1
|
Maurya BM, Yadav N, T A, J S, A S, V P, Iyer M, Yadav MK, Vellingiri B. Artificial intelligence and machine learning algorithms in the detection of heavy metals in water and wastewater: Methodological and ethical challenges. CHEMOSPHERE 2024; 353:141474. [PMID: 38382714 DOI: 10.1016/j.chemosphere.2024.141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Heavy metals (HMs) enter waterbodies through various means, which, when exceeding a threshold limit, cause toxic effects both on the environment and in humans upon entering their systems. Recent times have seen an increase in such HM influx incident rates. This requires an instant response in this regard to review the challenges in the available classical methods for HM detection and removal. As well as provide an opportunity to explore the applications of artificial intelligence (AI) and machine learning (ML) for the identification and further redemption of water and wastewater from the HMs. This review of research focuses on such applications in conjunction with the available in-silico models producing worldwide data for HM levels. Furthermore, the effect of HMs on various disease progressions has been provided, along with a brief account of prediction models analysing the health impact of HM intoxication. Also discussing the ethical and other challenges associated with the use of AI and ML in this field is the futuristic approach intended to follow, opening a wide scope of possibilities for improvement in wastewater treatment methodologies.
Collapse
Affiliation(s)
- Brij Mohan Maurya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Nidhi Yadav
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Amudha T
- Department of Computer Applications, Bharathiar University, Coimbatore, India
| | - Satheeshkumar J
- Department of Computer Applications, Bharathiar University, Coimbatore, India
| | - Sangeetha A
- Department of Computer Applications, Bharathiar University, Coimbatore, India
| | - Parthasarathy V
- Department of Computer Science and Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Department of Microbiology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
3
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Ibraheem BM, Aani SA, Alsarayreh AA, Alsalhy QF, Salih IK. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. MEMBRANES 2023; 13:membranes13040379. [PMID: 37103806 PMCID: PMC10142686 DOI: 10.3390/membranes13040379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 06/12/2023]
Abstract
Forward osmosis (FO) is a low-energy treatment process driven by osmosis to induce the separation of water from dissolved solutes/foulants through the membrane in hydraulic pressure absence while retaining all of these materials on the other side. All these advantages make it an alternative process to reduce the disadvantages of traditional desalination processes. However, several critical fundamentals still require more attention for understanding them, most notably the synthesis of novel membranes that offer a support layer with high flux and an active layer with high water permeability and solute rejection from both solutions at the same time, and a novel draw solution which provides low solute flux, high water flux, and easy regeneration. This work reviews the fundamentals controlling the FO process performance such as the role of the active layer and substrate and advances in the modification of FO membranes utilizing nanomaterials. Then, other aspects that affect the performance of FO are further summarized, including types of draw solutions and the role of operating conditions. Finally, challenges associated with the FO process, such as concentration polarization (CP), membrane fouling, and reverse solute diffusion (RSD) were analyzed by defining their causes and how to mitigate them. Moreover, factors affecting the energy consumption of the FO system were discussed and compared with reverse osmosis (RO). This review will provide in-depth details about FO technology, the issues it faces, and potential solutions to those issues to help the scientific researcher facilitate a full understanding of FO technology.
Collapse
Affiliation(s)
- Bakr M. Ibraheem
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Saif Al Aani
- The State Company of Energy Production—Middle Region, Ministry of Electricity, Baghdad 10013, Iraq
| | - Alanood A. Alsarayreh
- Department of Chemical Engineering, Faculty of Engineering, Mutah University, P.O. Box 7, Karak 61710, Jordan
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah 51001, Iraq
| |
Collapse
|
5
|
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Thin-Film Nanocomposite Forward Osmosis Membranes Prepared on PVC Substrates with Polydopamine Functionalized Zr-Based Metal Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zahra Shabani
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Norollah Kasiri
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
6
|
High permeable and anti-fouling forward osmosis membranes modified with Grafted Graphene Oxide to Polyacrylamide (GO-PAAm). JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Abdullah N, Yusof N, Jye LW, Jaafar J, Misdan N, Ismail AF. Removal of lead(II) by nanofiltration-ranged thin film nanocomposite membrane incorporated UiO-66-NH2: Comparative removal performance between hydraulic-driven and osmotic-driven membrane process. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
He Y, Lin X, Chen J, Zhan H. Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Long Q, Zhao S, Chen J, Zhang Z, Qi G, Liu ZQ. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119464] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
|
11
|
Biomass-based superhydrophobic coating with tunable colors and excellent robustness. Carbohydr Polym 2021; 270:118401. [PMID: 34364634 DOI: 10.1016/j.carbpol.2021.118401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Multicolored superhydrophobic coating with high durability has been receiving tremendous attention in decorative applications. Herein, a facile method to fabricate multicolored superhydrophobic coating with excellent robustness has been developed by using cellulose and chitosan. The multicolored coatings can be obtained through single dyeing or mixed dyeing based on three primary dyes. The coating can be applied on hard substrates (e.g. glass, aluminum sheet) and soft substrates (e.g. cotton fabric) by diverse methods including spraying, dip-coating and painting. The colorful coating firmly adheres to the substrates due to the multiple interactions (siloxane covalent bonds and hydrogen bonds). The colorful coating exhibits water-repellant behaviors and can withstand sandpaper abrasion, tape-peeling cycles, water impact, salt spray test and UV environments. Furthermore, the multicolored coating can be used as a new type of pigment for painting on different substrates and is expected to have a huge potential application in technological design or decoration.
Collapse
|
12
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
De Guzman MR, Ang MBMY, Huang SH, Huang QY, Chiao YH, Lee KR. Optimal Performance of Thin-Film Composite Nanofiltration-Like Forward Osmosis Membranes Set Off by Changing the Chemical Structure of Diamine Reacted with Trimesoyl Chloride through Interfacial Polymerization. Polymers (Basel) 2021; 13:polym13040544. [PMID: 33673191 PMCID: PMC7918250 DOI: 10.3390/polym13040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Thin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes. The diamines differed in chemical structure; the functional group present between the terminal amines was classified as follows: aliphatic group of 1,3-diaminopropane (DAPE); cyclohexane in 1,3-cyclohexanediamine (CHDA); and aromatic or benzene ring in m-phenylenediamine (MPD). For FO tests, deionized water and 1 M aqueous sodium sulfate solution were used as feed and draw solution, respectively. Interfacial polymerization conditions were also varied: concentrations of water and oil phases, time of contact between the water-phase solution and the membrane substrate, and polymerization reaction time. The resultant membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and surface contact angle measurement to identify the chemical structure, morphology, roughness, and hydrophilicity of the polyamide layer, respectively. The results of FO experiments revealed that among the three diamine monomers, CHDA turned out to be the most effective, as it led to the production of TFC NF-like FO membrane with optimal performance. Then, the following optimum conditions were established for the CHDA-based membrane: contact between 2.5 wt.% aqueous CHDA solution and polysulfone (PSf) substrate for 2 min, and polymerization reaction between 1 wt.% TMC solution and 2.5 wt.% CHDA solution for 30 s. The composite CHDA-TMC/PSf membrane delivered a water flux (Jw) of 18.24 ± 1.33 LMH and a reverse salt flux (Js) of 5.75 ± 1.12 gMH; therefore, Js/Jw was evaluated to be 0.32 ± 0.07 (g/L).
Collapse
Affiliation(s)
- Manuel Reyes De Guzman
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China;
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
- Correspondence:
| | - Qing-Yi Huang
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
14
|
Yu X, Zhu T, Xu S, Zhang X, Yi M, Xiong S, Liu S, Shen L, Wang Y. Second interfacial polymerization of thin‐film composite hollow fibers with
amine‐
cyclodextrin
s
for pervaporation dehydration. AIChE J 2021. [DOI: 10.1002/aic.17144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xi Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Xuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shutong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
15
|
|
16
|
Improved performance of thin-film composite membrane supported by aligned nanofibers substrate with slit-shape pores for forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Chiao YH, Patra T, Belle Marie Yap Ang M, Chen ST, Almodovar J, Qian X, Wickramasinghe SR, Hung WS, Huang SH, Chang Y, Lai JY. Zwitterion Co-Polymer PEI-SBMA Nanofiltration Membrane Modified by Fast Second Interfacial Polymerization. Polymers (Basel) 2020; 12:polym12020269. [PMID: 32012761 PMCID: PMC7077497 DOI: 10.3390/polym12020269] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.
Collapse
Affiliation(s)
- Yu-Hsuan Chiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Tanmoy Patra
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Shu-Ting Chen
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Department of Chemical and Materials Engineering, National Ilan University, Yi-Lan 26047, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
| |
Collapse
|
18
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Neo JG, Japip S, Luo L, Chung TS, Weber M, Maletzko C. Hydroxyl-terminated poly(ethyleneimine) polymer enhanced ultrafiltration for boron removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ly QV, Hu Y, Li J, Cho J, Hur J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. ENVIRONMENT INTERNATIONAL 2019; 129:164-184. [PMID: 31128437 DOI: 10.1016/j.envint.2019.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Wastewater reuse is considered one of the most promising practices for the achievement of sustainable water management on a global scale. In the context of the safe reuse of water, membrane filtration is a competitive technique due to its superior efficiency in several processes. However, membrane fouling by organics is an inevitable challenge that is encountered during the practical application of membrane processes. The resolution of the membrane fouling challenge requires an in-depth understanding of many complex interactions between organic foulants and the membrane. In the last few decades, the forward osmosis (FO) membrane process, which exploits osmosis as a driving force, has emerged as an effective technology for water production with low energy consumption, thus leveraging the water-energy nexus. However, their successful application is severely hampered by membrane fouling, which is caused by such complex fouling mechanisms as cake enhanced osmotic pressure (CEOP), reverse salt diffusion (RSD), internal, and external concentration polarization as well as by the traditional fouling processes encompassing colloids, microbial (biofouling), inorganic, and organic fouling. Of these fouling types, the fouling potential of organic matter in FO has not been given sufficient attention, in particular, when FO is applied to wastewater treatment. This paper aims to provide a comprehensive overview of FO membrane fouling for wastewater applications with a special focus on the identification of the major factors that lead to the unique properties of organic fouling in this filtration process. Based on the critical assessment of organic fouling formation and the governing mechanisms, proposals were advanced for future research aimed at the mitigation of FO membrane fouling to enhance process efficiency in wastewater applications.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
21
|
Abdullah N, Yusof N, Lau W, Jaafar J, Ismail A. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.029] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C. Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Ndiaye I, Vaudreuil S, Bounahmidi T. Forward Osmosis Process: State-Of-The-Art of Membranes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1622133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Issa Ndiaye
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| | - Sébastien Vaudreuil
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
| | - Tijani Bounahmidi
- Euro-Med Research Institute, Euro-Med University of Fes (UEMF), Fes, Morocco
- Laboratoires d’Analyse et Synthèse des Procédés industriels, Ecole Mohammadia d’Ingénieurs, Université Mohamed V-Rabat, Agdal Rabat, Morocco
| |
Collapse
|
24
|
Yang Q, Lau CH, Ge Q. Novel Ionic Grafts That Enhance Arsenic Removal via Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17828-17835. [PMID: 31002227 DOI: 10.1021/acsami.9b03991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current forward osmosis (FO) membranes are unsuitable for arsenic removal from water because of their poor arsenic selectivity. In this study, we designed and synthesized a series of novel imidazolium-based ionic liquids via one-step quaternization reactions and grafted these novel compounds on to conventional thin-film composite FO membranes for treatment of arsenic-containing water. The newly developed ionic membranes contained a functionalized selective polyamide layer grafted with either carboxylic acid/carboxylate or sulfonate groups that drastically enhanced membrane hydrophilicity and thus FO water permeation. Ionic membranes modified with sodium 1-ethanesulfonate-3-(3-aminopropyl) imidazolium bromide (NH2-IM-(CH2)2-SO3Na) outperformed pristine membranes with higher water recovery efficiency. Exceptional performance was achieved with this ionic membrane in FO arsenic removal with a water flux of 11.0 LMH and a rejection higher than 99.5% when 1000 ppm arsenic (HAsO42-) as the feed with a dilute NaCl solution (0.5 M) as the draw solution under the FO mode. Ionic membranes developed in this work facilitated FO for the treatment of arsenic-containing water while demonstrating its superiority over incumbent technologies with more efficient arsenic removal.
Collapse
Affiliation(s)
- Qiaoli Yang
- College of Environment and Resources , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Cher Hon Lau
- School of Engineering , The University of Edinburgh , Robert Stevenson Road, The King's Buildings , Edinburgh , EH9 3FB Scotland , U.K
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
25
|
Shi SJ, Pan YH, Wang SF, Dai ZW, Gu L, Wu QY. Aluminosilicate Nanotubes Embedded Polyamide Thin Film Nanocomposite Forward Osmosis Membranes with Simultaneous Enhancement of Water Permeability and Selectivity. Polymers (Basel) 2019; 11:E879. [PMID: 31091763 PMCID: PMC6572521 DOI: 10.3390/polym11050879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Nanocomposite membranes are strongly desired to break a trade-off between permeability and selectivity. This work reports new thin film nanocomposite (TFN) forward osmosis (FO) membranes by embedding aluminosilicate nanotubes (ANTs) into a polyamide (PA) rejection layer. The surface morphology and structure of the TFN FO membranes were carefully characterized by FTIR, XPS, FESEM and AFM. The ANTs incorporated PA rejection layers exhibited many open and broad "leaf-like" folds with "ridge-and-valley" structures, high surface roughness and relatively low cross-linking degree. Compared with thin film composite (TFC) membrane without ANTs, the TFN membrane with only 0.2 w/v% ANTs loading presented significantly improved FO water permeability, selectivity and reduced structural parameters. This promising performance can be mainly contributed to the special ANTs embedded PA rejection layer, where water molecules preferentially transport through the nanochannels of ANTs. Molecular dynamic simulation further proved that water molecules have much larger flux through the nanotubes of ANTs than sodium and chloride ions, which are attributed to the intrinsic hydrophilicity of ANTs and low external force for water transport. This work shows that these TFN FO membranes with ANTs decorated PA layer are promising in desalination applications due to their simultaneously enhanced permeability and selectivity.
Collapse
Affiliation(s)
- She-Ji Shi
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ye-Han Pan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shao-Fei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zheng-Wei Dai
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201; China.
| | - Qing-Yun Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Xiong S, Xu S, Phommachanh A, Yi M, Wang Y. Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3331-3341. [PMID: 30802043 DOI: 10.1021/acs.est.8b06628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyamide TFC membranes are widely applied in membrane-based water treatment but generally suffer various fouling problems. In this work, the layer-by-layer assembly of phytic acid (PA) and metal ions (M) is constructed on the surface TFC membrane for the first time, to improve the bio/organic fouling resistances and separation performance of TFC membranes simultaneously. The PA molecule with six phosphonic acid groups of strong chelation ability acts as the organic ligand, and the metal ion acts as the inorganic cross-linker, inducing the assembly of hydrophilic and antibacterial PA-M (Ag or Cu) complexes on the TFC membrane surface. Various characterizations including FTIR, XPS, SEM, AFM, and EDX are employed to confirm the successful and uniform modification of PA-M. FO performance of the PA-M modified TFC membranes, i.e., TFC_PA-Ag and TFC_PA-Cu, is optimized by varying PA concentration and assembly cycles, where the water flux can be improved by 57% and 68%, respectively, without compromising the membrane selectivity. Additionally, the PA-M modification improves the biofouling and organic fouling resistances of the TFC membrane remarkably, owing to the enhanced antibacterial ability and hydrophilicity. The modified TFC membranes are also proven to show the excellent stability by the quantitative release test.
Collapse
Affiliation(s)
- Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Anny Phommachanh
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , China
| |
Collapse
|
28
|
Influence of modifying interfacial polymerization compositions on the performance of composite forward osmosis hollow fiber membranes. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1730-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Chiao YH, Sengupta A, Chen ST, Hung WS, Lai JY, Upadhyaya L, Qian X, Wickramasinghe SR. Novel thin-film composite forward osmosis membrane using polyethylenimine and its impact on membrane performance. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1567552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taiwan
| | - Arijit Sengupta
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shu-Ting Chen
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taiwan
| | - Wei-Song Hung
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
31
|
Yang Z, Huang X, Ma XH, Zhou ZW, Guo H, Yao Z, Feng SP, Tang CY. Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
|
33
|
Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Wang Y, Fang Z, Zhao S, Ng D, Zhang J, Xie Z. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Adv 2018; 8:22469-22481. [PMID: 35539700 PMCID: PMC9081449 DOI: 10.1039/c8ra03166e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
A new type of polyamide thin-film composite forward osmosis (FO) membranes were prepared by controlling dopamine self-polymerization in the aqueous phase during interfacial polymerization. The as-prepared membranes were investigated by attenuated total reflection Fourier transform infrared, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy and water contact angle measurements. The influence of the dopamine self-polymerization degree with different polydopamine particle sizes on membrane morphologies and chemical properties was studied by regulating dopamine concentrations in the aqueous phase. FO performance of the membrane was evaluated under two different modes, i.e. active layer facing draw solution (AL-DS) and active layer facing feed solution (AL-FS). The optimized FO membranes achieved a doubly enhanced water flux (22.08 L m−2 h−1) compared with the control membrane without dopamine incorporation, and a half-reduced reverse salt flux (32.77 mmol m−2 h−1) with deionized water as the feed and 1 M NaCl as the draw in the AL-FS mode. The optimized FO membrane showed a significantly reduced structural parameter (176 μm) compared with the control membrane (635 μm), indicating the minimised internal concentration polarization. Moreover, the new FO membranes had less flux decline than the control membrane, suggesting the improved antifouling performance of the membrane. Incorporation of dopamine during interfacial polymerization can be an effective strategy to fabricate high-performance FO membranes with excellent antifouling properties. Incorporation of dopamine enhanced selectivity and antifouling properties of novel TFC polyamide FO membranes.![]()
Collapse
Affiliation(s)
- Yi Wang
- Water Industry and Environment Engineering Technology Research Centre
- Chongqing
- China
- CSIRO Manufacturing
- Clayton
| | - Zhendong Fang
- Water Industry and Environment Engineering Technology Research Centre
- Chongqing
- China
| | - Shuaifei Zhao
- Department of Environmental Sciences
- Macquarie University
- Sydney
- Australia
| | | | - Juan Zhang
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds
- Australia
| | | |
Collapse
|
35
|
Ma D, Han G, Peh SB, Chen SB. Water-Stable Metal–Organic Framework UiO-66 for Performance Enhancement of Forward Osmosis Membranes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03278] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dangchen Ma
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Gang Han
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bor Chen
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
36
|
Xia L, Andersen MF, Hélix-Nielsen C, McCutcheon JR. Novel Commercial Aquaporin Flat-Sheet Membrane for Forward Osmosis. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02368] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingling Xia
- Department
of Chemical and Biomolecular Engineering, Center for Environmental
Sciences and Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269-3222, United States
| | | | - Claus Hélix-Nielsen
- Aquaporin A/S Nymøllevej 78, 2800 Kongens Lyngby, Denmark
- Department
of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kongens Lyngby, Denmark
- Faculty
of Chemistry and Chemical Engineering, University of Maribor, Smetanova
ulica 17, SLO-2000 Maribor, Slovenia
| | - Jeffrey R. McCutcheon
- Department
of Chemical and Biomolecular Engineering, Center for Environmental
Sciences and Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269-3222, United States
| |
Collapse
|
37
|
Sun H, Tang B, Wu P. Development of Hybrid Ultrafiltration Membranes with Improved Water Separation Properties Using Modified Superhydrophilic Metal-Organic Framework Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21473-21484. [PMID: 28594542 DOI: 10.1021/acsami.7b05504] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are being intensively explored as filler materials for polymeric membranes primarily due to their high polymer affinity, large pore volumes, and alterable pore functionalities, but the development of MOF-based ultrafiltration (UF) membranes for water treatment lags behind. Herein, poly(sulfobetaine methacrylate) (PSBMA)-functionalized MOF UiO-66-PSBMA was developed, and incorporated into polysulfone (PSf) casting solution to fabricate novel hybrid UF membranes via phase-inversion method. The resultant UiO-66-PSBMA/PSf membrane exhibited significantly improved water flux (up to 602 L m-2 h-1), which was 2.5 times that of the pristine PSf membrane (240 L m-2 h-1) and 2 times that of UiO-66-NH2/PSf membrane (294 L m-2 h-1), whereas the rejection of UiO-66-PSBMA/PSf membrane was still maintained at a high level. Moreover, UiO-66-PSBMA/PSf membrane exhibited improved antifouling performance. The improvement of membrane performances could be attributed to the well-tailored properties of UiO-66-PSBMA. On one hand, the excellent dispersion and compatibility of UiO-66-PSBMA ensured the formation of a uniform structure with few defects. On the other hand, the superhydrophilicity of UiO-66-PSBMA could accelerate the exchange rate between solvent and nonsolvent, resulting in a more hydrophilic surface and a more porous structure. Besides, UiO-66-PSBMA nanoparticles in the thin layer provided additional flow paths for water permeation through their hydrophilic porous structure as well as the tiny interspace between PSf matrix. This study indicates the great application potential of UiO-66-PSBMA in fabricating hybrid UF membranes and provides a useful guideline to integrate other modified hydrophilic MOFs to design UF membranes for water treatment.
Collapse
Affiliation(s)
- Huazhen Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, PR China
| | - Beibei Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, PR China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, PR China
| |
Collapse
|
38
|
Ma D, Peh SB, Han G, Chen SB. Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal-Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7523-7534. [PMID: 28186405 DOI: 10.1021/acsami.6b14223] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Zirconiumv (IV)-carboxylate metal-organic framework (MOF) UiO-66 nanoparticles were successfully synthesized and incorporated in the polyamide (PA) selective layer to fabricate novel thin-film nanocomposite (TFN) membranes. Compared to unmodified pure polyamide thin-film composite (TFC) membranes, the incorporation of UiO-66 nanoparticles significantly changes the membrane morphology and chemistry, leading to an improvement of intrinsic separation properties due to the molecular sieving and superhydrophilic nature of UiO-66 particles. The best performing TFN-U2 (0.1 wt % particle loading) membrane not only shows a 52% increase of water permeability but also maintains salt rejection levels (∼95%) similar to the benchmark. The effects of UiO-66 loading on the forward osmosis (FO) performance were also investigated. Incorporation of 0.1 wt % UiO-66 produced a maximum water flux increase of 40% and 25% over the TFC control under PRO and FO modes, when 1 M NaCl was used as the draw solution against deionized water feed. Meanwhile, solute reverse flux was maintained at a relatively low level. In addition, TFN-U2 membrane displayed a relatively linear increase in FO water flux with increasing NaCl concentration up to 2.0 M, suggesting a slightly reduced internal concentration polarization effect. To our best knowledge, the current study is the first to consider implementation of Zr-MOFs (UiO-66) onto TFN-FO membranes.
Collapse
Affiliation(s)
- Dangchen Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Gang Han
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585, Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585, Singapore
| |
Collapse
|
39
|
You F, Xu Y, Yang X, Zhang Y, Shao L. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chem Commun (Camb) 2017; 53:6128-6131. [DOI: 10.1039/c7cc02411h] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni2+-polyphenol network was synthesized as a hydrophilic coating to achieve highly efficient nanofiltration membranes with an unconventional high flux for dye wastewater remediation.
Collapse
Affiliation(s)
- Fangjie You
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Yanchao Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
| |
Collapse
|