1
|
Gao J, Sun Y, Kang F, Guo F, He G, Wang H, Yang Z, Ma C, Jiang X, Xiao W. Amidoxime Modified UiO-66@PIM-1 Mixed-Matrix Membranes to Enhance CO 2 Separation and Anti-Aging Performance. MEMBRANES 2023; 13:781. [PMID: 37755203 PMCID: PMC10536640 DOI: 10.3390/membranes13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Mixed matrix membranes (MMMs) generally have some fatal defects, such as poor compatibility between the two phases leading to non-selective pores. In this work, PIM-1 was chosen as the polymer matrix, and UiO-66 modified with amidoxime (UiO-66-AO) was used as the filler to prepare the MMMs. In the MMMs, the amino and hydroxyl groups on UO-66-AO form a rich hydrogen bond network with the N and O atoms in the polymer PIM-1 chain to improve the compatibility between the polymer matrix and the filler. In addition, the selective adsorption of CO2 by the amidoxime group can promote the transport of CO2 in the membrane, which enhances the gas selectivity. The CO2 permeability and CO2/N2 selectivity of UiO-66-AO@PIM-1 MMMs are increased by 35.2% and 45.2% compared to pure PIM-1 membranes, reaching 7535.5 Barrer and 26.9, surpassing the Robeson Upper Bound (2008) and close to the 2019 Upper Bound. After 38 days of the aging experiment, the CO2 permeability is approximately 74% of the original. The results show that the addition of UiO-66-AO has an obvious effect on improving the aging properties of the membrane. The UiO-66-AO@PIM-1 MMMs have a bright prospect for CO2 separation in the future.
Collapse
Affiliation(s)
- Jiaming Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Yongchao Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Feifei Kang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Fei Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Hanli Wang
- Shandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256401, China; (H.W.); (Z.Y.)
| | - Zhendong Yang
- Shandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256401, China; (H.W.); (Z.Y.)
| | - Canghai Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China; (J.G.); (Y.S.); (F.K.); (F.G.); (C.M.); (X.J.)
| |
Collapse
|
2
|
Aloraini S, Mathias M, Crone J, Bryce K, Yu M, Kirk RA, Ahmad MZ, Asuquo ED, Rico-Martínez S, Volkov AV, Foster AB, Budd PM. Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation. ACS APPLIED POLYMER MATERIALS 2023; 5:1145-1158. [PMID: 36817336 PMCID: PMC9926464 DOI: 10.1021/acsapm.2c01600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane with tetrafluoroterephthalonitrile conducted at a high set temperature (160 °C) under conditions, such as high dilution, that lead to a lower-temperature profile over the course of the reaction. Membranes of PIM-1 and PIM-Py crosslinked with palladium acetate are sufficiently stable in organic solvents for use in the recovery of toluene from its mixture with dimethyl sulfoxide (DMSO) by pervaporation at 65 °C. With both PIM-1 and PIM-Py membranes, pervaporation gives high toluene/DMSO separation factors (around 10 with a 77 vol % toluene feed). Detailed analysis shows that the membranes themselves are slightly selective for DMSO and it is the high driving force for toluene evaporation that drives the separation.
Collapse
Affiliation(s)
- Sulaiman Aloraini
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass52571, Saudi Arabia
| | - Michael Mathias
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Jessica Crone
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Kurtis Bryce
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Ming Yu
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC3010, Australia
| | - Richard A. Kirk
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Mohd Zamidi Ahmad
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Edidiong D. Asuquo
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | | | - Alexey V. Volkov
- A.
V. Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Avenue, Moscow119991, Russian
Federation
| | - Andrew B. Foster
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Peter M. Budd
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
3
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Peng P, Lan Y, Xu A, Liu M. Enhanced ethanol pervaporative selectivity of polydimethylsiloxane membranes by incorporating with graphene oxide@silica core‐shell structure. J Appl Polym Sci 2022. [DOI: 10.1002/app.53449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
- Science and Technology on Sanming Institute of Fluorochemical Industry Sanming China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Amei Xu
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Mengyao Liu
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| |
Collapse
|
5
|
Qiu B, Alberto M, Mohsenpour S, Foster AB, Ding S, Guo Z, Xu S, Holmes SM, Budd PM, Fan X, Gorgojo P. Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Jafari A, Mortaheb HR, Gallucci F. Plasma treatment for enhanced functionalization of graphene nanosheets by octadecylamine. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Golubev GS, Volkov VV, Borisov IL, Volkov AV. High free volume polymers for pervaporation. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
9
|
Peng P, Lan Y, Zhang Q, Luo J. Application of graphene structure/polyurethane membrane in pervaporative desulfurization. J Appl Polym Sci 2022. [DOI: 10.1002/app.51514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
- Key Laboratory of Biobased Material Science & Technology (Education Ministry) Northeast Forestry University Harbin China
| | - Qinman Zhang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Juxiang Luo
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| |
Collapse
|
10
|
Butt TH, Tamime R, Budd PM, Harrison WJ, Shamair Z, Khan AL. Enhancing the organophilic separations with mixed matrix membranes of PIM-1 and bimetallic Zn/Co-ZIF filler. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Luque-Alled JM, Tamaddondar M, Foster AB, Budd PM, Gorgojo P. PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55517-55533. [PMID: 34756006 DOI: 10.1021/acsami.1c15640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PIM-1/holey graphene oxide (GO) mixed matrix membranes (MMMs) have been prepared and their gas separation performance for CO2/CH4 mixtures assessed. Nanopores have been created in the basal plane of gas-impermeable GO by chemical etching reactions, and the resulting holey flakes have been further chemically functionalized, either with octadecylamine (ODA) or with PIM-1 moieties, to aid their dispersion in PIM-1. It is found that nanopores barely promote gas transport through the graphene-like nanofiller for fresh membranes (tested right after preparation); however, the prepared hybrid PIM-1/holey GO membranes exhibit higher CO2 permeability and CO2/CH4 selectivity than the pure polymer membrane 150 days after preparation and 13 and 15% higher CO2 permeability for filler contents of 0.1% of octadecylamine-functionalized holey GO and 1% of (PIM-1)-functionalized holey GO, respectively. The most significant improvement is observed for the mitigation of physical aging, as MMMs using 10% of (PIM-1)-functionalized holey GO nanofillers are capable of maintaining up to 70% of their initial CO2 permeability after 150 days, whereas only 53% is kept for pure PIM-1 after the same period. The gas permeability of the nanofiller has been rationalized with the aid of the Maxwell-Wagner-Sillars equation.
Collapse
Affiliation(s)
- Jose Miguel Luque-Alled
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marzieh Tamaddondar
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew B Foster
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Contreras-Martínez J, Mohsenpour S, Ameen AW, Budd PM, García-Payo C, Khayet M, Gorgojo P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42635-42649. [PMID: 34469119 DOI: 10.1021/acsami.1c09112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and commercial PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Collapse
Affiliation(s)
- Jorge Contreras-Martínez
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Sajjad Mohsenpour
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Ahmed W Ameen
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com No 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
14
|
Towards a High Rejection Desalination Membrane: The Confined Growth of Polyamide Nanofilm Induced by Alkyl-Capped Graphene Oxide. MEMBRANES 2021; 11:membranes11070488. [PMID: 34209924 PMCID: PMC8304696 DOI: 10.3390/membranes11070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite (TFN) membrane reached 59.6 L m-2 h-1, which was approximately 17% more than the virgin TFC membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl) achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the TFC membrane without confined growth.
Collapse
|
15
|
Lee JY, Zhan JY, Ang MBMY, Yeh SC, Tsai HA, Jeng RJ. Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
17
|
Luque-Alled JM, Ameen AW, Alberto M, Tamaddondar M, Foster AB, Budd PM, Vijayaraghavan A, Gorgojo P. Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118902] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:10. [PMID: 33413629 PMCID: PMC7791809 DOI: 10.1186/s13068-020-01857-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. RESULTS This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. CONCLUSIONS Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future.
Collapse
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
- Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, 150040, China.
| | - Lun Liang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Kemeng Jia
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
19
|
Zhang H, Yang J, Li T, Ji X, Xu Z, Zhu Y, Liu L. Alkyl Chain Grafted-Reduced Graphene Oxide Membrane for Effective Separation of Water/Alcohol Miscible Mixtures. Front Chem 2020; 8:598562. [PMID: 33344418 PMCID: PMC7744741 DOI: 10.3389/fchem.2020.598562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
Separation of water/alcohol miscible mixtures via direct filtration only under gravity is a great challenge. Here, different alkyl chain grafted-reduced graphene oxide (alkyl-RGO) is synthesized and characterized. The hydrophobic alkyl chains can considerably modify the oil-wettability of the membranes and avoid water permeation. The alkyl-RGO membrane obtained by vacuum filtration can separate water/oil immiscible mixtures. Importantly, water/alcohol miscible mixtures could also be separated solely under gravity, where alcohols efficiently permeate the alkyl-RGO membrane while water is prevented through the membrane. The separation efficiency of C12H-RGO membrane reaches up to about 0.04 vol% of water content for the case of separating an n-propanol/water (90:10 v/v) mixture with high n-propanol permeability of approx. 685 mL m−2 h−1. Molecular simulations indicate that the selective absorption ability and diffusion rate also affect water/alcohol separation. The alkyl-RGO membranes via gravity driven filtration can extend the applications of separation of water/alcohol miscible mixtures.
Collapse
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianbo Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ting Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yaling Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Libin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
20
|
Ye H, Zhang C, Huo C, Zhao B, Zhou Y, Wu Y, Shi S. Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1821059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong Ye
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Chaowei Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Bingyu Zhao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yuanhao Zhou
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yichen Wu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Shengpeng Shi
- Beijing Research Institute of Chemical Industry, Beijing, China
| |
Collapse
|
21
|
Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Yang G, Xie Z, Cran M, Wu C, Gray S. Dimensional Nanofillers in Mixed Matrix Membranes for Pervaporation Separations: A Review. MEMBRANES 2020; 10:E193. [PMID: 32825195 PMCID: PMC7559426 DOI: 10.3390/membranes10090193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic-inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure-performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| |
Collapse
|
23
|
|
24
|
Majooni Y, Mortaheb HR, Khodadadi Dizaji A. Enhancement in pervaporative performance of PDMS membrane for separation of styrene from wastewater by hybridizing with reduced graphene oxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110189. [PMID: 32148265 DOI: 10.1016/j.jenvman.2020.110189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The removal of styrene from wastewater by pervaporation was investigated by using composite PDMS membranes filled with reduced graphene oxide on PES support layers. Graphene oxide was synthesized through modified Hummers' method and then chemically reduced. The filler was characterized by TEM, SEM, XRD, and AFM. The top layers with different PDMS molecular weights were cast on the PES supports, which were prepared by phase inversion method. The characterizations of prepared membranes were investigated by SEM, AFM, contact angle measurement, TGA, and DSC. It was observed that presence of the filler in the polymeric matrix controls the swelling of the membrane and enhances its solubility parameter in favor of styrene. Moreover, it significantly improves the thermal stability of the membranes. The mechanism of separation in the process was found to be affected mainly by enhancing in the membrane's solubility rather than in its diffusivity. The pervaporative performance of prepared membranes showed their great affinity toward styrene so that the separation factor of the optimum membrane (M2/S) was increased about 250% (600.4 in comparison to 241.4 for the unfilled membrane) while its total flux was decreased from 772.5 g m-2.h-1for the unfilled membrane to 321.9 g m-2.h-1. Increasing the molecular weight of PDMS lowered the optimal rGO content due to the complexity of the diffusion path and occupation of free volume by longer polymer chains. Accordingly, a lower total flux (124.7 g m-2.h-1 for high MW compared to 718.0 g m-2.h-1 for low MW) and higher separation factor (822.5 for high MW compared to 230.8 for low MW) were yielded for the same filler content (0.1 wt% rGO).
Collapse
Affiliation(s)
- Y Majooni
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box: 14335-186, Iran
| | - H R Mortaheb
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, P.O. Box: 14335-186, Iran.
| | - A Khodadadi Dizaji
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| |
Collapse
|
25
|
Lee JY, Park H, Lee JS, Yoon S, Lee JH. Biphenyl-based covalent triazine framework-incorporated polydimethylsiloxane membranes with high pervaporation performance for n-butanol recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Luque-Alled JM, Abdel-Karim A, Alberto M, Leaper S, Perez-Page M, Huang K, Vijayaraghavan A, El-Kalliny AS, Holmes SM, Gorgojo P. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115836] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Molefe LY, Musyoka NM, Ren J, Langmi HW, Mathe M, Ndungu PG. Polymer-Based Shaping Strategy for Zeolite Templated Carbons (ZTC) and Their Metal Organic Framework (MOF) Composites for Improved Hydrogen Storage Properties. Front Chem 2019; 7:864. [PMID: 31921782 PMCID: PMC6927935 DOI: 10.3389/fchem.2019.00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Porous materials such as metal organic frameworks (MOFs), zeolite templated carbons (ZTC), and some porous polymers have endeared the research community for their attractiveness for hydrogen (H2) storage applications. This is due to their remarkable properties, which among others include high surface areas, high porosity, tunability, high thermal, and chemical stability. However, despite their extraordinary properties, their lack of processability due to their inherent powdery nature presents a constraining factor for their full potential for applications in hydrogen storage systems. Additionally, the poor thermal conductivity in some of these materials also contributes to the limitations for their use in this type of application. Therefore, there is a need to develop strategies for producing functional porous composites that are easy-to-handle and with enhanced heat transfer properties while still retaining their high hydrogen adsorption capacities. Herein, we present a simple shaping approach for ZTCs and their MOFs composite using a polymer of intrinsic microporosity (PIM-1). The intrinsic characteristics of the individual porous materials are transferred to the resulting composites leading to improved processability without adversely altering their porous nature. The surface area and hydrogen uptake capacity for the obtained shaped composites were found to be within the range of 1,054–2,433 m2g−1 and 1.22–1.87 H2 wt. %, respectively at 1 bar and 77 K. In summary, the synergistic performance of the obtained materials is comparative to their powder counterparts with additional complementing properties.
Collapse
Affiliation(s)
- Lerato Y Molefe
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicholas M Musyoka
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Jianwei Ren
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Henrietta W Langmi
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Mkhulu Mathe
- HySA Infrastructure Centre of Competence, Energy Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Patrick G Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
28
|
Ma H, Xie Q, Wu C, Shen L, Hong Z, Zhang G, Lu Y, Shao W. A facile approach to enhance performance of PVDF-matrix nanocomposite membrane via manipulating migration behavior of graphene oxide. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Ismail N, El-Gendi A, Essawy H, El-Din LN, Abed K, Ahmed A. Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
New formulations of cellulose acetate (CA) membrane with graphene (G)/graphene oxide (GO) are suggested and investigated in the present work. This study is intended to find a wide range of conditions for fabricating CA membranes in the presence of some additions of graphene (G), and graphene oxide (GO). The membrane is prepared by phase inversion process. Microscopic investigations for graphene (G), graphene oxide (GO), and prepared membrane were performed by high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The mechanical properties of prepared membranes are determined and evaluated. Permeation tests were performed using natural seawater and simulated seawater to check the prepared membrane performance. The results presented that the permeate flux of M25% CA membranes containing 0.01 wt.% G is the highest flux (57–74 l/m2 h) compared with the neat CA membrane, and the 0.01 wt.% GO-based membranes, while the GO-based membranes were comparable as the neat CA membrane at operating pressures (30–35 bar) and with a feed of 35 g/l NaCl solution. The results showed a remarkable salt rejection of simulated seawater of 95%, and natural seawater with a feed from the Mediterranean Sea displayed 90% salt rejection and accepted pure water flux as well.
Collapse
|
30
|
Kirk RA, Putintseva M, Volkov A, Budd PM. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Xu S, Zhang H, Yu F, Zhao X, Wang Y. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Alberto M, Bhavsar R, Luque-Alled JM, Vijayaraghavan A, Budd PM, Gorgojo P. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Lan Y, Peng P. Preparation of polymer of intrinsic microporosity composite membranes and their applications for butanol recovery. J Appl Polym Sci 2018. [DOI: 10.1002/app.46912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yongqiang Lan
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering, Sanming University; Sanming Fujian 365004 China
- Science and Technology; Sanming Institute of the Fluorochemical Industry; Sanming Fujian 365004 China
| | - Ping Peng
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering, Sanming University; Sanming Fujian 365004 China
| |
Collapse
|
35
|
Lan Y, Peng P, Chen P. Preparation of polymers of intrinsic microporosity composite membranes incorporated with modified nano-fumed silica for butanol separation. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongqiang Lan
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
- Science and Technology on Sanming Institute of Fluorochemical Industry; Sanming Fujian China
| | - Ping Peng
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
| | - Ping Chen
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
| |
Collapse
|
36
|
Leaper S, Abdel-Karim A, Faki B, Luque-Alled JM, Alberto M, Vijayaraghavan A, Holmes SM, Szekely G, Badawy MI, Shokri N, Gorgojo P. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
|