1
|
Feng G, Wang Z, Xu M, Wang C, Li Y. Cyclodextrin-modified PVDF membranes with improved anti-fouling performance. CHEMOSPHERE 2024; 363:142808. [PMID: 38992443 DOI: 10.1016/j.chemosphere.2024.142808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 μg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.
Collapse
Affiliation(s)
- Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Zhilu Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Man Xu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, China.
| |
Collapse
|
2
|
Maleki A, Bozorg A. From environmental issue to purification aid: Novel positively charged functionalized algal biochar as robust modifier of composite nanofiltration membranes. CHEMOSPHERE 2024; 353:141651. [PMID: 38460849 DOI: 10.1016/j.chemosphere.2024.141651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Robust membrane modifiers were achieved for the first time by functionalizing the algal biochar of unique porous structure. The biochar was prepared through the pyrolysis of Cladophora glomerata, the most widespread freshwater macroalga, functionalized by diethylenetriamine and dendrimer poly(amidoamine), and employed to fabricate positively charged composite nanofiltration membranes. The presence of hydrophilic functionalizers of positive charge on the membrane was verified through Fourier transform infrared and energy dispersive X-ray analyses and atomic force microscopy and zeta potential measurements were performed to determine surface roughness and confirm positive charge of the modified membranes. Dispersion of modifiers on the surface and morphology of the were also revealed through field-emission scanning electron microscopy images. It has shown that, compared to the pristine membrane, pure water fluxes were increased by 214% and 185%, and water contact angles were reduced from 66.1° to 39.5° and 43.3° in those modified by biochar functionalized with dendrimer poly(amidoamine) and diethylenetriamine, respectively. More than 90% dye rejections and salt and heavy metals removals were recorded for the membranes possessed 0.6 wt% of modifiers. Finally, a comparative study conducted between the novel modifier introduced in this study and those reported in the literature, indicated that C. glomerata biochar decorated with amine functional groups could be considered as a robust and practical alternative to the common modifiers used to manipulate nanocomposite membranes characteristics.
Collapse
Affiliation(s)
- Amin Maleki
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Sun S, Xu L, Li H, Du W, Zhang H, Zuo D. Effect of chitosan crosslinking time on the structure and antifouling performance of polyvinylidene fluoride membrane by surface gelation-immersion precipitation phase inversion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10982. [PMID: 38316397 DOI: 10.1002/wer.10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Polyvinylidene fluoride (PVDF) porous membrane was prepared by a two-step method of surface gelation-immersion precipitation phase inversion. Chitosan/acetic acid solution and glutaraldehyde aqueous solution were sequentially sprayed onto the surface of the PVDF solution film, with chitosan crosslinking and gelation occurring simultaneously on the film surface. The solution film was then immersed in a coagulation bath to obtain a modified PVDF porous membrane. The effect of the crosslinking time of chitosan and glutaraldehyde on the structure and properties of the PVDF porous membrane was discussed. The results showed that with the prolongation of crosslinking time, the surface structure of the membrane changed from a dense skin layer to a porous structure; the porosity and the mean pore size of the modified PVDF membranes increased first and then decreased, and the contact angle gradually decreased. When the crosslinking time extended to 15 min, the water flux of modified membrane (M153) reached a maximum value. BSA dynamic cyclic filtration experiment showed that the retention rate (R) of the modified membrane was significantly improved, compared to 68.3% retention rate of the blank membrane (M000), but the crosslinking time had little effect on the retention rates of the four modified membranes. The antifouling data showed that the flux recovery rate of the blank membrane was 73.0%, while the flux recovery rate of the modified membrane can reach as high as 84.40%, and the irreversible pollution rate of the blank membrane was 27.7%, while the irreversible pollution rate of the modified membrane reduced to 15.6%. These results indicated that, after surface chitosan crosslinking, the hydrophilicity and antifouling properties of PVDF membranes were improved. PRACTITIONER POINTS: Modified PVDF membranes with crosslinking CS coating were prepared by a two-step method of surface gelation-immersion precipitation phase inversion. -OH groups and -NH2 groups of CS coating improve the hydrophilicity and the antifouling property of modified PVDF membranes. Modified PVDF membranes had larger mean pore size and higher porosity than unmodified membrane. Flux recovery rates of the modified membranes were higher than that of unmodified membrane. Pollution degree, reversible pollution rate, and irreversible pollution rate of modified membranes were lower than those of unmodified membrane.
Collapse
Affiliation(s)
- Shuo Sun
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, China
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| | - Lang Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, China
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| | - Hongjun Li
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, China
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| | - Wei Du
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| | - Hongwei Zhang
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| | - Danying Zuo
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, China
- Hubei Provincial Engineering Research Center of Industrial Detonator Intelligent Assembly, Wuhan Textile University, Wuhan, China
| |
Collapse
|
4
|
Wu Z, Ji X, He Q, Gu H, Zhang WX, Deng Z. Nanocelluloses fine-tuned polyvinylidene fluoride (PVDF) membrane for enhanced separation and antifouling. Carbohydr Polym 2024; 323:121383. [PMID: 37940278 DOI: 10.1016/j.carbpol.2023.121383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
To mitigate membrane fouling and address the trade-off between permeability and selectivity, we fabricated nanocellulose (NC) fine-tuned polyvinylidene fluoride (PVDF) porous membranes (NC-PVDFs) using phase inversion method through blending NCs with varied aspect ratios, surface charges and grafted functional groups. NC-PVDF presented rougher surface (increased by at least 18.3 %), higher porosity and crystallinity compared to PVDF membrane. Moreover, cellulose nanocrystals incorporated PVDF (CNC-PVDF) elevated membrane surface charge and hydrophilicity (from 74.3° to 71.7°), while 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers modified PVDF (TCNF-PVDF) enhanced the porosity (from 25.0 % to 40.3 %) and tensile strength (63.6 % higher than PVDF). For separation performance, NC improved flux, rejection and fouling resistance due to facilitation of phase transition thermokinetics as pore-forming agent and increased hydrophilicity at both interface and pore wall. For water flux, NC-PVDFs (139-228 L·m-2·h-1) resulted in increased permeability compared to bare PVDF. CNC-PVDF membrane exhibited the highest water flux because of improved porosity, roughness and hydrophilicity. For bovine serum albumin (BSA) rejection, the removal rates of all NC-PVDFs were all above 90 %. Notably, TCNF-PVDF exhibited the most remarkable elevation of BSA rejection (95.1 %) owing to size exclusion and charge repulsion in comparison with PVDF.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ji
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Quanlong He
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Toptaş A, Çalışır MD, Kılıç A. Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS OMEGA 2023; 8:38557-38565. [PMID: 37867706 PMCID: PMC10586252 DOI: 10.1021/acsomega.3c05509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Particles with diameters smaller than 2.5 μm (PM2.5) can penetrate the respiratory system and have negative impacts on human health. Filter media with a porous surface and nanofiber/nanonet structure demonstrate superior filtration performance compared to traditional nano- and microfiber-based filters. In this study, nanostructured filters were produced using the electroblowing method from solutions containing different ratios of poly(vinylidene fluoride) (PVDF) and polyethylene glycol (PEG) polymers for the first time. By increasing the water-soluble PEG ratio in PVDF/PEG blend nanofibers and employing a water bath treatment to the produced mat afterward, a more porous fibrous structure was obtained with a lower average fiber diameter. Notably, the removal of PEG from the PVDF/PEG (3-7) sample, which had the highest PEG content, exhibited clustered nanofiber-/nanonet-like structures with average diameters of 170 and 50 nm at the points where the fibers intersect. Although this process resulted in a slight decrease in the filtration efficiency (-1.3%), the significant reduction observed in pressure drop led to a 3.2% increase in the quality factor (QF). Additionally, by exploiting the polarizability of PVDF under an electric field, the filtration efficiency of the nanostructured PVDF filters enhanced with a ratio of 3.6% after corona discharge treatment leading to a 60% improvement in the QF. As a result, the PVDF/PEG (3-7) sample presented an impressive filtration efficiency of 99.57%, a pressure drop (ΔP) of 158 Pa, and a QF of 0.0345 Pa-1.
Collapse
Affiliation(s)
- Ali Toptaş
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Safranbolu
Vocational School, Karabuk University, 78600 Karabuk, Turkey
| | - Mehmet Durmuş Çalışır
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Faculty
of Engineering and Architecture, Recep Tayyip
Erdogan University, 53100 Rize, Turkey
| | - Ali Kılıç
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Areka
Advanced Technologies LLC, 34467 Istanbul, Turkey
| |
Collapse
|
6
|
Vishwakarma V, Kandasamy J, Vigneswaran S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. MEMBRANES 2023; 13:736. [PMID: 37623797 PMCID: PMC10456448 DOI: 10.3390/membranes13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida 203201, India
| | - Jaya Kandasamy
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
| | - Saravanamuthu Vigneswaran
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
7
|
Gao L, Hu BL, Wang L, Cao J, He R, Zhang F, Wang Z, Xue W, Yang H, Li RW. Intrinsically elastic polymer ferroelectric by precise slight cross-linking. Science 2023; 381:540-544. [PMID: 37535722 DOI: 10.1126/science.adh2509] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 08/05/2023]
Abstract
Ferroelectrics are an integral component of the modern world and are of importance in electrics, electronics, and biomedicine. However, their usage in emerging wearable electronics is limited by inelastic deformation. We developed intrinsically elastic ferroelectrics by combining ferroelectric response and elastic resilience into one material by slight cross-linking of plastic ferroelectric polymers. The precise slight cross-linking can realize the complex balance between crystallinity and resilience. Thus, we obtained an elastic ferroelectric with a stable ferroelectric response under mechanical deformation up to 70% strain. This elastic ferroelectric exerts potentials in applications related to wearable electronics, such as elastic ferroelectric sensors, information storage, and energy transduction.
Collapse
Affiliation(s)
- Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ri He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhiming Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
8
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Zhu H, Chen Z, Qin L, Zhang L, Zhou J. Simulated preparation and hydration property of a new-generation zwitterionic modified PVDF membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Khedri M, Afsharchi F, Souderjani AH, Rezvantalab S, Didandeh M, Maleki R, Musaie K, Santos HA, Shahbazi M. Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. NANO SELECT 2022. [DOI: 10.1002/nano.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Amirhosein Hasanpour Souderjani
- Department of Pharmaceutical Engineering, School of Chemical Engineering College of Engineering, University of Tehran Tehran Iran
| | - Sima Rezvantalab
- Renewable Energies Department Faculty of Chemical Engineering Urmia University of Technology Urmia Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Hélder A. Santos
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Hsu CH, Venault A, Chang Y. Facile zwitterionization of polyvinylidene fluoride microfiltration membranes for biofouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Barry ME, Aydogan Gokturk P, DeStefano AJ, Leonardi AK, Ober CK, Crumlin EJ, Segalman RA. Effects of Amphiphilic Polypeptoid Side Chains on Polymer Surface Chemistry and Hydrophilicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7340-7349. [PMID: 35089024 DOI: 10.1021/acsami.1c22683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymers are commonly used in applications that require long-term exposure to water and aqueous mixtures, serving as water purification membranes, marine antifouling coatings, and medical implants, among many other applications. Because polymer surfaces restructure in response to the surrounding environment, in situ characterization is crucial for providing an accurate understanding of the surface chemistry under conditions of use. To investigate the effects of surface-active side chains on polymer surface chemistry and resultant interactions with interfacial water (i.e., water sorption), we present synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) studies performed on poly(ethylene oxide) (PEO)- and poly(dimethylsiloxane) (PDMS)-based polymer surfaces modified with amphiphilic polypeptoid side chains, previously demonstrated to be efficacious in marine fouling prevention and removal. The polymer backbone and environmental conditions were found to affect polypeptoid surface presentation: due to the surface segregation of its fluorinated polypeptoid monomers under vacuum, the PEO-peptoid copolymer showed significant polypeptoid content in both vacuum and hydrated conditions, while the modified PDMS-based copolymer showed increased polypeptoid content only in hydrated conditions due to the hydrophilicity of the ether monomers and polypeptoid backbone. Polypeptoids were found to bind approximately 2.8 water molecules per monomer unit in both copolymers, and the PEO-peptoid surface showed substantial water sorption that suggests a surface with a more diffuse water/polymer interface. This work implies that side chains are ideal for tuning water affinity without altering the base polymer composition, provided that surface-driving groups are present to ensure activity at the interface. These types of systematic modifications will generate novel polymers that maximize bound interfacial water and can deliver surface-active groups to the surface to improve the effectiveness of polymer materials.
Collapse
Affiliation(s)
- Mikayla E Barry
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Amanda K Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K Ober
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rachel A Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Qu J, Gao S, Hou Z. Study on the modification of polyvinylidene fluoride with polyurethane to achieve excellent hydrophilic property. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Polyvinylidene fluoride (PVDF) is a promising membrane material in ultrafiltration (UF) applications; its extensive application however is limited due to the disadvantage in hydrophilicity and low surface energy. Herein, a sort of TPU-modified PVDF membrane is prepared by blending method and its hydrophilicity is compared with a series of pure/modified PVDF membranes. The contact angle and pure water flux (PWF) results demonstrate that the hydrophilicity of the TPU-modified PVDF membrane is enhanced, and the performance is not inferior to that of traditional pore-modified PVDF membranes. SEM image shows that the TPU-modified PVDF membrane maintains morphology of the pure PVDF membrane, indicating that TPU molecules have excellent compatibility with PVDF molecules and can maintain the mechanical property of PVDF membrane to a certain extent. Finally, we explore the effects of TPU molecules and PVDF molecules on water molecules, respectively, from a microscopic perspective involving first principles. This investigation not only establishes that PVDF membrane has been prepared with enhanced hydrophilicity, but also provides a novel avenue for the modification of membrane properties.
Collapse
Affiliation(s)
- Jiale Qu
- School of Materials Science and Engineering, Beihang University, Beijing, P.R. China
| | - Shen Gao
- School of Materials Science and Engineering, Beihang University, Beijing, P.R. China
| | - Zhenghao Hou
- School of Materials Science and Engineering, Beihang University, Beijing, P.R. China
| |
Collapse
|
14
|
Ohno S, Nakata I, Nagumo R, Akamatsu K, Wang XL, Nakao SI. Development of low-fouling PVDF membranes blended with poly(2-methoxyethyl acrylate) via NIPS process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Valizadeh K, Heydarinasab A, Hosseini SS, Bazgir S. Preparation of modified membrane of polyvinylidene fluoride (PVDF) and evaluation of anti-fouling features and high capability in water/oil emulsion separation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Du C, Wang Z, Liu G, Wang W, Yu D. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Wang K, Seol H, Liu X, Wang H, Cheng G, Kim S. Ultralow-Fouling Zwitterionic Polyurethane-Modified Membranes for Rapid Separation of Plasma from Whole Blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10115-10125. [PMID: 34379427 DOI: 10.1021/acs.langmuir.1c01477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The separation of plasma from blood cells in whole blood is an essential step for many diagnostic and therapeutic applications. However, the current point-of-care plasma separation approaches have not yet satisfied the need for a rapid, high-flux, and low-cost process. Here, we report a portable, low-cost, disposable membrane-based plasma separation device that enables rapid plasma extraction from whole blood. Rapid separation of plasma can be obtained with a simple three-step operation: blood injection, separation, and plasma collection. Our device benefits from the zwitterionic polyurethane-modified cellulose acetate (PCBU-CA) membrane, which can greatly inhibit the surface fouling of blood cells and membrane flux decline. The zwitterionic coating is stable on the membrane surface during blood filtration and leads to a 60% decrease in surface fibrinogen adsorption than a nonmodified membrane surface. The ultralow-blood-fouling properties of the PCBU-CA membrane enable rapid, continuous separation of plasma: within 10 min, the device can yield 0.5-0.7 mL of plasma from 10 mL of whole blood. The extracted plasma is verified as cell-free, exhibits a low hemoglobin level, and has a high protein recovery. Our PCBU-CA membrane provides a pathway for developing a high-efficiency portable plasma separation device that can reduce the time to diagnosis, allow effective patient care, and eventually reduce hospital costs.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Hyang Seol
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xuan Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sangil Kim
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
18
|
A comprehensive review of membrane fouling and cleaning methods with emphasis on ultrasound-assisted fouling control processes. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0832-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Banerjee SL, Saha P, Ganguly R, Bhattacharya K, Kalita U, Pich A, Singha NK. A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent “on-off” core. J Colloid Interface Sci 2021; 589:110-126. [DOI: 10.1016/j.jcis.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
|
20
|
Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Fang C, Zhang P, Rajabzadeh S, Kato N, Matsuyama H. One step surfactant entrapment onto PVDF hollow fiber membrane surface by the TIPS process using a triple-layer orifice spinneret. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
23
|
Dizon GV, Lee YS, Venault A, Maggay IV, Chang Y. Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Chen T, Wu F, Chen Z, Huo J, Zhao Y, Zhang L, Zhou J. Computer simulation of zwitterionic polymer brush grafted silica nanoparticles to modify polyvinylidene fluoride membrane. J Colloid Interface Sci 2020; 587:173-182. [PMID: 33360890 DOI: 10.1016/j.jcis.2020.11.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Dissipative particle dynamics (DPD) simulations was adopted to investigate the modification of polyvinylidene fluoride (PVDF) membrane by adding zwitterionic polymer brush poly(sulfobetaine methacrylate)- tetraethyl orthosilicate (PSBMA-TEOS) grafted silicon nanoparticles (SNPs) to the casting solution. The effects of polymer concentration and grafting architecture (PSBMA length and SNPs grafting ratio) on membrane morphology are discussed. When the polymer concentration reaches 40%, part of the SNPs is embedded in the membrane; the optimal polymer concentration is around 25-30%. In the SNPs system with the grafting ratio of 1, some SNPs are eluted into solution during phase separation. Compared with different grafting architectures, M8-5, M10-5 and M12-5 system (Mx-y, where x represents the length of the zwitterionic polymer brush and y represents the grafting ratio of the silica nanoparticles) exhibited stable membrane morphologies. This work can provide guidance for the design and modification of organic-inorganic composite membrane and help understand the distribution of modified materials on the membrane surface.
Collapse
Affiliation(s)
- Tinglu Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fenghe Wu
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinhao Huo
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Lizhi Zhang
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Zhou
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Antifouling thin-film composite membranes with multi-defense properties by controllably constructing amphiphilic diblock copolymer brush layer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Gaxela NN, Nomngongo PN, Moutloali RM. Effect of the Zwitterion, p(MAO-DMPA), on the Internal Structure, Fouling Characteristics, and Dye Rejection Mechanism of PVDF Membranes. MEMBRANES 2020; 10:membranes10110323. [PMID: 33142710 PMCID: PMC7693441 DOI: 10.3390/membranes10110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes. The effect of the zwitterionization content on membrane performance indicators such as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the membranes showed that the increase in the zwitterion amount led to a general decrease in pore size with a concomitant increase in the number of membrane surface pores. The surface roughness was not particularly affected by the amount of the additive; however, the internal structure was greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the other hand, the wettability of the membranes initially decreased with increasing content to a certain point and then increased as the membrane homogeneity changed at higher zwitterion percentages. Flux and fouling properties were enhanced through the addition of zwitterion compared to the pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum content whereby membrane homogeneity was compromised, leading to poor performance at its higher loading.
Collapse
Affiliation(s)
- Nelisa Ncumisa Gaxela
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/NRF SARChI: Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Richard Motlhaletsi Moutloali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
27
|
Peydayesh M, Mohammadi T, Nikouzad SK. A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118205] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Facile preparation of persistently hydrophilic poly(vinylidene fluoride-co-trifluorochloroethylene) membrane based on in-situ substitution reaction. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Wu LG, Huang LL, Yao Y, Liu ZH, Wang T, Yang XY, Dong CY. Fabrication of polyvinylidene fluoride blending membrane coupling with microemulsion polymerization and their anti-fouling performance. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Khan B, Haider S, Khurram R, Wang Z, Wang X. Preparation of an Ultrafiltration (UF) Membrane with Narrow and Uniform Pore Size Distribution via Etching of SiO 2 Nano-Particles in a Membrane Matrix. MEMBRANES 2020; 10:membranes10070150. [PMID: 32664428 PMCID: PMC7407847 DOI: 10.3390/membranes10070150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022]
Abstract
The UF membrane with a narrow and uniform pore size distribution and a low tendency to foul has significant applications in wastewater treatment. A major hindrance in the preparation of the UF membrane with these features is the lack of a scalable and economical membrane fabrication method. Herein, we devise a new strategy to prepare a high-quality polyvinylidene fluoride/polymethyl acrylate/cellulose acetate (PVDF/PMMA/CA) blend UF membrane via a combination of the etching mechanism with the traditional Loeb–Sourirajan (L-S) phase inversion method. Different concentrations of silicon dioxide (SiO2) nanoparticles (NP) in the membrane matrix were etched by using a 0.2 M hydrofluoric acid (HF) solution in a coagulation bath. This strategy provided the membrane with unique features along with a narrow and uniform pore size distribution (0.030 ± 0.005 μm). The etched membrane exhibits an increase of 2.3 times in pure water flux (PWF) and of 6.5 times in permeate flux(PF), with a slight decrease in rejection ratio (93.2% vs. 97%) when compared to than that of the un-etched membrane. Moreover, this membrane displayed outstanding antifouling ability, i.e., a flux recovery ratio (FRR) of 97% for 1000 mg/L bovine serum albumin (BSA) solution, a low irreversible fouling ratio of 0.5%, and highly enhanced hydrophilicity due to the formation of pores/voids throughout the membrane structure. The aforementioned features of the etched membrane indicate that the proposed method of etching SiO2 NP in membrane matrix has a great potential to improve the structure and separation efficiency of a PVDF/PMMA/CA blend membrane.
Collapse
Affiliation(s)
- Bushra Khan
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Sajjad Haider
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Rooha Khurram
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
| | - Zhan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; (B.K.); (S.H.); (R.K.)
- Correspondence: (Z.W.); (X.W.)
| | - Xi Wang
- School of Humanities and Social Sciences Macao, Polytechnic Institute, Macao 999078, China
- Correspondence: (Z.W.); (X.W.)
| |
Collapse
|
31
|
Imidazole-functionalized hydrophilic rubbery comb copolymers: Microphase-separation and good gas separation properties. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property. Polymers (Basel) 2020; 12:polym12061303. [PMID: 32517332 PMCID: PMC7361682 DOI: 10.3390/polym12061303] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF-PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF-PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF-PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.
Collapse
|
33
|
Venault A, Chen LA, Maggay IV, Marie Yap Ang MB, Chang HY, Tang SH, Wang DM, Chou CJ, Bouyer D, Quémener D, Lee KR, Chang Y. Simultaneous amphiphilic polymer synthesis and membrane functionalization for oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Chen F, Ding X, Jiang Y, Guan Y, Wei D, Zheng A, Xu X. Permanent Antimicrobial Poly(vinylidene fluoride) Prepared by Chemical Bonding with Poly(hexamethylene guanidine). ACS OMEGA 2020; 5:10481-10488. [PMID: 32426605 PMCID: PMC7227036 DOI: 10.1021/acsomega.0c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Biofouling is one of the major obstacles in the application of poly(vinylidene fluoride) (PVDF) membrane in water and wastewater treatment. Developing antimicrobial PVDF could kill the attached microbe in the initial stage, thus theoretically inhibiting the formation of biofilm and delaying the occurrence of biofouling. However, the leaching of the antimicrobial component and deterioration of antimicrobial properties remain a concern. In this work, an antimicrobial PVDF (PVDF-g-AGE-PHMG) was developed by chemical bonding PVDF with poly(hexamethylene guanidine hydrochloride) (PHMG). The obtained PVDF-g-AGE-PHMG was blended with pristine PVDF to prepare an antimicrobial PVDF membrane. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed that PHMG was successfully grafted into the PVDF membrane. The morphologies, membrane porosity, water contact angles, antimicrobial properties, mechanical properties, and thermostability of the as-prepared membranes were investigated. When the content of PVDF-g-AGE-PHMG reached 10.0 wt %, the inhibition rates of both antimicrobial PVDF membrane against Escherichia coli and Staphylococcus aureus were above 99.99%. Due to the increased hydrophilicity, excellent antimicrobial activity, nonleaching of antimicrobial component, good mechanical properties, and thermostability, the as-prepared PVDF membrane has promising applications in the field of water treatment.
Collapse
|
35
|
Saini B, Vaghani D, Khuntia S, Sinha MK, Patel A, Pindoria R. A novel stimuli-responsive and fouling resistant PVDF ultrafiltration membrane prepared by using amphiphilic copolymer of poly(vinylidene fluoride) and Poly(2-N-morpholino)ethyl methacrylate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Zhao J, Wang Q, Yang J, Li Y, Liu Z, Zhang L, Zhao Y, Zhang S, Chen L. Comb-shaped amphiphilic triblock copolymers blend PVDF membranes overcome the permeability-selectivity trade-off for protein separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Enhanced anti–protein fouling of PVDF membrane via hydrophobic–hydrophobic adsorption of styrene–terminated amphiphilic linker. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Wang SY, Fang LF, Matsuyama H. Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Current Advances in Biofouling Mitigation in Membranes for Water Treatment: An Overview. Processes (Basel) 2020. [DOI: 10.3390/pr8020182] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membranes, as the primary tool in membrane separation techniques, tend to suffer external deposition of pollutants and microorganisms depending on the nature of the treating solutions. Such issues are well recognized as biofouling and is identified as the major drawback of pressure-driven membrane processes due to the influence of the separation performance of such membrane-based technologies. Herein, the aim of this review paper is to elucidate and discuss new insights on the ongoing development works at facing the biofouling phenomenon in membranes. This paper also provides an overview of the main strategies proposed by “membranologists” to improve the fouling resistance in membranes. Special attention has been paid to the fundamentals on membrane fouling as well as the relevant results in the framework of mitigating the issue. By analyzing the literature data and state-of-the-art, the concluding remarks and future trends in the field are given as well.
Collapse
|
41
|
Liu X, Yuan H, Wang C, Zhang S, Zhang L, Liu X, Liu F, Zhu X, Rohani S, Ching C, Lu J. A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Liu C, Song D, Zhang W, He Q, Huangfu X, Sun S, Sun Z, Cheng W, Ma J. Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation. WATER RESEARCH 2020; 168:115181. [PMID: 31630018 DOI: 10.1016/j.watres.2019.115181] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, zwitterionic polymer brushes with controlled architecture were grafted on the surface of gravity-driven membrane (GDM) via surface-initiated reaction to impart antifouling property. A variety of membrane characterization techniques were conducted to demonstrate the successful functionalization of zwitterionic polymers on PVDF hollow fiber membrane. The membrane underwent 90 min of reaction time possessing strong hydrophilicity and high permeability was determined as the optimal modified membrane. Long-term GDM dynamic fouling experiments operated for 30 days using sewage wastewater as feed solution indicated zwitterionic polymer modified membrane exhibit excellent membrane fouling resistance thus enhanced stable flux. Confocal laser scanning microscopy (CLSM) imaging implied that zwitterionic polymer modification significantly inhibit the adsorption of extracellular polymeric substances (EPS) which dominates fouling propensity, resulting in the formation of a thin biofilm with high porosity under synthetic functions of foulants deposition and microbial activities. Interfacial free energy prediction affirmed the presence of zwitterionic functional layer on membrane surface could substantially decrease the interactions (e.g., electrostatic attractions and hydrophobic effects) between membrane and foulants, thereby reduced flux decline and high stable flux. Our study suggests surface hydrophilic functionalization shows promising potential for improving the performance of ultra-low pressure filtration.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| | - Wenjuan Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| | - Wei Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China.
| |
Collapse
|
43
|
Angayarkanni SA, Kampf N, Klein J. Surface Interactions between Boundary Layers of Poly(ethylene oxide)-Liposome Complexes: Lubrication, Bridging, and Selective Ligation †. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15469-15480. [PMID: 31348857 DOI: 10.1021/acs.langmuir.9b01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(ethylene oxide), PEO, is widely exploited in biomedical applications, while phosphatidylcholine (PC) lipids (in the form of bilayers or liposomes) have been identified as very efficient boundary lubricants in aqueous media. Here we examine, using a surface force balance (SFB), the interactions between surface-adsorbed layers of PEO complexed with small unilamellar vesicles (SUVs, i.e. liposomes) or with bilayers of PC lipids, both well below and a little above their main gel-to-liquid phase-transition temperatures TM. The morphology of PEO layers (adsorbed onto mica), to which liposomes were added, was examined using atomic force microscopy (AFM) and cryo-scanning electron microscopy (cryo-SEM). Our results reveal that the PC lipids could attach to the PEO either as vesicles or as bilayers, depending on whether they were above or below TM. Under water (no added salt), excellent lubrication, with friction coefficients down to 10-3-10-4, up to contact stresses of 6.5 MPa (comparable to those in the major joints) was observed between two surfaces bearing such PEO-PC complexes. At 0.1 M KNO3 salt concentration (comparable to physiological salt levels), the friction between such surfaces was considerably higher, attributed to bridging by the polymer chains. Remarkably, such bridging could be suppressed and the friction could be restored to its previous low value if the KNO3 was replaced with NaNO3, as a result of the different PEO-mica ligation properties of Na+ compared to those of K+. Our results provide insight into the properties of PEO-PC complexes in potential applications, and large interfacial effects that can result from the seemingly innocuous replacement of K+ by Na+ ions.
Collapse
Affiliation(s)
- S A Angayarkanni
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Nir Kampf
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jacob Klein
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
44
|
Wu T, Liu Y, Zhu GD, Li ZN, Yi Z, Liu LF, Gao CJ. Point-by-point comparisons of permselectivity and fouling-resistance of membranes prepared from blending with di-block and tri-block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Wu Q, Tiraferri A, Wu H, Xie W, Liu B. Improving the Performance of PVDF/PVDF- g-PEGMA Ultrafiltration Membranes by Partial Solvent Substitution with Green Solvent Dimethyl Sulfoxide during Fabrication. ACS OMEGA 2019; 4:19799-19807. [PMID: 31788612 PMCID: PMC6882131 DOI: 10.1021/acsomega.9b02674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/24/2019] [Indexed: 05/21/2023]
Abstract
Traditional organic solvents used in membrane manufacturing, such as dimethylformamide and tetrahydrofuran, are generally very hazardous and harmful to the environment and human health. Their total or partial substitution with green solvent dimethyl sulfoxide (DMSO) is proposed to fabricate membranes composed of poly(vinylidene fluoride) (PVDF) blended with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PEGMA), with the purpose to accomplish a greener chemical process and enhance the membrane performance. Various organic solvent compositions were first investigated using the Hansen solubility theory, and the best mixture was thus applied experimentally. The membrane prepared by a ratio of N,N-dimethylacetamide/DMSO = 7:3 outperformed the membranes prepared by other solvent mixtures. This membrane showed high wetting behavior with the water contact angle declining from 71 to 7° in 18 s and a pure water flux reaching values larger than 700 L m-2 h-1 under 0.07 MPa applied hydraulic pressure. The membrane rejected sodium alginate at a rate of 87%, and nearly complete flux recovery was achieved following fouling and physical cleaning. The introduction of green chemistry concepts to PVDF/PVDF-g-PEGMA blended membranes is a step forward in the goal to increase the sustainability of membrane production.
Collapse
Affiliation(s)
- Qidong Wu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Haibo Wu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Wancen Xie
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
| | - Baicang Liu
- College
of Architecture and Environment, Institute of New Energy and Low-Carbon
Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, P. R. China
- E-mail: , . Tel: +86-28-85995998. Fax: +86-28-62138325
| |
Collapse
|
46
|
Li M, Li J, Zhou M, Xian Y, Shui Y, Wu M, Yao Y. Super‐hydrophilic electrospun PVDF/PVA‐blended nanofiber membrane for microfiltration with ultrahigh water flux. J Appl Polym Sci 2019. [DOI: 10.1002/app.48416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Meimei Li
- Textile InstituteSichuan University Chengdu 610065 Sichuan People's Republic of China
| | - Jingde Li
- Textile InstituteSichuan University Chengdu 610065 Sichuan People's Republic of China
| | - Mi Zhou
- Textile InstituteSichuan University Chengdu 610065 Sichuan People's Republic of China
| | - Yupei Xian
- Institute of Chemical IndustrySichuan University Chengdu 610065 Sichuan People's Republic of China
| | - Yonggang Shui
- Institute of Chemical IndustrySichuan University Chengdu 610065 Sichuan People's Republic of China
| | - Mengqiang Wu
- Center for Advanced Electric Energy Technologies, School of Materials and EnergyUniversity of Electronic Science and Technology of China Chengdu 611731 People's Republic of China
| | - Yongyi Yao
- Textile InstituteSichuan University Chengdu 610065 Sichuan People's Republic of China
| |
Collapse
|
47
|
Ma W, Li T, Jiang C, Zhang P, Deng L, Xu R, Zhang Q, Zhong J, Matsuyama H. Effect of chain structure on the solvent resistance in aprotic solvents and pervaporation performance of PMDA and BTDA based polyimide membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Lien CC, Chen PJ, Venault A, Tang SH, Fu Y, Dizon GV, Aimar P, Chang Y. A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Liu L, Huang L, Shi M, Li W, Xing W. Amphiphilic PVDF‐
g
‐PDMAPMA ultrafiltration membrane with enhanced hydrophilicity and antifouling properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Lukuan Huang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Manli Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Weixing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Weihong Xing
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| |
Collapse
|
50
|
Zhao J, Han H, Wang Q, Yan C, Li D, Yang J, Feng X, Yang N, Zhao Y, Chen L. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|