1
|
Domke A, Przysiecka Ł, Jancelewicz M, Jarek M, Coy E, Iatsunskyi I, Richardson JJ, Staszak K, Woźniak-Budych M. Improving the bioactivity of cellulose acetate hemodialysis membranes through nanosilver modification. BIOMATERIALS ADVANCES 2025; 169:214180. [PMID: 39799899 DOI: 10.1016/j.bioadv.2025.214180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S. aureus, increased selectivity, and thermal stability and mechanical strength. The nano-enhanced membranes showed an improved albumin rejection rate of approximately 90 %, and the creatinine clearance rate ranged between 90 and 94 %. Our findings demonstrate that nanosilver-modified membranes can be readily prepared from precursor solutions to act as robust, biocompatible, and hydrophilic hemodialysis membranes with controlled bacteriostatic potential, antifouling properties and high toxin clearance.
Collapse
Affiliation(s)
- Aleksandra Domke
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Mariusz Jancelewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | | | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| | - Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland.
| |
Collapse
|
2
|
Dehban A, Kargari A, Ashtiani FZ. Fabrication and Characterization of PPSU/ PES Blend Nanofiltration Membrane via VIPS‐ NIPS Method for Effective Dye Rejection. POLYM ADVAN TECHNOL 2025; 36. [DOI: 10.1002/pat.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTIndustrial effluents, including dyes, pose a threat to the environment and human health, as they are resistant to reacting with oxygen; therefore, they are rarely biodegradable. Among the various processes, nanofiltration is an attractive process for separating dyes from water due to its economic efficiency. This work represents the fabrication of poly (phenyl sulfone) (PPSU)/poly (ether sulfone) (PES) blend nanofiltration membranes through vapor‐induced phase separation (VIPS) followed by immersion precipitation. The influence of polymer blend, exposure time, and coagulation bath composition on membrane characteristics and performance was studied. Results illustrate that an increment in exposure time caused a thinner top layer and changed the cross‐section morphology from finger‐like to sponge‐like. At PPSU:PES = 50:50 blend ratio, the pore radius significantly got larger than the neat polymers' fabricated membranes. The addition of N‐methyl‐2‐pyrrolidone (NMP) in the coagulation bath causes the formation of smaller finger‐like voids at the top layers and a sponge‐like structure in the sub‐layers of membranes. The optimal conditions for the nanofiltration membrane were determined at 28 s VIPS time, an equal ratio of polymers, and pure water as the coagulation bath. Under these conditions, the distilled water permeability and Rose Bengal rejection were determined as 63.6 L/m2 h and 77.11%, respectively.
Collapse
Affiliation(s)
- Amin Dehban
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Kargari
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Farzin Zokaee Ashtiani
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
3
|
Yan S, Qiu Y. Improving Hemocompatibility of Polysulfone Membrane by UV-Assisted Grafting of Sulfonated Chitosan. Polymers (Basel) 2024; 16:1555. [PMID: 38891507 PMCID: PMC11174723 DOI: 10.3390/polym16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The most prevalent type of hemodialysis membrane is polysulfone (PSf). However, due to inadequate biocompatibility, it significantly compromises the safety of dialysis for patients. In this study, we modify the surface of the PSf membrane with 2,4-dihydroxybenzophenone (DBPh) groups to serve as anchoring sites during UV irradiation. Subsequently, a tailored sulfonated dihydroxy propyl chitosan (SDHPCS) is grafted onto the modified PSf membrane to compensate for the deficiencies in hydrophilic additives. The modified PSf membrane exhibits outstanding hydrophilicity and stability, as demonstrated by its characterization and evaluation. This paper focuses on investigating the interaction between platelet membrane formation, protein adsorption, and anticoagulant activity. The results show that the modified PSf membrane exhibits remarkable enhancement in surface hydrophilicity, leading to a significant reduction in protein and platelet adsorption as well as adhesion.
Collapse
Affiliation(s)
| | - Yunren Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
4
|
Wang M, Li L, Yan H, Liu X, Li K, Li Y, You Y, Yang X, Song H, Wang P. Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers (Basel) 2023; 15:4527. [PMID: 38231952 PMCID: PMC10707801 DOI: 10.3390/polym15234527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Confronting the pressing challenge of freshwater scarcity, polymeric membrane-based water treatment technology has emerged as an essential and effective approach. Poly(arylene ether)s (PAEs) polymers, a class of high-performance engineering thermoplastics, have garnered attention in recent decades as promising membrane materials for advanced water treatment approaches. The PAE-Based membranes are employed to resist the shortages of most common polymeric membranes, such as chemical instability, structural damage, membrane fouling, and shortened lifespan when deployed in harsh environments, owing to their excellent comprehensive performance. This article presents the advancements in the research of several typical PAEs, including poly(ether ether ketone) (PEEK), polyethersulfone (PES), and poly(arylene ether nitrile) (PEN). Techniques for membrane formation, modification strategies, and applications in water treatment have been reviewed. The applications encompass processes for oil/water separation, desalination, and wastewater treatment, which involve the removal of heavy metal ions, dyes, oils, and other organic pollutants. The commendable performance of these membranes has been summarized in terms of corrosion resistance, high-temperature resistance, anti-fouling properties, and durability in challenging environments. In addition, several recommendations for further research aimed at developing efficient and robust PAE-based membranes are proposed.
Collapse
Affiliation(s)
- Mengxue Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Lingsha Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Haipeng Yan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Xidi Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Yong You
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Huijin Song
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.W.); (L.L.); (H.Y.); (X.L.); (K.L.); (Y.L.); (X.Y.); (H.S.)
| |
Collapse
|
5
|
Wang X, Zhao Y, Wen X. Effect of Polyethylene Glycol Additive on the Structure and Performance of Fabric-Reinforced Thin Film Composite. Molecules 2023; 28:molecules28052318. [PMID: 36903568 PMCID: PMC10005719 DOI: 10.3390/molecules28052318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Fabric-reinforced thin film composite (TFC) membranes exhibit outstanding mechanical durability over free-standing membranes for commercial applications. In this study, polyethylene glycol (PEG) was incorporated to modify the polysulfone (PSU) supported fabric-reinforced TFC membrane for forward osmosis (FO). The effects of PEG content and molecular weight on the structure, material property and FO performance of the membrane were investigated comprehensively, and the corresponding mechanisms were revealed. The membrane prepared by using 400 g/mol PEG exhibited better FO performances than those of membranes with 1000 and 2000 g/mol PEG, and 20 wt.% was demonstrated to be the optimal PEG content in the casting solution. The permselectivity of the membrane was further improved by reducing the PSU concentration. The optimal TFC-FO membrane had a water flux (Jw) of 25.0 LMH using deionized (DI) water feed and 1 M NaCl draw solution, and the specific reverse salt flux (Js/Jw) was as low as 0.12 g/L. The degree of internal concentration polarization (ICP) was significantly mitigated. The membrane behaved superior to the commercially available fabric-reinforced membranes. This work provides a simple and low-cost approach in the development TFC-FO membrane and shows great potential in the large-scale production for practical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence: (X.W.); (Y.Z.)
| | - Yuntao Zhao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
- Hebei Key Laboratory of Sustained Utilization and Development of Water Resources, Shijiazhuang 050031, China
- Correspondence: (X.W.); (Y.Z.)
| | - Xueyou Wen
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
6
|
Tshindane P, Mamba BB, Motsa MM, Nkambule TTI. Delayed Solvent-Nonsolvent Demixing Preparation and Performance of a Highly Permeable Polyethersulfone Ultrafiltration Membrane. MEMBRANES 2022; 13:39. [PMID: 36676846 PMCID: PMC9866341 DOI: 10.3390/membranes13010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Membrane performance optimization is a critical preparation step that ensures optimum separation and fouling resistance. Several studies have employed additives such as carbon and inorganic nanomaterials to optimize membrane performance. These particles provide excellent results but are rather costly, unstable and toxic to several biological organs. This study demonstrated that performance enhancement can also be achieved through delayed solvent−nonsolvent demixing during phase inversion membrane preparation. The rate of solvent−nonsolvent demixing was delayed by increasing the concentration of the solvent in the coagulation bath. This study employed synthetic and real water samples and several analytical techniques to compare optimized performances and properties of membranes prepared in this study with that of nanoparticle-embedded membranes in the literature. Pure water flux and BSA rejection of the membranes prepared in this study were comparable to those of nanoparticle embedded membranes. This study also shows the influence of delayed solvent−nonsolvent demixing on membrane properties such as morphology, wettability, surface roughness and porosity, thereby showing the suitability of the technique in membrane optimization. Furthermore, fouling studies showed that membranes prepared in this study have high flux recovery when fouled by humic acid feed water (>95%) and above 50% flux recovery with real water samples.
Collapse
|
7
|
Ngadiwiyana, Gunawan, Prasetya NB, Kusworo TD, Susanto H. Synthesis and characterization of sulfonated poly(eugenol-co-allyleugenol) membranes for proton exchange membrane fuel cells. Heliyon 2022; 8:e12401. [PMID: 36590487 PMCID: PMC9801125 DOI: 10.1016/j.heliyon.2022.e12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The research of sulfonated eugenol-allyleugenol copolymer (SPEAE) based membrane for fuel cell from eugenol derivate had been conducted. First, eugenol was reacted with various weights of allyl eugenol to form eugenol-allyleugenol copolymer (PEAE). Determination of the optimum composition of PEAE was done by testing the swelling properties. Then, PEAE was sulfonated using concentrated sulfuric acid with time variations of 1, 2, 3, 4, and 5 h to form SPEAE. The SPEAE produced was tested for the degree of sulfonation, water uptake, cation exchange capacity, and membrane proton conductivity. In addition, the characteristics of the PEAE and SPEAE copolymer membranes were also analyzed using FTIR spectrophotometers, 1H-NMR, TGA, and DSC. The results showed that the copolymerization of eugenol:allyleugenol (EG:AEG) with a ratio of 10:1 gave the lowest swelling degree. The best SPEAE copolymer was obtained from sulfonation for 2 h with yield, degree of sulfonation, water absorption value, proton conductivity, and cation exchange capacity of 90.6%, 12.87%, 50.7%, 1.83 × 10-5 S cm-1 and 0.356 meq/g, respectively. FTIR analysis shows the formation of PEAE with the loss of the vinyl eugenol groups used to form the polymer and shows the formation of SPEAE in the presence of sulfonate groups from the sulfonation reaction. 1H-NMR also confirmed the presence of the PEAE and SPEAE copolymers. In addition, analysis of thermal properties with TGA and DSC also showed that sulfonate treatment could improve membrane stability.
Collapse
Affiliation(s)
- Ngadiwiyana
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Gunawan
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Nor B.A. Prasetya
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
| | - Tutuk D. Kusworo
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| | - Heru Susanto
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| |
Collapse
|
8
|
Zhang Q, Bai X, Li Y, Zhang X, Tian D, Jiang L. Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS NANO 2022; 16:16843-16852. [PMID: 36222751 DOI: 10.1021/acsnano.2c06749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- School of Physics, Beihang University, Beijing100191, P. R. China
| | - Xiuhui Bai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100191, P. R. China
| |
Collapse
|
9
|
Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS) technique. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Young Ryu G, Jin An S, Yu S, Jung Kim K, Jae H, Roh D, Seok Chi W. Dual-sulfonated MOF/Polysulfone Composite Membranes Boosting Performance for Proton Exchange Membrane Fuel Cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Molecular Compatibility and Hydrogen Bonding Mechanism of PES/PEI Blends. Polymers (Basel) 2022; 14:polym14153046. [PMID: 35956562 PMCID: PMC9370605 DOI: 10.3390/polym14153046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
The development of high-performance polymer membranes has sparked a lot of attention in recent years. Polymer blending is a potential method of modification. A limitation, however, is the compatibility of blends at the molecular level. In this investigation, polyethersulfone/polyetherimide hollow fiber membranes were prepared by the solution blending method. Compatibility, hydrogen bonding, crystallinity, microstructure, hydrophilicity, mechanical properties, and transmissibility of blended membranes were also characterized. The compatibility and hydrogen bonding action of the two components were confirmed by DSC, FTIR, XPS, and XRD. The structure exhibits a C−H···O interaction motif with the sulfone group acting as a hydrogen bond acceptor from a methyl C−H donor. The π–π stacking between the two polymers arranged molecules more orderly, resulting in enhanced intermolecular interactions. Compared to polyethersulfone hollow fiber membranes, the hydrophilic, mechanical properties, and rejection rate of the blended membranes are more effectively enhanced. Self-assembly of the host polymer with a polymer capable of forming hydrogen bonds to construct controllable blends is a crucial and proven method.
Collapse
|
12
|
Dias RA, Ferreira RSB, Medeiros VDN, Araujo BA, Araújo EM, Lira HDL. Flat membranes of polyethersulfone/polysulfone blends in water/oil separation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Wang Y, Li D, Li J, Li J, Fan M, Han M, Liu Z, Li Z, Kong F. Metal organic framework UiO-66 incorporated ultrafiltration membranes for simultaneous natural organic matter and heavy metal ions removal. ENVIRONMENTAL RESEARCH 2022; 208:112651. [PMID: 35007541 DOI: 10.1016/j.envres.2021.112651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In this work, a new type of UiO-66 incorporated polysulfone (PSf) ultrafiltration (UF) membranes was fabricated to enhance antifouling properties and heavy metal ions removal efficiency. The UF membranes incorporating different loadings of the UiO-66 filler were prepared via the classical phase inversion process. These membranes unveiled enhanced hydrophilicity, porosity, water uptake, zeta potential, mechanical strength, permeability, and HA removal ratios due to the incorporation of hydrophilic UiO-66 fillers. Particularly, HA rejection ratios were observed to be approximately 93% for all the modified membranes, which was attributed to electrostatic repulsion interactions between the hydrophilic groups of HA and UiO-66. Moreover, the antifouling abilities of the modified membranes were evaluated and found to be much better with a high flux recovery ratio (FRR) of about 88% when compared to the blank PSf membrane (only around 34%). Moreover, the UiO-66 incorporated membranes were highly-effective in the removal of contaminants like heavy metal ions (Sr2+, Pb2+, Cd2+, and Cr6+) and HA at the same time. Overall, the PSf UF membranes incorporating UiO-66 opened up a new avenue to enhance the membrane hydrophilicity, permeability, antifouling properties as well as heavy metal ions removal abilities.
Collapse
Affiliation(s)
- Yi Wang
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Daxue Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China; Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Jian Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Jun Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Mao Fan
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Mengwei Han
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China
| | - Zequn Liu
- Water Industry and Environment Engineering Technology Research Centre, Chongqing, 401311, China
| | - Zhanguo Li
- State Key Lab of NBC for Civilian Protection, Beijing, 102205, China.
| | - Fanxin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
14
|
Gao M, Wang S, Ji Y, Cui Z, Yan F, Younas M, Li J, He B. Regulating surface-pore structure of PES UF membrane by addition of “active” nano-CaCO3. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Mao H, Jiang H, Sang L, Li S, Chen FX, Zhao ZP. An integrated ionic liquid hybrid polymeric fixed-bed reactor with a porous sponge-like structure for biomass hydrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Wang S, Li Q, He B, Gao M, Ji Y, Cui Z, Yan F, Ma X, Younas M, Li J. Preparation of Small-Pore Ultrafiltration Membranes with High Surface Porosity by In Situ CO 2 Nanobubble-Assisted NIPS. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8633-8643. [PMID: 35107273 DOI: 10.1021/acsami.1c23760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of ultrafiltration (UF) membranes with a small pore size (<20 nm) and high surface porosity is still a great challenge. In this work, a nanobubble-assisted nonsolvent-induced phase separation (BNIPS) technique was developed to prepare high-performance UF membranes by adding a tiny amount of CaCO3 nanoparticles into the casting solution. The phase inversion occurred in a dilute-acid coagulation bath to simultaneously generate CO2 nanobubbles, which regulated the membrane structure. The effects of the nano-CaCO3 content in the casting solution on the structure and performance of poly(ethersulfone)/sulfonated polysulfone (PES/SPSf) UF membranes were studied. The UF membrane prepared from a casting solution with 0.3% nano-CaCO3 achieved a surface porosity of 12%, a pore diameter of 10.2 nm, and a skin-layer thickness of 80.3 nm. The superior structure of the UF membrane was mainly attributed to the in situ generation of CO2 nanobubbles because the CO2 nanobubbles were amphiphobic to water and solvents to delay the phase inversion time and acted as nanosize porogens. The produced membrane showed an unprecedented separation performance, achieving a pure water permeance of up to 1128 L·m-2·h-1·bar-1, 2.5 fold that of the control membrane. Similarly, a high bovine serum albumin rejection of above 99.0% was obtained. The overall permeability and selectivity were better than those of commercial and other previously reported UF membranes. This work provides insight toward a simple and cost-effective technique to address the trade-off between pure water permeance and solute rejection of UF membranes.
Collapse
Affiliation(s)
- Shenghuan Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Quan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Mantong Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yanhong Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Zhengyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Feng Yan
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Mohammad Younas
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
17
|
Gao K, Xu R, Chen Y, Zhang Z, Shao J, Ji H, Zhang L, Yi S, Chen D, Hu J, Gao Y. TiO2-carbon porous nanostructures for immobilization and conversion of polysulfides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Wen X, He C, Hai Y, Ma R, Sun J, Yang X, Qi Y, Wei H, Chen J. Fabrication of an antifouling PES ultrafiltration membrane via blending SPSF. RSC Adv 2022; 12:1460-1470. [PMID: 35425199 PMCID: PMC8979071 DOI: 10.1039/d1ra06354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfonated polysulfone (SPSF) with different sulfonation degrees (10%, 30%, and 50%) was added to polyethersulfone (PES) to improve the separation and antifouling performance of polyethersulfone ultrafiltration membranes. The PES/SPSF blend ultrafiltration membrane was prepared by the non-solvent induced phase inversion method (NIPS), and the effect of sulfonation degree on the ultrafiltration performance was studied. The compatibility of SPSF and PES was calculated by the group contribution method, and confirmed by differential scanning calorimetry (DSC). The morphology and surface roughness of the membrane were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the chemical composition of the membrane was analyzed by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR), and the permeability and anti-fouling performance of the blend membrane were studied through filtration experiments. The research shows that the flux and anti-fouling performance of the blend membrane have been improved after adding SPSF. When the sulfonation degree of the SPSF is 30%, the pure water flux of the blend membrane can reach 530 L m−2 h−1, the rejection rate of humic acid (HA) is 93%, the flux recovery rate of HA increases from 69.23% to 79.17%, and the flux recovery rate of BSA increases from 72.56% to 83%. The chemical structures of (a) PES and (b) SPSF.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
19
|
Poly (arylene ether ketone) with carboxyl groups ultrafiltration membrane for enhanced permeability and anti-fouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Tailoring of polysulfate/polyvinylpyrrolidone membrane structure via NIPS coupled physical aging technique for high-performance dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Al-Shaeli M, Smith SJ, Jiang S, Wang H, Zhang K, Ladewig BP. Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Shafi QI, Ihsan H, Hao Y, Wu X, Ullah N, Younas M, He B, Rezakazemi M. Multi-ionic electrolytes and E.coli removal from wastewater using chitosan-based in-situ mediated thin film composite nanofiltration membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112996. [PMID: 34126538 DOI: 10.1016/j.jenvman.2021.112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This work presents the experimental investigation of flat sheet composite nanofiltration membrane synthesized with chitosan nanoparticles through interfacial polymerization of piperazine with trimesoyl chloride on polyethersulfone/sulfonated polysulfone substrates. The synthesized membrane was tested in wastewater treatment containing inorganic salts and E.Coli. Single binary electrolyte solution of KCl, MgCl2, MgSO4, and Na2SO4, ternary electrolyte solution, containing a combination of MgCl2 and MgSO4, KCl and MgCl2 and quaternary electrolyte solution of KCl, MgCl2, and MgSO4 as feed were treated in crossflow membrane cell for the water flux and species rejection in the permeate under operating pressure up to 0.5 MPa. The rejection of Na1+, K1+, Mg2+, Cl1-, and SO42- was observed to be 81, 28, 87, 96, and 98%, respectively with an average water flux up to 214 ± 10 L m⁻2.hr⁻1 in the permeate for the binary electrolyte solution. Similarly, the rejection for K1+, Mg2+, Cl1- and SO42- was noted to be 33, 94, 97, and 99%, respectively, for ternary electrolyte solution with an average water flux up to 211 ± 10 L m-2.hr-1. The quaternary ion system in the feed resulted in an average water flux up to 198 ± 12 L m⁻2.hr⁻1 with the rejection of K+, Mg+2, Cl- and SO4-2 as 35, 87, 96, and 99%, respectively. The model feed solution of E. coli after passing through the membrane achieved an E. coli rejection (99%) with water flux up to 220 L m-2.hr-1.
Collapse
Affiliation(s)
- Qazi Iqra Shafi
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Haseena Ihsan
- Department of Chemistry, Sharhad University of Information Technology, Peshawar, Pakistan
| | - Yufan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xin Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Nehar Ullah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
24
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Sima Mirzadeh S, Amirinejad M. Surface water treatment for production of potable water by coagulation/filtration/nanofiltration membranes hybrid system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1391-1401. [PMID: 33598965 DOI: 10.1002/wer.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Providing potable water will be a challenge for humanity over the next years. In this research, water samples from the Gamasiab River (Iran) were purified to achieve drinking water by applying coagulation, conventional filtration in combination with the nanofiltration process. By using poly aluminum chloride as a coagulant, the turbidity decreased by 96.4%. The turbidity and COD decreased by 98.82% and 32.7%, respectively, via passing the effluent through the activated carbon. Membranes were made of polyethersulfone (PES). Cesium hydrogen phosphotungstic acid (Cs0.5 H2.5 PW12 O40 as CsPW) nanoparticles were incorporated into the polymer matrix to improve the hydrophilicity. The morphology of membranes was studied using the FE-SEM and AFM. The pure water flux and contact angle for the sulfonated PES with 1.5 wt.% CsPW were 51.9 kg/m2 h and 55.49 °, respectively. The percentage of the turbidity, conductivity, TDS, and COD removal was found to be 99.9, 89.3, 89.3, and 86.6%, respectively, after the hybrid process. The removal of calcium, magnesium, nitrate, chloride, sodium, sulfate, and bicarbonate ions was 90.5, 83.4, 87.9, 60.7, 49, 86, and 80.5%, respectively. Based on these results, the river water meets the standards for drinking water after being purified by applying the aforementioned coagulation/filtration and nanofiltration processes. PRACTITIONER POINTS: The treatment of the Gamasiab River (Iran) was selected for this study to produce potable water. A hybrid systematic coagulation/filtration/nanofiltration (NF) was considered. Water quality parameters were measured and compared with the standard values. The cesium hydrogen phosphotungstic acid was incorporated into the NF to increase the hydrophilicity and water flux. Polyethersulfone was sulfonated to add the sulfonyl group to the polymer.
Collapse
Affiliation(s)
- Seyedeh Sima Mirzadeh
- Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Mehdi Amirinejad
- Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
26
|
Galdino AL, Oliveira JCA, Magalhaes ML, Lucena SMP, Liu D, Huang T, Zhu L. Prediction of the phenol removal capacity from water by adsorption on activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:135-143. [PMID: 34280160 DOI: 10.2166/wst.2021.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-performance sulfonated polysulfone (SPSf) mixed-matrix membranes (MMMs) were fabricated via a nonsolvent-induced phase separation (NIPS) method using zeolitic imidazolate frameworks-67 (ZIF-67) as a crosslinker. Acid-base crosslinking occurred between the sulfonic acid groups of SPSf and the tertiary amine groups of the embedded ZIF-67, which improved the dispersion of ZIF-67 and simultaneously improved the membrane strzcture and permselectivity. The dispersion of ZIF-67 in the MMMs and the acid-base crosslinking reaction were verified by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The pore structure analysis of MMMs indicated that filling ZIF-67 into SPSf enhanced the average surface pore sizes, surface porosities and more micropore in cross-sections. The crossflow filtrations showed the MMMs have higher pure water fluxes (57 to 111 L m-2 h-1) than the SPSf membrane (55 L m-2 h-1) but also higher bovine serum albumin (BSA) rejection rate of 93.9-95.8%, a model protein foulant. The MMMs showed a higher water contact angle than the SPSf membrane due to the addition of hydrophobic ZIF-67 and acid-base crosslinking, and also maintained high thermal stability evidenced by the thermogravimetric analysis (TGA) results. At the optimal ZIF-67 concentration of 0.3 wt%, the water flux of the SPSf-Z67-0.3 membrane was 82 L m-2 h-1 with a high BSA rejection rate of 95.3% at 0.1 MPa and better antifouling performance (FRR = 70%).
Collapse
Affiliation(s)
- Ana Luísa Galdino
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - José C A Oliveira
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Madson L Magalhaes
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Sebastião M P Lucena
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Di Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Lei Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
27
|
Polyvinylidene fluoride as a neat and the synthesized novel membranes based on PVDF/polyvinyl pyrrolidone polymer grafted with TiO2 nanoparticles through RAFT method for water purification. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Yin J, Tang H, Xu Z, Li N. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Sulfonated carbon nano-onion incorporated polyethersulfone nanocomposite ultrafiltration membranes with improved permeability and antifouling property. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Jiang H, Wang T, Li S, Zhao ZP. Fabrication of porous polymer membrane from polysulfone grafted with acid ionic liquid and the catalytic property for inulin hydrolysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Hu M, Cui Z, Yang S, Li J, Shi W, Zhang W, Matindi C, He B, Fang K, Li J. Pregelation of sulfonated polysulfone and water for tailoring the morphology and properties of polyethersulfone ultrafiltration membranes for dye/salt selective separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Zhao Z, Liu B, Ilyas A, Vanierschot M, Muylaert K, Vankelecom IF. Harvesting microalgae using vibrating, negatively charged, patterned polysulfone membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Zhou S, Zhang Y, Ni L, Pei Y, Zhang H, Zhang H. Applied organic-inorganic nanocomposite of PLA-TiO 2 for preparing polysulfone membrane: structure, performance and UV-assisted cleaning strategy. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:198-211. [PMID: 33460418 DOI: 10.2166/wst.2020.564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blended organic copolymer (or homopolymer) and inorganic nanoparticles have been widely used (separately or simultaneously) for optimizing membrane pore structure and surface functionality. However, the prepared membranes suffer from degraded stability and insufficient integrity due to the high solubility or incompatibility of the blending additives. In this work, an organic-inorganic nanocomposite (i.e., PLA-TiO2) was designed, and employed for PSF membrane preparation. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis confirmed that bidentate chelating dominated the bonding mechanism between PLA and TiO2. The resultant PSF/PLA-TiO2 membranes possessed a highly porous surface with narrowed pore size distribution, demonstrating the strong pore forming ability of PLA-TiO2 for membrane preparations. Moreover, owing to the distinct inorganic-organic molecular conformation, the PLA-TiO2 exhibited enhanced stability and dispersibility within the PSF substance, which endowed the membrane with long-acting hydrophilicity and UV responsiveness. Given the UV responsiveness that is introduced by PLA-TiO2, UV-assisted strategies (UV-F and UV-C) were designed to further mitigate membrane fouling. The fouling analysis indicated that both reversible fouling and irreversible fouling were reduced in the UV-C process, signifying the synergistic effect between photocatalysis and hydraulics in membrane fouling mitigation. The enhanced membrane performance and the efficient preparation process highlight the potential of PLA-TiO2 in membrane modifications.
Collapse
Affiliation(s)
- Siru Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yang Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China E-mail:
| | - Lei Ni
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China E-mail:
| | - Yuxiang Pei
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China E-mail:
| | - Haoquan Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China E-mail:
| | - Hongwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
35
|
Impact of SPEEK on PEEK membranes: Demixing, morphology and performance enhancement in lithium membrane extraction. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Suzaimi ND, Goh PS, Ismail AF, Mamah SC, Malek NANN, Lim JW, Wong KC, Hilal N. Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. MEMBRANES 2020; 10:E332. [PMID: 33171847 PMCID: PMC7695145 DOI: 10.3390/membranes10110332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.
Collapse
Affiliation(s)
- Nur Diyana Suzaimi
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
- Department of Chemical Engineering, Alex Ekwueme Federal University, Ebonyi State 84001, Nigeria
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia;
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Kar Chun Wong
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
37
|
Xie YX, Wang KK, Yu WH, Cui MB, Shen YJ, Wang XY, Fang LF, Zhu BK. Improved permeability and antifouling properties of polyvinyl chloride ultrafiltration membrane via blending sulfonated polysulfone. J Colloid Interface Sci 2020; 579:562-572. [DOI: 10.1016/j.jcis.2020.06.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
38
|
Preparation of novel 3D hierarchical porous carbon membrane as flexible free-standing electrode for supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. Polymers (Basel) 2020; 12:polym12071509. [PMID: 32645993 PMCID: PMC7407290 DOI: 10.3390/polym12071509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical analysis and inductively coupled plasma mass spectroscopy (ICP). Two different phase inversion techniques, Non-Solvent Induced Phase Separation (NIPS) and Vapour-Induced Phase Separation (VIPS)/NIPS, were applied to study the effect of fabrication procedure on the membrane structure and properties. Membranes were characterized by SEM, AFM, pore size, porosity, contact angle and mechanical tests, and finally tested for photocatalytic methylene blue (MB+) degradation under visible light irradiation. The effect of different pH values of dye aqueous solutions on the photocatalytic efficiency was investigated. Finally, the influence of NaCl salt on the MB+ photodegradation process was also evaluated.
Collapse
|
40
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Li J, Cui Z, Tao R, Yang S, Hu M, Matindi C, Gumbi NN, Ma X, Hu Y, Fang K, Li J. Tailoring polyethersulfone/quaternary ammonium polysulfone ultrafiltration membrane with positive charge for dye and salt selective separation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaye Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Ran Tao
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Shuqian Yang
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Mengyang Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Christine Matindi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Nozipho N. Gumbi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Kuanjun Fang
- Collaborative Innovation Center for Eco‐Textiles of Shandong Province Qingdao People's Republic of China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| |
Collapse
|
42
|
Wang M, Zhang Y, Yu G, Zhao J, Chen X, Yan F, Li J, Yin Z, He B. Monolayer porphyrin assembled SPSf/PES membrane reactor for degradation of dyes under visible light irradiation coupling with continuous filtration✰. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Zhang C, Huang R, Tang H, Zhang Z, Xu Z, Li N. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Costa JAS, Sarmento VH, Romão LP, Paranhos CM. Removal of polycyclic aromatic hydrocarbons from aqueous media with polysulfone/MCM-41 mixed matrix membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Liu D, Zhu Z, Zhao Y, Chen Y, Tan Y, Zhang Y. Low pressure modified polyamide 6 membrane for effective fractionation of dyes and NaCl. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133908. [PMID: 31425991 DOI: 10.1016/j.scitotenv.2019.133908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
A co-polymer (SPAA6) of 5-sulfoanthranilic acid (5SAA) and ε-caprolactam was used to prepare membrane through nonsolvent induced phase separation (NIPS) method. The micro-structure of membrane was adjusted by small molecules to improve mechanic strength and performance, involving 7 commercial ionic surfactant and a self-synthesized one, S20. S20 showed the best compatibility with SPAA6, which converted spherical phase into network of strip-like units in micro-structure of membrane. Meanwhile, average pore size of the membrane was narrowed from 4.271 nm to 3.391 nm, tested by BET method. Tensile strength of membrane was improved from 2.5 MPa to 2.9 MPa. Therefore, anionic dyes rejection and membrane stability were both improved. It actually demonstrated that molecular weight distribution of SPAA6 was crucial for micro-structure construction of membrane since S20 was the SPAA6 of low molecular weight. In blend solution filtration test, membrane MS2 (1:2 for S20:SPAA6) displayed 98.22% rejection to Congo Red (CR) acid and 96.18% NaCl permeation under 1 bar. It showed 80.18% rejection to chrome blue K (ABK) and 96.28% NaCl permeation. Both water permeance were higher than 3.5 L·m-2·h-1·bar. Membrane MS2 showed the potential of fractionation of dye and NaCl, which was promising in textile waste water treatment.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China.
| | - Zexian Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China
| | - Yingbo Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China; Yiwu Huading Nylon Co. Ltd., 322000 Jinhua, Zhejiang, China
| | - Yankun Tan
- Yiwu Huading Nylon Co. Ltd., 322000 Jinhua, Zhejiang, China
| | - Yufeng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tianjin Polytechnic University, 300387 Tianjin, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| |
Collapse
|
46
|
Yurekli Y. Layer‐by‐layer self‐assembly of multifunctional enzymatic UF membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yilmaz Yurekli
- Department of BioengineeringManisa Celal Bayar University Sehit Prof. Dr. Ilhan Varank Kampusu, Yunusemre Manisa 45140 Turkey
| |
Collapse
|
47
|
Guan YF, Huang BC, Wang YJ, Gong B, Lu X, Yu HQ. Modification of forward osmosis membrane with naturally-available humic acid: Towards simultaneously improved filtration performance and antifouling properties. ENVIRONMENT INTERNATIONAL 2019; 131:105045. [PMID: 31352263 DOI: 10.1016/j.envint.2019.105045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
In this work, a thin-film composite forward osmosis (FO) membrane was fabricated on polyethersulfone substrate by interfacial polymerization with naturally-available humic acid (HA) as a stable membrane additive in the support layer. Compared with the pristine polyethersulfone substrate, the incorporation of HA significantly altered the cross-section structure, increased average pore size and porosity of the substrate, leading to a thinner polyamide layer, further increasing the water flux (permeability). Specifically, the FO membrane showed a higher water flux (~20 L m-2 h-1) with the introduction of HA than the membrane synthesized without HA (~15 L m-2 h-1) in the FO mode with 2 M NaCl as draw solution. Moreover, the selectivity of the membrane was improved ~45% by dosing 0.8 wt% HA into the substrate, in comparation to the pristine membrane without HA doped. Besides, the average roughness of the polyamide layer was reduced by up to 68% when HA was present in the substrate, which mitigated the fouling potential. Thus, a slower flux decline ratio (~60%) was observed for the membrane modified with 0.8 wt% HA than the pristine membrane (~80%). Taken together, our findings shed light on using natural-available HA for effectively and efficiently modifying membrane substrate to simultaneously enhance the permeate-selectivity performance and the anti-fouling behavior in FO membrane process. The fundamental causes of these differences in membrane separation performance and fouling behavior are considered and related to the physical and chemical characteristics of support layer (i.e., porosity and pore size) and polyamide layer (i.e., active layer thickness and roughness) of membranes.
Collapse
Affiliation(s)
- Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bao-Cheng Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xinglin Lu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
48
|
Hu M, Cui Z, Li J, Zhang L, Mo Y, Dlamini DS, Wang H, He B, Li J, Matsuyama H. Ultra-low graphene oxide loading for water permeability, antifouling and antibacterial improvement of polyethersulfone/sulfonated polysulfone ultrafiltration membranes. J Colloid Interface Sci 2019; 552:319-331. [DOI: 10.1016/j.jcis.2019.05.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
|
49
|
Zhang L, Zhou J, Sun F, Yu HY, Gu JS. Amphiphilic Block Copolymer of Poly(dimethylsiloxane) and Methoxypolyethylene Glycols for High-Permeable Polysulfone Membrane Preparation. ACS OMEGA 2019; 4:13052-13060. [PMID: 31460432 PMCID: PMC6704433 DOI: 10.1021/acsomega.9b00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 05/02/2023]
Abstract
Poly(dimethylsiloxane)-block-methoxypolyethylene glycols (PDMS-b-mPEG) were synthesized by Steglich esterification. The high-permeable membrane (PSf/PDMS-b-mPEG) was prepared by using PDMS-b-mPEG as additives. The successful synthesis of PDMS-b-mPEG was confirmed by nuclear magnetic resonance. Field emission scanning electron microscopy images show that the distribution of finger-like macroporous and sponge-like macroporous can be modulated by controlling the ratio of the hydrophilic/hydrophobic components of additives. The distribution of additives and membrane wettability are validated with X-ray photoelectron spectroscopy and water contact angle test. The permeability of the blended membrane, especially for the membrane PSf/PDMS-b-mPEG1900 (M3), was remarkably improved. The water permeability of M3 (239.4 L/m2·h·bar) was 6.6 times that of the unblended membrane M0 (42.5 L/m2·h·bar). The findings of protein BSA filtration show that the flux recovery ratio of M3 is 89.2% at a BSA retention rate of about 80%, which demonstrates that the polysulfone membranes blended with PDMS-b-mPEG have excellent antifouling performance and extraordinary permeability.
Collapse
Affiliation(s)
- Lei Zhang
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Jin Zhou
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
- Department
of Material and Chemical Engineering, Chizhou
University, 199 Muzhi
Road, Chizhou, Anhui 247000, China
| | - Fei Sun
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Hai-Yin Yu
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
- E-mail:
| | - Jia-Shan Gu
- College
of Chemistry and Materials Science, Anhui
Normal University, 189
Jiuhua Nanlu, Wuhu, Anhui 241002, China
| |
Collapse
|
50
|
Xu A, Wang W, Azhar U, Wang X, Guo L, Huo Z, Zhang S. Synthesis and characterization of hydrophilicity-controlled poly(arylene ether sulfone) copolymers with phenolphthalein-based carboxylic acid groups for separation membrane applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1649601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| | - Wenmin Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xianting Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Lingmin Guo
- Marine Chemical Research Institute Co., Ltd., Qingdao, China
| | - Zhiyuan Huo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| |
Collapse
|