matrix interfacial compatibilization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Wang X, Wu L, Li N, Fan Y. Sealing Tröger base/ZIF-8 mixed matrix membranes defects for improved gas separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Shah Buddin M, Ahmad A. A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100091] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Fernández-Castro P, Ortiz A, Gorri D. Exploring the Potential Application of Matrimid ® and ZIFs-Based Membranes for Hydrogen Recovery: A Review. Polymers (Basel) 2021; 13:polym13081292. [PMID: 33921024 PMCID: PMC8071404 DOI: 10.3390/polym13081292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogen recovery is at the center of the energy transition guidelines promoted by governments, owing to its applicability as an energy resource, but calls for energetically nonintensive recovery methods. The employment of polymeric membranes in selective gas separations has arisen as a potential alternative, as its established commercial availability demonstrates. However, enhanced features need to be developed to achieve adequate mechanical properties and the membrane performance that allows the obtention of hydrogen with the required industrial purity. Matrimid®, as a polyimide, is an attractive material providing relatively good performance to selectively recover hydrogen. As a consequence, this review aims to study and summarize the main results, mechanisms involved and advances in the use of Matrimid® as a selective material for hydrogen separation to date, delving into membrane fabrication procedures that increase the effectiveness of hydrogen recovery, i.e., the addition of fillers (within which ZIFs have acquired extraordinary importance), chemical crosslinking or polymeric blending, among others.
Collapse
|
23
|
Longley L, Calahoo C, Southern TJF, Evans RC, Wondraczek L, Bennett TD. The reactivity of an inorganic glass melt with ZIF-8. Dalton Trans 2021; 50:3529-3535. [PMID: 33599672 DOI: 10.1039/d1dt00152c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal behaviour of ZIF-8, Zn(meIm)2 in the presence of a sodium fluoroaluminophosphate glass melt was probed through differential scanning calorimetry and thermogravimetric analysis. The structural integrity of ZIF-8 was then determined by a combination of powder X-ray diffraction, Fourier transform infra-red and 1H nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Louis Longley
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Courtney Calahoo
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Thomas J F Southern
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK.
| |
Collapse
|
24
|
Liu N, Cheng J, Hou W, Yang X, Zhou J. Pebax‐based mixed matrix membranes loaded with graphene oxide/core shell
ZIF
‐8@
ZIF
‐67 nanocomposites improved
CO
2
permeability and selectivity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Niu Liu
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Wen Hou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Xiao Yang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| |
Collapse
|
25
|
Liu Q, Smith SJ, Konstas K, Ng D, Zhang K, Hill MR, Xie Z. Construction of ultrathin PTMSP/Porous nanoadditives membranes for highly efficient organic solvent nanofiltration (OSN). J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Shahid S, Baron GV, Denayer JF, Martens JA, Wee LH, Vankelecom IF. Hierarchical ZIF-8 composite membranes: Enhancing gas separation performance by exploiting molecular dynamics in hierarchical hybrid materials. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Vornholt SM, Duncan MJ, Warrender SJ, Semino R, Ramsahye NA, Maurin G, Smith MW, Tan JC, Miller DN, Morris RE. Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58263-58276. [PMID: 33325239 DOI: 10.1021/acsami.0c17937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A multifaceted study involving focused ion beam scanning electron microscopy techniques, mechanical analysis, water adsorption measurements, and molecular simulations is employed to rationalize the nitric oxide release performance of polyurethane films containing 5, 10, 20, and 40 wt % of the metal-organic framework (MOF) CPO-27-Ni. The polymer and the MOF are first demonstrated to exhibit excellent compatibility. This is reflected in the even distribution and encapsulation of large wt % MOF loadings throughout the full thickness of the films and by the rather minimal influence of the MOF on the mechanical properties of the polymer at low wt %. The NO release efficiency of the MOF is attenuated by the polymer and found to depend on wt % of MOF loading. The formation of a fully connected network of MOF agglomerates within the films at higher wt % is proposed to contribute to a more complex guest transport in these formulations, resulting in a reduction of NO release efficiency and film ductility. An optimum MOF loading of 10 wt % is identified for maximizing NO release without adversely impacting the polymer properties. Bactericidal efficacy of released NO from the films is demonstrated against Pseudomonas aeruginosa, with a >8 log10 reduction in cell density observed after a contact period of 24 h.
Collapse
Affiliation(s)
- Simon M Vornholt
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Morven J Duncan
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Stewart J Warrender
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Rocio Semino
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Naseem A Ramsahye
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Martin W Smith
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - David N Miller
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Russell E Morris
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
28
|
Development and Performance Evaluation of Cellulose Acetate-Bentonite Mixed Matrix Membranes for CO2 Separation. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8855577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane science is a state-of-the-art environmentally green technology that ascertains superior advantages over traditional counterparts for CO2 capture and separation. In this research, mixed matrix membranes (MMMs) comprising cellulose acetate (CA) with various loadings of bentonite (Bt) clay were fabricated by adopting the phase-inversion technique for CO2/CH4 and CO2/N2 separation. The developed pristine and MMMs were characterized for morphological, thermal, structural, and mechanical analyses. Several techniques such as scanning electron microscopy, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and nano-indentation investigations revealed the promising effect of Bt clay in MMMs as compared to pristine CA membrane. Nano-indentation test identified that elastic modulus and hardness of the MMM with 1 wt. loading was increased by 64% and 200%, respectively, compared to the pristine membrane. The permeability decreased with the incorporation of Bt clay due to uniform dispersion of filler attributed to enhanced tortuosity for the gas molecules. Nevertheless, an increase in gas separation performance was observed with Bt addition up to 1 wt. loading. The opposite trend prevailed with increasing Bt concentration on the separation performance owing to filler agglomeration and voids creation. The maximum value of ideal selectivity (CO2/CH4) was achieved at 2 bar pressure with 1 wt. % Bt loading, which is 79% higher than the pristine CA membrane. For CO2/N2, the ideal selectivity was 123% higher compared to the pristine membrane with 1 wt. % Bt loading at 4 bar pressure.
Collapse
|
29
|
Maul J, Ongari D, Moosavi SM, Smit B, Erba A. Thermoelasticity of Flexible Organic Crystals from Quasi-harmonic Lattice Dynamics: The Case of Copper(II) Acetylacetonate. J Phys Chem Lett 2020; 11:8543-8548. [PMID: 32969662 PMCID: PMC7901648 DOI: 10.1021/acs.jpclett.0c02762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
A computationally affordable approach, based on quasi-harmonic lattice dynamics, is presented for the quantum-mechanical calculation of thermoelastic moduli of flexible, stimuli-responsive, organic crystals. The methodology relies on the simultaneous description of structural changes induced by thermal expansion and strain. The complete thermoelastic response of the mechanically flexible metal-organic copper(II) acetylacetonate crystal is determined and discussed in the temperature range 0-300 K. The elastic moduli do not just shrink with temperature but they do so anisotropically. The present results clearly indicate the need for an explicit account of thermal effects in the simulation of mechanical properties of elastically flexible organic materials. Indeed, predictions from standard static calculations on this flexible metal-organic crystal are off by up to 100%.
Collapse
Affiliation(s)
- Jefferson Maul
- Dipartimento di Chimica,
Università di Torino, via Giuria 5, 10125 Torino,
Italy
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17,
Sion, Valais CH-1951, Switzerland
| | - Seyed Mohamad Moosavi
- Laboratory of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17,
Sion, Valais CH-1951, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17,
Sion, Valais CH-1951, Switzerland
| | - Alessandro Erba
- Dipartimento di Chimica,
Università di Torino, via Giuria 5, 10125 Torino,
Italy
| |
Collapse
|
30
|
Development of Polyethersulfone/α-Zirconium phosphate (PES/α-ZrP) flat-sheet nanocomposite ultrafiltration membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Hou R, O’Loughlin R, Ackroyd J, Liu Q, Doherty CM, Wang H, Hill MR, Smith SJD. Greatly Enhanced Gas Selectivity in Mixed-Matrix Membranes through Size-Controlled Hyper-cross-linked Polymer Additives. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rujing Hou
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
- Manufacturing, CSIRO, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Rosemary O’Loughlin
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
| | - James Ackroyd
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
| | - Qin Liu
- Manufacturing, CSIRO, Private Bag 10, Clayton South, Victoria 3169, Australia
- Key Laboratory, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cara M. Doherty
- Manufacturing, CSIRO, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Huanting Wang
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
| | - Matthew R. Hill
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
- Manufacturing, CSIRO, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Stefan J. D. Smith
- Monash Centre for Membrane Innovation, Department of Chemical Engineering, Monash University, Clayton, Victoria 3169, Australia
- Manufacturing, CSIRO, Private Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
32
|
Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO 2 Permeability. MEMBRANES 2020; 10:membranes10070155. [PMID: 32709108 PMCID: PMC7408041 DOI: 10.3390/membranes10070155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF−8) in Matrimid MMMs were synthesized and investigated by means of their N2 and CO2 permeability. Magnetic ZIF−8 (m–ZIF−8) was synthesized by incorporating Fe3O4 in the ZIF−8 structure. The presence of Fe3O4 in m–ZIF−8 showed a decrease in surface area and N2 and CO2 uptake, with respect to pure ZIF−8. Alignment of m–ZIF−8 in Matrimid showed the presence of enriched pathways of m–ZIF−8 through the MMMs. At 10 wt.% m–ZIF−8 incorporation, no effect of alignment was observed for the N2 and CO2 permeability, which was ascribed anon-ideal tortuous alignment. However, alignment of 20 wt.% m–ZIF−8 in Matrimid showed to increase the CO2 diffusivity and permeability (19%) at 7 bar, while no loss in ideal selectivity was observed, with respect to homogeneously dispersed m–ZIF−8 membranes. Thus, the alignment of MOF particles throughout the matrix was shown to enhance the CO2 permeability at a certain weight content of MOF.
Collapse
|
33
|
Gandara-Loe J, Souza BE, Missyul A, Giraldo G, Tan JC, Silvestre-Albero J. MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30189-30197. [PMID: 32530261 DOI: 10.1021/acsami.0c07517] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel MOF-based polymer nanocomposite films were successfully prepared using Zr-based UiO-67 as a metal-organic framework (MOF) and polyurethane (PU) as a polymeric matrix. Synchrotron X-ray powder diffraction (SXRPD) analysis confirms the improved stability of the UiO-67 embedded nanocrystals, and scanning electron microscopy images confirm their homogeneous distribution (average crystal size ∼100-200 nm) within the 50 μm thick film. Accessibility to the inner porous structure of the embedded MOFs was completely suppressed for N2 at cryogenic temperatures. However, ethylene adsorption measurements at 25 °C confirm that at least 45% of the MOF crystals are fully accessible for gas-phase adsorption of nonpolar molecules. Although this partial blockage limits the adsorption performance of the embedded MOFs for ocular drugs (e.g., brimonidine tartrate) compared to the pure MOF, an almost 60-fold improvement in the adsorption capacity was observed for the PU matrix after incorporation of the UiO-67 nanocrystals. The UiO-67@PU nanocomposite exhibits a prolonged release of brimonidine (up to 14 days were quantified). Finally, the combined use of SXRPD, thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) analyses confirmed the presence of the drug in the nanocomposite film, the stability of the MOF framework and the drug upon loading, and the presence of brimonidine in an amorphous phase once adsorbed. These results open the gate toward the application of these polymeric nanocomposite films for drug delivery in ocular therapeutics, either as a component of a contact lens, in the composition of lacrimal stoppers (e.g., punctal plugs), or in subtenon inserts.
Collapse
Affiliation(s)
- J Gandara-Loe
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-IUMA, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| | - B E Souza
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - A Missyul
- CELLS-ALBA Synchrotron, E-08290 Cerdanyola del Vallés, Spain
| | - G Giraldo
- Clínica Clofan, Carrera 48 # 19 A 40, Medellín, Colombia
| | - J-C Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - J Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-IUMA, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| |
Collapse
|
34
|
Muthukumaraswamy Rangaraj V, Wahab MA, Reddy KSK, Kakosimos G, Abdalla O, Favvas EP, Reinalda D, Geuzebroek F, Abdala A, Karanikolos GN. Metal Organic Framework - Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front Chem 2020; 8:534. [PMID: 32719772 PMCID: PMC7350925 DOI: 10.3389/fchem.2020.00534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
Collapse
Affiliation(s)
| | - Mohammad A. Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - K. Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - George Kakosimos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Omnya Abdalla
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research “Demokritos”, Attica, Greece
| | - Donald Reinalda
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Frank Geuzebroek
- ADNOC Gas Processing, Department of Research and Engineering R&D, Abu Dhabi, United Arab Emirates
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Suhaimi NH, Yeong YF, Jusoh N, Chew TL, Bustam MA, Suleman S. Separation of CO2 from CH4 using mixed matrix membranes incorporated with amine functionalized MIL-125 (Ti) nanofiller. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Moon GH, Park S, Park SC, Kim BS, Jang J, Kang YS. Intrinsically microporous oligomers as organic porogens for mixed-matrix membranes. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Wang H, Zhang K, Ho Li JP, Huang J, Yuan B, Zhang C, Yu Y, Yang Y, Lee Y, Li T. Engineering plasticization resistant gas separation membranes using metal-organic nanocapsules. Chem Sci 2020; 11:4687-4694. [PMID: 34122923 PMCID: PMC8159238 DOI: 10.1039/d0sc01498b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Membrane technologies hold great potential for industrial gas separation. Nevertheless, plasticization, a common phenomenon that is responsible for the loss of gas pair selectivity and the decrease of membrane lifespan, is one of the top challenges withholding the deployment of advanced membrane materials in realistic applications. Here, we report a highly generalizable approach, that utilizes PgC5Cu, a copper metal–organic nanocapsule (MONC) containing 24 open metal sites (OMSs) as a multi-dentate node to coordinatively crosslink polymers. By adding merely 1–3 wt% of PgC5Cu, a wide range of carbonyl group-containing polymers can be effectively crosslinked. Through rigorous dissolution tests, molecular dynamic simulations, and in situ FT-IR spectroscopy, we qualitatively and quantitatively unveiled the coordinative binding nature at the polymer–MONC interface. As a result, we produced a series of composite membranes showing near complete plasticization resistance to CO2, C2H4, and C2H6 under high pressure with no loss of mechanical and gas transport properties. Ultra-small metal–organic nanocapsules (MONCs) with open metal sites (OMSs) are used as multi-dentate nodes to form coordinative crosslinking networks with polymers.![]()
Collapse
Affiliation(s)
- Hongliang Wang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Kexin Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jerry Pui Ho Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China .,School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT9 5AG UK
| | - Jingyu Huang
- Department of Materials Science, University of California Berkeley California 94720 USA
| | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Chen Zhang
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27695 USA
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yong Yang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yongjin Lee
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
39
|
Fabrication of chitosan-polyethylene glycol nanocomposite films containing ZIF-8 nanoparticles for application as wound dressing materials. Int J Biol Macromol 2020; 153:421-432. [PMID: 32151721 DOI: 10.1016/j.ijbiomac.2020.03.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Biocompatible nanocomposite films based on chitosan (CS) and polyethylene glycol (PEG) polymers containing cephalexin (CFX) antibiotic drug and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) were designed and fabricated to develop wound dressing materials capable of controlled drug release. Swelling experiment was performed in three acidic, neutral, and alkaline solutions. The tensile strength test reflected that upon increasing the NPs loading within the films, the tensile strength was enhanced but the elongation at break was diminished. The release of the CFX was intensively increased within approximately 3, 8, and 10 h (burst release) in acidic, neutral, and alkaline media, respectively while after that the CFX was smoothly released over time (sustained release). The antibacterial activities of all films were examined against Gram-positive (S. aureus, B. cereus) and Gram-negative (E. coli, P. aeruginosa, and Acinetobacter) bacteria frequently found in the infected wounds. Moreover, the MTT assay revealed that all films had high cell viabilities towards the L929 fibroblast cells confirming these nanocomposites could be used as favorable wound dressing materials. Finally, the film containing 4% ZIF-8 NPs (film 5) was chosen as the best sample due to it revealed appropriate mechanical properties, swelling, drug release and cell viability among all samples examined.
Collapse
|
40
|
Ahmad MZ, Peters TA, Konnertz NM, Visser T, Téllez C, Coronas J, Fila V, de Vos WM, Benes NE. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115858] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Zhang J, Zhao X, Liu X, Dong C. Enhanced chemical sensing for Cu2+ based on composites of ZIF-8 with small molecules. RSC Adv 2020; 10:13998-14006. [PMID: 35498443 PMCID: PMC9051611 DOI: 10.1039/c9ra10695b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/23/2020] [Indexed: 02/05/2023] Open
Abstract
Two organic molecules, pyridoxal hydrazide (PAH) and salicylaldehyde based Rhodamine B hydrazone (RBS) were integrated into zeolitic imidazolate framework-8 (ZIF-8) to give composites, namely PAH/ZIF-8 and RBS/ZIF-8. The organic molecules and ZIF-8 are proposed to be assembled via hydrogen bonds and π–π stacking in the composites. The mass fraction of PAH and RBS in the composites was calculated to be 21.86% and 29.3%. The fluorescence of PAH/ZIF-8 is quenched regularly by Cu2+. The detection limit for Cu2+ was calculated to be 1.42 nM for PAH/ZIF-8, which is one order of magnitude lower than that of PAH. The detection limit for Cu2+ was determined to be 0.8 μM for RBS/ZIF-8, which is three times lower than that of RBS. The two composites both display high selectivity to Cu2+ over competing metal ions. The PAH/ZIF-8 fluorescent sensor was successfully applied to Cu2+ determination in environmental water. PAH/ZIF-8 exhibits excellent cell membrane permeability and low cytotoxicity in cellular imaging. The enhanced chemical sensor was designed by introducing small molecules into ZIF-8 for the specific recognition of Cu2+. An enhanced chemical sensor was designed by introducing small molecules into ZIF-8 for the specific recognition of Cu2+.![]()
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiuyang Zhao
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xuefeng Liu
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
42
|
Kamal N, Kochkodan V, Zekri A, Ahzi S. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. MEMBRANES 2019; 10:membranes10010002. [PMID: 31881742 PMCID: PMC7023047 DOI: 10.3390/membranes10010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023]
Abstract
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis. It was shown that the incorporation of HNTs enhanced hydrophilicity and mechanical properties of the prepared PSF membranes. Compared to the pristine PSF membrane, results show that the total porosity and pore size of PSF/HNTs composite membranes increased when HNTs loadings were more than 0.5 wt % and 1.0 wt %, respectively. These findings correlate well with changes in water flux of the prepared membranes. It was observed that HNTs were homogenously dispersed within the PSF membrane matrix at HNTs content of 0.1 to 0.5 wt % and the PSF/HNTs membranes prepared by incorporating 0.2 wt % HNTs loading possess the optimal mechanical properties in terms of elastic modulus and yield stress. In the case of the PSF/PVP matrix, the optimal mechanical properties were obtained with 0.3 wt % of HNTs because PVP enhances the HNTs distribution. Results of bovine serum albumin (BSA) filtration tests indicated that PSF/0.2 wt % HNTs membrane exhibited high BSA rejection and notable anti-fouling properties.
Collapse
Affiliation(s)
- Nagla Kamal
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Atef Zekri
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| | - Said Ahzi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| |
Collapse
|
43
|
Suhaimi NH, Yeong YF, Ch’ng CWM, Jusoh N. Tailoring CO 2/CH 4 Separation Performance of Mixed Matrix Membranes by Using ZIF-8 Particles Functionalized with Different Amine Groups. Polymers (Basel) 2019; 11:polym11122042. [PMID: 31835373 PMCID: PMC6960569 DOI: 10.3390/polym11122042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023] Open
Abstract
CO2 separation from CH4 by using mixed matrix membranes has received great attention due to its higher separation performance compared to neat polymeric membrane. However, Robeson’s trade-off between permeability and selectivity still remains a major challenge for mixed matrix membrane in CO2/CH4 separation. In this work, we report the preparation, characterization and CO2/CH4 gas separation properties of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 particles functionalized with different types of amine groups. The purpose of introducing amino-functional groups into the filler is to improve the interaction between the filler and polymer, thus enhancing the CO2 /CH4 separation properties. ZIF-8 were functionalized with three differents amino-functional group including 3-(Trimethoxysilyl)propylamine (APTMS), N-[3-(Dimethoxymethylsilyl)propyl ethylenediamine (AAPTMS) and N1-(3-Trimethoxysilylpropyl) diethylenetriamine (AEPTMS). The structural and morphology properties of the resultant membranes were characterized by using different analytical tools. Subsequently, the permeability of CO2 and CH4 gases over the resultant membranes were measured. The results showed that the membrane containing 0.5 wt% AAPTMS-functionalized ZIF-8 in 6FDA- durene polymer matrix displayed highest CO2 permeability of 825 Barrer and CO2/CH4 ideal selectivity of 26.2, which successfully lies on Robeson upper bound limit.
Collapse
Affiliation(s)
- Nadia Hartini Suhaimi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: ; Tel.: +60-5-368-7564
| | - Christine Wei Mann Ch’ng
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Norwahyu Jusoh
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- Centre for Contaminant Control & Utilization (CenCoU), Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
44
|
Raja K, Raja Pugalenthi M, Ramesh Prabhu M. The effect of incorporation of ferrous titanate nanoparticles in sulfonated poly(ether ether ketone)/poly (amide imide) acid-base polymer for cations exchange membrane fuel cells. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04453-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Lin Y, Chen Y, Wang R. Thin film nanocomposite hollow fiber membranes incorporated with surface functionalized HKUST-1 for highly-efficient reverses osmosis desalination process. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117249] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Ma X, Wu X, Caro J, Huang A. Polymer Composite Membrane with Penetrating ZIF‐7 Sheets Displays High Hydrogen Permselectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xixi Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Xiaocao Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Jürgen Caro
- Institute of Physical Chemistry and ElectrochemistryLeibniz University Hannover Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University 500 Dongchuan Road 200241 Shanghai China
| |
Collapse
|
47
|
Ma X, Wu X, Caro J, Huang A. Polymer Composite Membrane with Penetrating ZIF‐7 Sheets Displays High Hydrogen Permselectivity. Angew Chem Int Ed Engl 2019; 58:16156-16160. [DOI: 10.1002/anie.201911226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Xixi Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Xiaocao Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University 500 Dongchuan Road 200241 Shanghai China
| |
Collapse
|
48
|
|
49
|
Esmaeili N, Boyd SE, Brown CL, Mac A Gray E, Webb CJ. Improving the Gas-Separation Properties of PVAc-Zeolite 4A Mixed-Matrix Membranes through Nano-Sizing and Silanation of the Zeolite. Chemphyschem 2019; 20:1590-1606. [PMID: 31062462 DOI: 10.1002/cphc.201900423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/08/2022]
Abstract
Mixed-matrix membranes containing synthesised nano-sized zeolite 4A and PVAc were fabricated to investigate the effect of zeolite loading on membrane morphology, polymer-filler interaction, thermal stability and gas separation properties. SEM studies revealed that, although the membranes with 40 wt % nano-sized zeolite particles were distributed uniformly through the polymer matrix without voids, the membranes with 15 wt % zeolite loading showed agglomeration. With increasing zeolite content, the thermal stability improved, the permeability decreased and the selectivity increased. The effect of silanation on dispersion of 15 wt % zeolite 4A nanoparticles through PVAc was investigated by post-synthesis modification of the zeolite with 3-Aminopropyl(diethoxy)methylsilane. Modification of the nanoparticles improved their dispersion in PVAc, resulting in higher thermal stability than the corresponding unmodified zeolite membrane. Modification also decreased the rigidity of the membrane. Partial pore blockage of the modified zeolite nanoparticles after silanation caused a further decrease in permeability, compared to the 15 wt % unmodified zeolite membrane.
Collapse
Affiliation(s)
- Nazila Esmaeili
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Sue E Boyd
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Evan Mac A Gray
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| | - Colin J Webb
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, 4111, Australia
| |
Collapse
|
50
|
Aguilar-Lugo C, Suárez-García F, Hernández A, Miguel JA, Lozano ÁE, de la Campa JG, Álvarez C. New Materials for Gas Separation Applications: Mixed Matrix Membranes Made from Linear Polyimides and Porous Polymer Networks Having Lactam Groups. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carla Aguilar-Lugo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Fabián Suárez-García
- Instituto Nacional del Carbón, INCAR-CSIC, Dr. Ingeniero Francisco Pintado 26, E-33011 Oviedo, Spain
| | - Antonio Hernández
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC. Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Jesús A. Miguel
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Ángel E. Lozano
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC. Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, E-47011 Valladolid, Spain
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - José G. de la Campa
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Cristina Álvarez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|