1
|
Khaleel SR, Ibrahim SS, Criscuoli A, Figoli A, Lawal DU, Alsalhy QF. Influence of Silane Treatment on CNM/PAC/PVDF Properties and Performance for Water Desalination by VMD. MEMBRANES 2025; 15:104. [PMID: 40277974 PMCID: PMC12028725 DOI: 10.3390/membranes15040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness is important. In this study, the effect of 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFTES) on the morphology and performance of CNM/PAC/PVDF membranes at various concentrations was investigated for the first time. Membrane characteristics such as FTIR, XRD, FE-SEM, EDX, contact angle, and hydrophobicity before and after modification were analyzed and tested using VMD for water desalination. The results showed that the membrane coated with 1 wt.% PFTES had a higher permeate flux and lower rejection than the membranes coated with the 2 wt.% PFTES. The 2 wt.% PFTES enhanced the contact angle to 117° and increased the salt rejection above 99.9%, with the permeate flux set to 23.2 L/m2·h and at a 35 g/L NaCl feed solution, 65 °C feed temperature, a 0.6 L/min feed flow rate, and 21 kPa (abs) vacuum pressure. This means that 2 wt.% PFTES-coated PVDF membranes exhibited slightly lower permeate flux with higher hydrophobicity, salt rejection, and stability over long-term operation. These outstanding results indicate the potential of the novel CNM/PAC/PVDF/PFTES membranes for saline water desalination. Moreover, this study presents useful guidance for the enhancement of membrane structures and physical properties in the field of saline water desalination using porous CNM/PAC/PVDF/PFTES membranes.
Collapse
Affiliation(s)
- Samraa R. Khaleel
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| | - Salah S. Ibrahim
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| | - Alessandra Criscuoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy;
| | - Dahiru U. Lawal
- Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq; (S.R.K.); (S.S.I.)
| |
Collapse
|
2
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
3
|
Kywe PP, Ratanatamskul C. Membrane fouling analysis of air-gap membrane distillation (AGMD) for recovery of water and removal of antibiotics from a model wastewater containing antibiotics and humic acid. CHEMOSPHERE 2024; 363:142942. [PMID: 39059636 DOI: 10.1016/j.chemosphere.2024.142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The study investigates the efficiency of air-gap membrane distillation (AGMD) in water recovery and antibiotics removal from wastewater, focusing on high-concentration scenarios. Experimental findings reveal enhanced membrane performance with increasing the feed temperature, resulting in vapor permeate fluxes of up to 5 kg/m2.h at higher temperatures. Despite experiencing flux reduction caused by fouling from humic acid (HA) in the feed antibiotics solution, the antibiotics consistently maintain near-complete rejection rates (>99%) over 48 h. The foulant on the membrane surface was illustrated by SEM imaging. To know the temperature polarization and the fouling resistance, mathematical modeling was used, and it validates experimental results, elucidating temperature polarization effects and mass transfer coefficients. An increase in feed flow rates reduced thermal boundary layers, enhancing heat flux. Higher temperatures reduced HA fouling resistance. Therefore, AGMD proves effective in water recovery and antibiotics removal, with mathematical models aiding fouling understanding for future research and detailed computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Pyae Phyo Kywe
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavalit Ratanatamskul
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Turk OK, Zoungrana A, Cakmakci M. Performances of PTFE and PVDF membranes in achieving the discharge limit of mixed anodic oxidation coating wastewaters treated by membrane distillation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39663-39677. [PMID: 38831146 PMCID: PMC11186931 DOI: 10.1007/s11356-024-33830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
The mixed wastewater generated by anodic oxidation coating facilities contains high levels of various contaminants, including iron, aluminum, conductivity, chemical oxygen demand (COD), and sulfate. In this study, the effectiveness of the membrane distillation (MD) process using polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes was investigated to treat mixed wastewater from an anodized coating factory. The results indicate that both hydrophobic membranes effectively removed targeted contaminants. However, the PTFE membrane achieved higher removal efficiencies, with over 99% removal of sulfate, conductivity, iron, and aluminum, 85.7% of COD, and 86% of total organic carbon (TOC). In contrast, the PVDF membrane exhibited a significant decline in removal efficiency as the temperature increased and performed well only at lower feed temperatures. The PTFE membranes outperformed the PVDF membranes in treating chemically intensive anodic oxidation wastewaters. This superiority can be attributed to the PTFE membrane's morphology and structure, which are less influenced by feed water temperature and chemicals. Additionally, its slippery surface imparts anti-adhesion properties, effectively preventing membrane fouling, and maintaining the treated water quality and flux for longer operation time.
Collapse
Affiliation(s)
- Oruc Kaan Turk
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey.
| | - Ali Zoungrana
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey
| | - Mehmet Cakmakci
- Department of Environmental Engineering, Yildiz Technical University, 1,Davutpasa Campus 34210 Esenler, Istanbul, Turkey
| |
Collapse
|
5
|
Requena I, Andrés-Mañas JA, Gil JD, Zaragoza G. Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation. MEMBRANES 2023; 13:857. [PMID: 37999343 PMCID: PMC10673146 DOI: 10.3390/membranes13110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Membrane distillation (MD) is a thermal desalination technique proposed for the valorization of residual brines that other operations such as reverse osmosis cannot treat. Previous studies have shown that vacuum-assisted air gap (V-AGMD) operation in commercial multi-envelope modules improves the performance of MD noticeably. However, the permeate quality at pilot scale has not been thoroughly characterized so far. The aim of this study is, therefore, to assess and model the effect of the main operating conditions (feed flow rate, inlet temperatures, and feed salinity) on the permeate quality. Results from different steady-state experiments allowed to estimate descriptive metrics such as the salt rejection factor (SRF) and the membrane leak ratio (MLR). Given their non-linear behavior, these metrics were subsequently modeled using artificial neural networks (ANN) to estimate the permeate quality in the whole scope of operating conditions. Acceptable SRF results with MLR values lower than 0.2% confirmed the validity of MD as an operation for the treatment of concentrated brines, although the salinity of the resulting permeate does not comply in all cases with that permitted for human consumption.
Collapse
Affiliation(s)
- Isabel Requena
- CIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Spain; (I.R.); (G.Z.)
| | | | - Juan Diego Gil
- Centro Mixto CIESOL, ceia3, Universidad de Almería, Ctra. Sacramento s/n, 04120 Almería, Spain;
| | - Guillermo Zaragoza
- CIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Spain; (I.R.); (G.Z.)
| |
Collapse
|
6
|
Abu-Zeid MAR, Bassyouni M, Fouad Y, Monica T, Sandid AM, Elhenawy Y. Experimental and Simulation Study of Solar-Powered Air-Gap Membrane Distillation Technology for Water Desalination. MEMBRANES 2023; 13:821. [PMID: 37887993 PMCID: PMC10608935 DOI: 10.3390/membranes13100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
This work aimed to investigate temperature polarization (TP) and concentration polarization (CP), which affect solar-powered air-gap membrane distillation (SP-AGMD) system performance under various operating conditions. A mathematical model for the SP-AGMD system using the experimental results was performed to calculate the temperature polarization coefficient (τ), interface temperature (Tfm), and interface concentration (Cfm) at various salt concentrations (Cf), feed temperatures (Tf), and flow rates (Mf). The system of SP-AGMD was simulated using the TRNSYS program. An evacuated tube collector (ETC) with a 2.5 m2 surface area was utilized for solar water heating. Electrical powering of cooler and circulation water pumps in the SP-AGMD system was provided using a photovoltaic system. Data were subjected to one-way analysis of variance (ANOVA) and Spearman's correlation analysis to test the significant impact of operating conditions and polarization phenomena at p < 0.05. Statistical analysis showed that Mf induced a highly significant difference in the productivity (Pr) and heat-transfer (hf) coefficients (p < 0.001) and a significant difference in τ (p < 0.05). Great F-ratios showed that Mf is the most influential parameter. Pr was enhanced by 99% and 146%, with increasing Tf (60 °C) and Mf (12 L/h), respectively, at a stable salt concentration (Cf) of 0.5% and a cooling temperature (Tc) of 20 °C. Also, the temperature increased to 85 °C when solar radiation reached 1002 W/m2 during summer. The inlet heat temperature of AGMD increased to 73 °C, and the Pr reached 1.62 kg/(m2·h).
Collapse
Affiliation(s)
- Mostafa AbdEl-Rady Abu-Zeid
- Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed Bassyouni
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said 42526, Egypt
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Department of Chemical Engineering, Faculty of Engineering, East Port Said University of Technology, North Sinai 45632, Egypt
| | - Yasser Fouad
- Department of Applied Mechanical Engineering, College of Applied Engineering, Muzahimiyah Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Toderaș Monica
- Faculty of Sciences, University of Oradea, St. No.1., 410087 Oradea, Romania
| | - Abdelfatah Marni Sandid
- Mechanical Engineering Department, University of Ain-Temouchent, Ain-Temouchent 46000, Algeria;
| | - Yasser Elhenawy
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said 42526, Egypt
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
- Department of Mechanical Power Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
7
|
Almarzooqi N, Hong S, Verma P, Shaheen A, Schiffer A, AlMarzooqi F. Photothermal Surface Heating Membrane Distillation Using 3D-Printed Ti 3C 2T x MXene-Based Nanocomposite Spacers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20998-21007. [PMID: 37096876 DOI: 10.1021/acsami.3c00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To address the growing global need for freshwater, it has become essential to use nonpotable saline water. Solar membrane distillation is a potential desalination method that does not need conventional electricity and may cut water production costs. In this study, we develop a photothermal surface heating membrane distillation using a new class of photothermal spacers constructed with Ti3C2Tx MXene-based nanocomposites. In contrast to traditional membrane distillation, which utilizes energy-intensive bulk feed heating, solar-powered surface heating membrane distillation removes the external thermal energy input requirements, hence reducing operating costs significantly. In particular, three-dimensional (3D)-printing technology was used to fabricate the functional spacer, which allowed the design and materials to be fine-tuned per the needs of the process. Under solar illumination, the printed spacer can exhibit a localized photothermal conversion-driven heating effect near the surface of distillation membranes, which generates vapor pressure strong enough to operate distillation across membranes. Importantly, a two-dimensional Ti3C2Tx MXene with outstanding photothermal conversion efficiency and stability in hypersaline ionic solutions was incorporated into the 3D-printed spacers as the crucial nanofiller for imparting a local heating effect of feed. The fabricated nanocomposite spacers showed superior photothermal heating response under sunlight with an average permeate flux and energy conversion efficiency of 0.49 kg·m-2·h-1 and 30.6%, respectively. An enhancement in both photothermal efficiency and permeate flux was noticed as the amount of MXene nanosheets increased in the 3D-printed spacers. This study demonstrates the feasibility of using 3D-printed photothermal spacers for high-performance and sustainable surface heating membrane distillation, providing a promising avenue for further improvement with other photothermal nanofillers or spacer modifications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Seunghyun Hong
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Pawan Verma
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Alaa Shaheen
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Andreas Schiffer
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
8
|
Ioannou D, Hou Y, Shah P, Ellinas K, Kappl M, Sapalidis A, Constantoudis V, Butt HJ, Gogolides E. Plasma-Induced Superhydrophobicity as a Green Technology for Enhanced Air Gap Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18493-18504. [PMID: 36989435 DOI: 10.1021/acsami.3c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro- and nanotexturing followed by plasma deposition as a novel, dry, and green method for superhydrophobic membrane fabrication. Using plasma micro- and nanotexturing, commercial membranes, both hydrophobic and hydrophilic, are transformed to superhydrophobic featuring water static contact angles (WSCA) greater than 150° and contact angle hysteresis lower than 10°. To this direction, hydrophobic polytetrafluoroethylene (PTFE) and hydrophilic cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when low surface tension solutions containing sodium dodecyl sulfate (SDS) and NaCl (down to 35 mN/m) were used, showcasing their antiwetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro- and nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD due to their hydrophilic nature (WSCA ≈ 40°), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 h, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.
Collapse
Affiliation(s)
- Dimosthenis Ioannou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, 15780 Attica, Greece
| | - Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kosmas Ellinas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
- Department of food science and nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, 81400 Myrina, Lemnos, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Andreas Sapalidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Vassilios Constantoudis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341 Attica, Greece
| |
Collapse
|
9
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
10
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Eryildiz B, Ozbey‐Unal B, Menceloglu YZ, Keskinler B, Koyuncu I. Development of robust superhydrophobic
PFA
/
TMI
/
PVDF
membrane by electrospinning/electrospraying techniques for air gap membrane distillation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bahriye Eryildiz
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Bahar Ozbey‐Unal
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Gebze Technical University Kocaeli Turkey
- Earth and Marine Sciences Institute, Gebze Technical University Kocaeli Turkey
| | - Yusuf Z. Menceloglu
- Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Sabanci University Istanbul Turkey
- Nanotechnology Research and Application Center, Sabanci University Istanbul Turkey
- Department of Materials Science and Nanoengineering Faculty of Engineering and Natural Science, Sabanci University Istanbul Turkey
| | - Bulent Keskinler
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Gebze Technical University Kocaeli Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
12
|
Si Z, Guo J, Xiang J. Study on the operation characteristic and transfer resistance of mechanical vapor recompression and vacuum membrane distillation system under multiple working conditions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Du C, Runhong Du J, Feng X, Du F, Cheng F, Ali ME. Pervaporation-assisted desalination of seawater reverse osmosis brine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Lin JL, Fitria FL, Wang YF, You SJ. Optimization of operational parameters in air-gap membrane distillation using central composite design applied in recovery of dye manufacturing wastewaters. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jeng-Lung Lin
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Firda Lutfiatul Fitria
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
15
|
Abdelrazeq H, Khraisheh M, Hassan MK. Long-Term Treatment of Highly Saline Brine in a Direct Contact Membrane Distillation (DCMD) Pilot Unit Using Polyethylene Membranes. MEMBRANES 2022; 12:membranes12040424. [PMID: 35448393 PMCID: PMC9031770 DOI: 10.3390/membranes12040424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Membrane distillation (MD) is an attractive separation process for wastewater treatment and desalination. There are continuing challenges in implementing MD technologies at a large industrial scale. This work attempts to investigate the desalination performance of a pilot-scale direct contact membrane distillation (DCMD) system using synthetic thermal brine mimicking industrial wastewater in the Gulf Cooperation Council (GCC). A commercial polyethylene membrane was used in all tests in the DCMD pilot unit. Long-term performance exhibited up to 95.6% salt rejection rates using highly saline feed (75,500 ppm) and 98% using moderate saline feed (25,200 ppm). The results include the characterization of the membrane surface evolution during the tests, the fouling determination, and the assessment of the energy consumption. The fouling effect of the polyethylene membrane was studied using Humic acid (HA) as the feed for the whole DCMD pilot unit. An optimum specific thermal energy consumption (STEC) reduction of 10% was achieved with a high flux recovery ratio of 95% after 100 h of DCMD pilot operation. At fixed operating conditions for feed inlet temperature of 70 °C, a distillate inlet temperature of 20 °C, with flowrates of 70 l/h for both streams, the correlations were as high as 0.919 between the pure water flux and water contact angle, and 0.963 between the pure water flux and salt rejection, respectively. The current pilot unit study provides better insight into existing thermal desalination plants with an emphasis on specific energy consumption (SEC). The results of this study may pave the way for the commercialization of such filtration technology at a larger scale in global communities.
Collapse
Affiliation(s)
- Haneen Abdelrazeq
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
- Correspondence:
| | - Mohammad K. Hassan
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
16
|
Ahmed FE, Lalia BS, Hashaikeh R, Hilal N. Intermittent direct joule heating of membrane surface for seawater desalination by air gap membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Xia W, Peng G, Hu Y, Dou G. Desired properties and corresponding improvement measures of electrospun nanofibers for membrane distillation, reinforcement, and self‐healing applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weihai Xia
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guangjian Peng
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Yahao Hu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guijing Dou
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| |
Collapse
|
18
|
Yadav A, Labhasetwar PK, Shahi VK. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150692. [PMID: 34600997 DOI: 10.1016/j.scitotenv.2021.150692] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/12/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Water resources are getting limited, which emphasises the need for the reuse of wastewater. The conventional waste(water) treatment methods such as reverse osmosis (RO) and multi-effect distillation (MED) are rendered limited due to certain limitations. Moreover, the imposition of stringent environmental regulations in terms of zero liquid discharge (ZLD) of wastewater containing very high dissolved solids has assisted in developing technologies for the recovery of water and useful solids. Membrane distillation crystallization (MDCr) is an emerging hybrid technology synergising membrane distillation (MD) and crystallization, thus achieving ZLD. MDCr technology can be applied to desalinate seawater, treat nano-filtration, and RO reject brine and industrial wastewater to increase water recovery and yield useful solids. This manuscript focuses on recent advances in MDCr, emphasizing models that account for application in (waste)water treatment. MDCr has dual benefits, first the environmental conservation due to non-disposal of wastewater and second, resources recovery proving the proverb that waste is a misplaced resource. Limitations of standalone MD and crystallization are discussed to underline the evolution of MDCr. In this review, MDCr's ability and feasibility in the treatment of industrial wastewater are highlighted. This manuscript also examines the operational issues, including crystal deposition (scaling) on the membrane surface, pore wetting phenomenon and economic consequences (energy use and operating costs). Finally, opportunities and future prospects of the MDCr technology are discussed. MDCr technology can amplify natural resources availability by recovering freshwater and useful minerals from the waste stream, thus compensating for the relatively high cost of the technology.
Collapse
Affiliation(s)
- Anshul Yadav
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pawan K Labhasetwar
- Water Technology and Management Division, CSIR- National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vinod K Shahi
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Xue X, Tan G, Zhu Z. All-Polymer and Self-Roughened Superhydrophobic PVDF Fibrous Membranes for Stably Concentrating Seawater by Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45977-45986. [PMID: 34523328 DOI: 10.1021/acsami.1c12775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel specially wettable membranes have been attracting significant attention for durable membrane distillation (MD). However, constructing a superhydrophobic interface often has to undergo complex modification procedures including roughness construction and hydrophobic modification. Herein, all-polymer and self-roughened superhydrophobic poly(vinylidene fluoride) fibrous membranes (PVDF FMs) with robustly stable pores were successfully constructed via electrospinning of fluorinated polyhedral oligomeric silsesquioxanes/PVDF (F-POSS/PVDF) emulsion solution in combination with hot-pressing. The comparative experiment reveals that proper hot-pressing, including adequate temperature and pressure, can help improve membrane pore stability by welding the intersecting fibers and increase the membrane surface hydrophobicity by transferring the inner fluorine chains to the outer fiber surface, simultaneously advancing membrane scaling and fouling resistance. Nevertheless, excessive temperature or pressure will destroy the interconnected pores and surface wettability of the PVDF FM. Significantly, the hot-pressing-treated F-POSS/PVDF FM shows a high water recovery (∼90%) and robust stability after five rounds of the concentration process toward concentrating natural seawater as a target. Thus, the all-polymer and self-roughened superhydrophobic PVDF FMs constructed via electrospinning combined with the thermal treatment have potential applications in concentrating hypersaline brines, which make up for the other membrane technology, including reverse osmosis and nanofiltration technologies that failed to concentrate hypersaline solutions.
Collapse
Affiliation(s)
- Xiangyang Xue
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
20
|
Diaby AT, Byrne P, Loulergue P, Sow O, Maré T. Experimental Study of a Heat Pump for Simultaneous Cooling and Desalination by Membrane Distillation. MEMBRANES 2021; 11:membranes11100725. [PMID: 34677491 PMCID: PMC8537058 DOI: 10.3390/membranes11100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
Heat pump systems can simultaneously produce cooling energy for space cooling in hotels, office and residential buildings and heat for desalination using membrane distillation (MD). The MD technique uses a heat input at a temperature compatible with the levels of heat pump condensers (<60 °C). A heat pump prototype coupled with an air-gap membrane distillation unit was constructed and tested. This paper presents the experimental study on a lab-scale prototype and details the two operating modes “continuous” and “controlled” simulating an air conditioning system and a food storage, respectively. The experimental results enable to analyze the performance of the prototype and the physical phenomena involved. Finally, the study shows that this system could be a promising solution to help supplying freshwater to people in hot regions of the world.
Collapse
Affiliation(s)
- Ahmadou Tidiane Diaby
- Laboratoire du froid, des systèmes énergétiques et thermiques (Lafset), Cnam—Hesam Université, 292 rue Saint Martin, 75003 Paris, France;
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Paul Byrne
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Patrick Loulergue
- Univ Rennes, CNRS, ISCR–UMR 6226, F-35000 Rennes, France
- Correspondence:
| | - Ousmane Sow
- Laboratoire Eau, Energie, Environnement et Procédés Industriels—Ecole Supérieure Polytechnique (ESP)-Université Cheikh Anta Diop, Dakar 10700, Senegal;
| | - Thierry Maré
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| |
Collapse
|
21
|
Yadav A, Labhasetwar PK, Shahi VK. Fabrication and optimization of tunable pore size poly(ethylene glycol) modified poly(vinylidene-co-hexafluoropropylene) membranes in vacuum membrane distillation for desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Polynomial neural network-based group method of data handling algorithm coupled with modified particle swarm optimization to predict permeate flux (%) of rectangular sheet-shaped membrane. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01838-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Ibarra-Bahena J, Rivera W, Nanco-Mejía SD, Romero RJ, Venegas-Reyes E, Dehesa-Carrasco U. Experimental Performance of a Membrane Desorber Operating under Simulated Warm Weather Condensation Temperatures. MEMBRANES 2021; 11:membranes11070474. [PMID: 34206822 PMCID: PMC8303362 DOI: 10.3390/membranes11070474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
In absorption systems using the aqueous lithium bromide mixture, the Coefficient of Performance is affected by the desorber. The main function of this component is to separate the refrigerant fluid from the working mixture. In conventional boiling desorbers, constant heat flux and vacuum pressure conditions are necessary to carry out the desorption process, and usually, the absorbers are heavy and bulky; thus, they are not suitable in compact systems. In this study, a membrane desorber was evaluated, operating at atmospheric pressure conditions with a water/lithium bromide solution with a concentration of 49.6% w/w. The effects of the solution temperature, solution mass flow, and condensation temperature on the desorption rate were analyzed. The maximum desorption rate value was 6.1 kg/m2h with the following operation conditions: the solution temperature at 95.2 °C, the solution mass flow at 4.00 × 10−2 kg/s, and the cooling water temperature at 30.1 °C. On the other hand, the minimum value was 1.1 kg/m2h with the solution temperature at 80.2 °C, the solution mass flow at 2.50 × 10−2 kg/s, and the cooling water temperature at 45.1 °C. The thermal energy efficiency, defined as the ratio between the thermal energy used to evaporate the refrigerant fluid with respect to the total thermal energy entering the membrane desorber, varied from 0.08 to 0.30. According to the results, a high solution mass flow, a high solution temperature, and a low condensation temperature lead to an increase in the desorption rate; however, a low solution mass flow enhanced the thermal energy efficiency. The proposed membrane desorber could replace a conventional boiling desorber, especially in absorption cooling systems that operate at high condensation temperatures as in warm weather regions.
Collapse
Affiliation(s)
- Jonathan Ibarra-Bahena
- Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Colonia Progreso, Jiutepec 62550, Morelos, Mexico; (J.I.-B.); (E.V.-R.)
| | - Wilfrido Rivera
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco S/N, Col. Centro, Temixco 62580, Morelos, Mexico;
| | - Sandra Daniela Nanco-Mejía
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Rosenberg J. Romero
- Centro de Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Eduardo Venegas-Reyes
- Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Colonia Progreso, Jiutepec 62550, Morelos, Mexico; (J.I.-B.); (E.V.-R.)
| | - Ulises Dehesa-Carrasco
- Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Colonia Progreso, Jiutepec 62550, Morelos, Mexico; (J.I.-B.); (E.V.-R.)
- Correspondence:
| |
Collapse
|
24
|
Xiang H, Zhong L, Ren Y, Liu D, Zhu Z, Xu Y, Wang Y, Wang W. Superhydrophobized Polyacrylonitrile/Hierarchicall-FeOOH Nanofibrous Membrane for High-salinity Water Treatment in Membrane Distillation. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chen Y, Lu KJ, Gai W, Chung TS. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7654-7664. [PMID: 34014649 DOI: 10.1021/acs.est.1c01269] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes with robust antiwetting and antifouling properties are highly desirable for membrane distillation (MD) of wastewater. Herein, we have proposed and demonstrated a highly effective method to mitigate wetting and fouling by designing nanofiltration (NF)-inspired Janus membranes for MD applications. The NF-inspired Janus membrane (referred to as PVDF-P-CQD) consists of a hydrophobic polyvinylidene fluoride (PVDF) membrane and a thin polydopamine/polyethylenimine (PDA/PEI) layer grafted by sodium-functionalized carbon quantum dots (Na+-CQDs) to improve its hydrophilicity. The vapor flux data have confirmed that the hydrophilic layer does not add extra resistance to water vapor transport. The PVDF-P-CQD membrane exhibits excellent resistance toward both surfactant-induced wetting and oil-induced fouling in direct contact MD (DCMD) experiments. The impressive performance arises from the fact that the nanoscale pore sizes of the PDA/PEI layer would reject surfactant molecules by size exclusion and lower the propensity of surfactant-induced wetting, while the high surface hydrophilicity resulted from Na+-CQDs would induce a robust hydration layer to prevent oil from attachment. Therefore, this study may provide useful insights and strategies to design novel membranes for next-generation MD desalination with minimal wetting and fouling propensity.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
26
|
Operation conditions affecting scale formation in membrane distillation - An in situ scale study based on optical coherence tomography. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shang W, Li X, Liu W, Yue S, Li M, von Eiff D, Sun F, An AK. Effective suppression of concentration polarization by nanofiltration membrane surface pattern manipulation: Numerical modeling based on LIF visualization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Noamani S, Niroomand S, Rastgar M, Azhdarzadeh M, Sadrzadeh M. Modeling of Air-Gap Membrane Distillation and Comparative Study with Direct Contact Membrane Distillation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sadaf Noamani
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Shirin Niroomand
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mehdi Azhdarzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| |
Collapse
|
30
|
Zhu M, Mao Y. Large-pore-size membranes tuned by chemically vapor deposited nanocoatings for rapid and controlled desalination. RSC Adv 2020; 10:40562-40568. [PMID: 35520843 PMCID: PMC9057579 DOI: 10.1039/d0ra07629e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 12/03/2022] Open
Abstract
Though membranes with pore size larger than 1 μm are much desired to increase the permeate flux of membrane distillation (MD), the vulnerability of large-pore-size membranes to pore wetting results in the penetration of saline water and consequent failure of MD operation. We report modification of large-pore-size membranes by chemically vapor deposited nanocoatings to achieve both high salt rejection and high permeate flux. The chemical vapor modification not only led to enhanced surface hydrophobicity and increased liquid entry pressure in membranes, but also significantly improved membrane wetting resistance at high temperature. Membranes with 1.0 and 2.0 μm pore size were successfully used for MD desalination with salt rejection higher than 99.99% achieved. Enlarging the pore size from 0.2 μm to 2.0 μm contributed to 48-73% enhancement in the permeate flux of the modified membranes. The modified large-pore-size membranes maintained the high permeate flux at elevated saline concentration and extended the operation time.
Collapse
Affiliation(s)
- Mengfan Zhu
- Departments of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA +1 405 744 4337
| | - Yu Mao
- Departments of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA +1 405 744 4337
| |
Collapse
|
31
|
Interplay of the Factors Affecting Water Flux and Salt Rejection in Membrane Distillation: A State-of-the-Art Critical Review. WATER 2020. [DOI: 10.3390/w12102841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High water flux and elevated rejection of salts and contaminants are two primary goals for membrane distillation (MD). It is imperative to study the factors affecting water flux and solute transport in MD, the fundamental mechanisms, and practical applications to improve system performance. In this review, we analyzed in-depth the effects of membrane characteristics (e.g., membrane pore size and distribution, porosity, tortuosity, membrane thickness, hydrophobicity, and liquid entry pressure), feed solution composition (e.g., salts, non-volatile and volatile organics, surfactants such as non-ionic and ionic types, trace organic compounds, natural organic matter, and viscosity), and operating conditions (e.g., temperature, flow velocity, and membrane degradation during long-term operation). Intrinsic interactions between the feed solution and the membrane due to hydrophobic interaction and/or electro-interaction (electro-repulsion and adsorption on membrane surface) were also discussed. The interplay among the factors was developed to qualitatively predict water flux and salt rejection considering feed solution, membrane properties, and operating conditions. This review provides a structured understanding of the intrinsic mechanisms of the factors affecting mass transport, heat transfer, and salt rejection in MD and the intra-relationship between these factors from a systematic perspective.
Collapse
|
32
|
Mao Y, Huang Q, Meng B, Zhou K, Liu G, Gugliuzza A, Drioli E, Jin W. Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118364] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Blankert B, Vrouwenvelder JS, Witkamp GJ, Ghaffour N. Minimum Net Driving Temperature Concept for Membrane Distillation. MEMBRANES 2020; 10:membranes10050100. [PMID: 32422872 PMCID: PMC7281634 DOI: 10.3390/membranes10050100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 11/26/2022]
Abstract
In this study, we analyzed the heat requirement of membrane distillation (MD) to investigate the trade-off between the evaporation efficiency and driving force efficiency in a single effect MD system. We found that there exists a non-zero net driving temperature difference that maximizes efficiency. This is the minimum net driving temperature difference necessary for a rational operational strategy because below the minimum net driving temperature, both the productivity and efficiency can be increased by increasing the temperature difference. The minimum net driving temperature has a similar magnitude to the boiling point elevation (~0.5 °C for seawater), and depends on the properties of the membrane and the heat exchanger. The minimum net driving temperature difference concept can be used to understand the occurrence of optimal values of other parameters, such as flux, membrane thickness, and membrane length, if these parameters are varied in a way that consequently varies the net driving temperature difference.
Collapse
Affiliation(s)
- Bastiaan Blankert
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Correspondence: or ; Tel.: +966-8082180
| | - Geert-Jan Witkamp
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (B.B.); (G.-J.W.); (N.G.)
| |
Collapse
|
35
|
Banik A, Biswal SK, Bandyopadhyay TK. Predicting the optimum operating parameters and hydrodynamic behavior of rectangular sheet membrane using response surface methodology coupled with computational fluid dynamics. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01136-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Polyvinylidene fluoride phase design by two-dimensional boron nitride enables enhanced performance and stability for seawater desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Naji O, Al-Juboori RA, Bowtell L, Alpatova A, Ghaffour N. Direct contact ultrasound for fouling control and flux enhancement in air-gap membrane distillation. ULTRASONICS SONOCHEMISTRY 2020; 61:104816. [PMID: 31669841 DOI: 10.1016/j.ultsonch.2019.104816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Air Gap Membrane distillation (AGMD) is a thermally driven separation process capable of treating challenging water types, but its low productivity is a major drawback. Membrane fouling is a common problem in many membrane treatment systems, which exacerbates AGMD's low overall productivity. In this study, we investigated the direct application of low-power ultrasound (8-23 W), as an in-line cleaning and performance boosting technique for AGMD. Two different highly saline feedwaters, namely natural groundwater (3970 μS/cm) and RO reject stream water (12760 μS/cm) were treated using Polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes. Theoretical calculations and experimental investigations are presented, showing that the applied ultrasonic power range only produced acoustic streaming effects that enhanced cleaning and mass transfer. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that ultrasound was capable of effectively removing silica and calcium scaling. Ultrasound application on a fouled membrane resulted in a 100% increase in the permeate flux. Cleaning effects accounted for around 30-50% of this increase and the remainder was attributed to mass transfer improvements. Contaminant rejection percentages were consistently high for all treatments (>99%), indicating that ultrasound did not deteriorate the membrane structure. Scanning Electron Microscopy (SEM) analysis of the membrane surface was used to confirm this observation. The images of the membrane surface demonstrated that ultrasound successfully cleaned the previously fouled membrane, with no signs of structural damage. The results of this study highlight the efficient and effective application of direct low power ultrasound for improving AGMD performance.
Collapse
Affiliation(s)
- Osamah Naji
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; University of Technology Sydney (UTS), Centre for Technology in Water and Wastewater Treatment, Sydney, NSW 2007, Australia
| | - Raed A Al-Juboori
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia.
| | - Les Bowtell
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia
| | - Alla Alpatova
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
38
|
Numerical study of desalination by vacuum membrane distillation – Transient three-dimensional analysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Grossi LB, Alvim CB, Alvares CM, Martins MF, Amaral MC. Purifying surface water contaminated with industrial failure using direct contact membrane distillation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Silva RDS, Ramlow H, Cavalcanti CDÁK, Valle RDCSC, Machado RAF, Marangoni C. Steady state evaluation with different operating times in the direct contact membrane distillation process applied to water recovery from dyeing wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Rioyo J, Aravinthan V, Bundschuh J. The effect of ‘High-pH pretreatment’ on RO concentrate minimization in a groundwater desalination facility using batch air gap membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Yang C, Peng X, Zhao Y, Wang X, Cheng L, Wang F, Li Y, Li P. Experimental study on VMD and its performance comparison with AGMD for treating copper-containing solution. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:45-66. [PMID: 31078929 DOI: 10.1016/j.jenvman.2019.04.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.
Collapse
Affiliation(s)
- Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea; Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Aftab Ahmed Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
44
|
Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Jang GG, Klett JW, McFarlane J, Ievlev A, Xiao K, Keum JK, Yoon M, Im P, Hu MZ, Parks JE. Efficient Solar-Thermal Distillation Desalination Device by Light Absorptive Carbon Composite Porous Foam. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900003. [PMID: 31565393 PMCID: PMC6686170 DOI: 10.1002/gch2.201900003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 05/05/2023]
Abstract
Solar-thermal driven desalination based on porous carbon materials has promise for fresh water production. Exploration of high-efficiency solar desalination devices has not solved issues for practical application, namely complicated fabrication, cost-effectiveness, and scalability. Here, direct solar-thermal carbon distillation (DS-CD) tubular devices are introduced that have a facile fabrication process, are scalable, and use an inexpensive but efficient microporous graphite foam coated with carbon nanoparticle and superhydrophobic materials. The "black" composite foam serving as a solar light absorber heats up salt water effectively to produce fresh water vapor, and the superhydrophobic surface of the foam traps the liquid feed in the device. Two proof-of-principle distillation systems are adopted, i.e., solar still and membrane distillation and the fabricated devices are evaluated for direct solar desalination efficiency. For the solar still, nanoparticle and fluorosilane coatings on the porous surface increase the solar energy absorbance, resulting in a solar-steam generation efficiency of 64% from simulated seawater at 1 sun. The membrane distillation demonstrates excellent vapor production (≈6.6 kg m-2 h-1) with >99.5% salt rejection under simulated 3 sun solar-thermal irradiation. Unlike traditional solar desalination, the adaptable DS-CD can easily be scaled up to larger systems such as high-temperature tubular modules, presenting a promising solution for solar-energy-driven desalination.
Collapse
Affiliation(s)
- Gyoung Gug Jang
- Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - James William Klett
- Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Joanna McFarlane
- Isotope and Fuel Cycle Technology DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Anton Ievlev
- Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Kai Xiao
- Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Jong K. Keum
- Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Mina Yoon
- Center for Nanophase Materials ScienceOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Piljae Im
- Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Michael Z. Hu
- Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - James E. Parks
- Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| |
Collapse
|
46
|
Amaya-Vías D, López-Ramírez JA, Gray S, Zhang J, Duke M. Diffusion behavior of humic acid during desalination with air gap and water gap membrane distillation. WATER RESEARCH 2019; 158:182-192. [PMID: 31035195 DOI: 10.1016/j.watres.2019.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Desalination and water reuse are important means to resolve local water scarcity and security issues worldwide where membrane distillation (MD) may be part of a solution. Natural organic matter and in particular, humic acids (HA), are widely present in water supplies to be treated but exhibit little understood behavior to diffuse through MD membranes into permeate. In this work, air gap (AGMD) and water gap (WGMD) were utilized to study HA behavior in MD using seawater and synthetic water over a range of typical MD temperatures, flow rates and membrane types. HA diffusion was first shown with seawater feed then on synthetic solutions at all process conditions. While electrical conductivity rejection was always above than 99%, HA rejection showed values of 33% and 90% for AGMD and 68% and 93% for WGMD with seawater and synthetic water, respectively. Analytical techniques were used to perform a preliminary organic matter characterization in permeate, obtaining clear differences between the feed and permeate HA property. Compared to hydrophobic membranes, uniquely oleophobic membranes inhibit HA diffusion suggesting hydrophobic surface diffusion of HA through the membrane. HA flux as well as potential undesirable effects of the organic matter in permeate should be considered for MD applications.
Collapse
Affiliation(s)
- David Amaya-Vías
- Departamento de Tecnologías del Medio Ambiente, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Puerto Real, 11510, Cádiz, Spain
| | - Juan A López-Ramírez
- Departamento de Tecnologías del Medio Ambiente, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Puerto Real, 11510, Cádiz, Spain
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, PO Box 14428, Victoria, 8001, Australia
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, PO Box 14428, Victoria, 8001, Australia
| | - Mikel Duke
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, PO Box 14428, Victoria, 8001, Australia.
| |
Collapse
|
47
|
Evaluation of Permeate Quality in Pilot Scale Membrane Distillation Systems. MEMBRANES 2019; 9:membranes9060069. [PMID: 31195743 PMCID: PMC6631822 DOI: 10.3390/membranes9060069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
In this work, the salinity of permeate obtained with membrane distillation (MD) in pilot scale systems was analyzed. Experiments were performed with three different spiral-wound commercial modules, one from Solar Spring with 10 m2 surface membrane area and two from Aquastill with 7.2 and 24 m2. Intermittent operation meant that high permeate conductivity was measured in the beginning of each experiment, which was gradually decreasing until reaching a constant value (3-143 µS·cm-1 for seawater feed). The final quality reached did not depend on operating conditions, only the time it took to reach it. This can be because the permeate flux dilutes the minimal feed leak taking place through pinholes in the membranes. Larger feed leak through the membrane was observed when operating in vacuum-enhanced air-gap MD configuration (V-AGMD), which is compatible with this explanation. However, for the increase of feed leak with salinity (up to 1.8 M), a conclusive explanation cannot be given. Pore wetting due to crystallization is discarded because the high permeate quality was recovered after washing with distilled water. More studies at higher salinities and also at membrane level are required to investigate this.
Collapse
|
48
|
Alsaadi AS, Alpatova A, Lee JG, Francis L, Ghaffour N. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Kim YD, Francis L, Lee JG, Ham MG, Ghaffour N. Effect of non-woven net spacer on a direct contact membrane distillation performance: Experimental and theoretical studies. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Damtie MM, Kim B, Woo YC, Choi JS. Membrane distillation for industrial wastewater treatment: Studying the effects of membrane parameters on the wetting performance. CHEMOSPHERE 2018; 206:793-801. [PMID: 29803107 DOI: 10.1016/j.chemosphere.2018.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Substantial amounts of trace hazardous elements have been detected in industrial wastewater (e.g fluoride > 900 mg/L). Feed water characteristics, operational parameters, and membrane properties are major factors affecting flux and rejection of the MD process. Membrane parameters such as membrane material type and pore size have been investigated. Fluoride ion rejection was selected to setup a methodology to remove trace elements from wastewater by adjusting the membrane parameters in DCMD. Study of the fouling thickness of the MD membrane using pH and feed water composition revealed that a PVDF membrane with a smooth surface holds a thicker fouling layer, which enhances fluoride rejection while reducing the permeate flux. On the other hand, PTFE and PP membranes showed higher mass transfer and higher wetting performance, respectively. Therefore,a PVDF membrane with low organic feed water at higher alkaline pH can be utilized to obtain high-quality permeate, while PTFE can provide the highest flux with acceptable permeate water quality. Therefore, this methodology can be applied toidentify the optimum membrane to fit the required permeate flux, rejection requirements,and operating pH to treat any kind of non-volatileinorganic pollutants from industrial wastewater.
Collapse
Affiliation(s)
- Mekdimu Mezemir Damtie
- Department of Construction Environment Engineering, University of Science & Technology (UST), (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Bongchul Kim
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Yun Chul Woo
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - June-Seok Choi
- Department of Construction Environment Engineering, University of Science & Technology (UST), (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea; Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|