1
|
Wu N, Brahmi Y, Colin A. Fluidics for energy harvesting: from nano to milli scales. LAB ON A CHIP 2023; 23:1034-1065. [PMID: 36625144 DOI: 10.1039/d2lc00946c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A large amount of untapped energy sources surrounds us. In this review, we summarize recent works of water-based energy harvesting systems with operation scales ranging from miniature systems to large scale attempts. We focus particularly on the triboelectric energy, which is produced when a liquid and a solid come into contact, and on the osmotic energy, which is released when salt water and fresh water are mixed. For both techniques we display the state of the art understanding (including electrical charge separation, electro-osmotic currents and induced currents) and the developed devices. A critical discussion of present works confirms the significant progress of these water-based energy harvesting systems in all scales. However, further efforts in efficiency and performance amelioration are expected for these technologies to accelerate the industrialization and commercialization procedure.
Collapse
Affiliation(s)
- Nan Wu
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Youcef Brahmi
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Annie Colin
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| |
Collapse
|
2
|
Solonchenko K, Kirichenko A, Kirichenko K. Stability of Ion Exchange Membranes in Electrodialysis. MEMBRANES 2022; 13:52. [PMID: 36676859 PMCID: PMC9866250 DOI: 10.3390/membranes13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
During electrodialysis the ion exchange membranes are affected by such factors as passage of electric current, heating, tangential flow of solution and exposure to chemical agents. It can potentially cause the degradation of ion exchange groups and of polymeric backbone, worsening the performance of the process and necessitating the replacement of the membranes. This article aims to review how the composition and the structure of ion exchange membranes change during the electrodialysis or the studies imitating it.
Collapse
Affiliation(s)
- Ksenia Solonchenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Anna Kirichenko
- Department of Electric Engineering, Thermotechnics, Renewable Energy Sources, Faculty of Energetics, Kuban State Agrarian University named after I.T. Trubilin, 13 Kalinina St., 350004 Krasnodar, Russia
| | - Ksenia Kirichenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
3
|
Wang H, Yan J, Song W, Jiang C, Wang Y, Xu T. Ion exchange membrane related processes towards carbon capture, utilization and storage: Current trends and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Facile fabrication of carbon nanotube embedded pore filling ion exchange membrane with high ion exchange capacity and permselectivity for high-performance reverse electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
8
|
Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.
Collapse
|
9
|
Current progress in membranes for fuel cells and reverse electrodialysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant. ENERGIES 2021. [DOI: 10.3390/en14113252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the technologies involved in converting saline gradient energy (SGE) are rapidly developing, few studies have focused on evaluating possible environmental impacts. In this work, the environmental impacts of a hypothetical 50 kW RED plant installed in La Carbonera Lagoon, Yucatan, Mexico, are addressed. The theoretical support was taken from a literature review and analysis of the components involved in the pressure retarded osmosis (PRO) and reverse electrodialysis (RED) technologies. The study was performed under a three-stage scheme (construction, operation, and dismantling) for which the stress-inducing factors that can drive changes in environmental elements (receptors) were determined. In turn, the possible modifications to the dynamics of the ecosystem (responses) were assessed. Since it is a small-scale energy plant, only local impacts are expected. This study shows that a well-designed SGE plant can have a low environmental impact and also be of benefit to local ecotourism and ecosystem conservation while contributing to a clean, renewable energy supply. Moreover, the same plant in another location in the same system could lead to huge modifications to the flows and resident times of the coastal lagoon water, causing great damage to the biotic and abiotic environment.
Collapse
|
11
|
Li Y, Shi S, Cao H, Cao R. Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Pintossi D, Saakes M, Borneman Z, Nijmeijer K. Tailoring the Surface Chemistry of Anion Exchange Membranes with Zwitterions: Toward Antifouling RED Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18348-18357. [PMID: 33827211 PMCID: PMC8153547 DOI: 10.1021/acsami.1c02789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fouling is a pressing issue for harvesting salinity gradient energy with reverse electrodialysis (RED). In this work, antifouling membranes were fabricated by surface modification of a commercial anion exchange membrane with zwitterionic layers. Either zwitterionic monomers or zwitterionic brushes were applied on the surface. Zwitterionic monomers were grafted to the surface by deposition of a polydopamine layer followed by an aza-Michael reaction with sulfobetaine. Zwitterionic brushes were grafted on the surface by deposition of polydopamine modified with a surface initiator for subsequent atom transfer radical polymerization to obtain polysulfobetaine. As expected, the zwitterionic layers did increase the membrane hydrophilicity. The antifouling behavior of the membranes in RED was evaluated using artificial river and seawater and sodium dodecylbenzenesulfonate as the model foulant. The zwitterionic monomers are effective in delaying the fouling onset, but the further build-up of the fouling layer is hardly affected, resulting in similar power density losses as for the unmodified membranes. Membranes modified with zwitterionic brushes show a high potential for application in RED as they not only delay the onset of fouling but they also slow down the growth of the fouling layer, thus retaining higher power density outputs.
Collapse
Affiliation(s)
- Diego Pintossi
- Wetsus,
European centre of excellence for sustainable water technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michel Saakes
- Wetsus,
European centre of excellence for sustainable water technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| |
Collapse
|
13
|
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increasing severity of global water scarcity, a myriad of scientific activities is directed toward advancing brackish water desalination and wastewater remediation technologies. Flow-electrode capacitive deionization (FCDI), a newly developed electrochemically driven ion removal approach combining ion-exchange membranes and flowable particle electrodes, has been actively explored over the past seven years, driven by the possibility of energy-efficient, sustainable, and fully continuous production of high-quality fresh water, as well as flexible management of the particle electrodes and concentrate stream. Here, we provide a comprehensive overview of current advances of this interesting technology with particular attention given to FCDI principles, designs (including cell architecture and electrode and separator options), operational modes (including approaches to management of the flowable electrodes), characterizations and modeling, and environmental applications (including water desalination, resource recovery, and contaminant abatement). Furthermore, we introduce the definitions and performance metrics that should be used so that fair assessments and comparisons can be made between different systems and separation conditions. We then highlight the most pressing challenges (i.e., operation and capital cost, scale-up, and commercialization) in the full-scale application of this technology. We conclude this state-of-the-art review by considering the overall outlook of the technology and discussing areas requiring particular attention in the future.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyu Li
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
14
|
Hansima MACK, Makehelwala M, Jinadasa KBSN, Wei Y, Nanayakkara KGN, Herath AC, Weerasooriya R. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. CHEMOSPHERE 2021; 263:127951. [PMID: 33297020 DOI: 10.1016/j.chemosphere.2020.127951] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Electrodialysis self-reversal (EDR) technology has attracted in the treatment of water for domestic and industrial uses. The self-reversal consists of a frequent reversal of the direction of current between the EDR-cell electrodes to combat fouling of ion exchange membranes (IEMs). Irrespective of the EDR self-cleaning processes, the role of natural organic matter and their complexing ability with metal ions on IEMs fouling is partially understood. The objective of this review is to identify the research gaps present in the elucidation of IEM fouling routes. The common IEMs' foulants are identified, and several fouling mechanisms are briefly discussed. The effectiveness of self-cleaning mechanisms to reduce IEMs fouling is also be discussed. Dissolved organic carbon (DOC) possesses high chelation which forms metal complexes with di and trivalent cations found in water. The role of ternary complexes, e.g. M2+/3+-DOC and membrane surface, on membrane fouling via surface bridging, are also addressed. Finally, mitigation methods of IEMs membrane fouling are also discussed.
Collapse
Affiliation(s)
- M A C K Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Madhubhashini Makehelwala
- NSF Project, Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Yuansong Wei
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ajith C Herath
- Department of Chemical Sciences, Rajarata University of Sri Lanka, Mihinthale, 50300, Sri Lanka
| | - Rohan Weerasooriya
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| |
Collapse
|
15
|
Kozmai A, Sarapulova V, Sharafan M, Melkonian K, Rusinova T, Kozmai Y, Pismenskaya N, Dammak L, Nikonenko V. Electrochemical Impedance Spectroscopy of Anion-Exchange Membrane AMX-Sb Fouled by Red Wine Components. MEMBRANES 2020; 11:2. [PMID: 33374918 PMCID: PMC7821933 DOI: 10.3390/membranes11010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
The broad possibilities of electrochemical impedance spectroscopy for assessing the capacitance of interphase boundaries; the resistance and thickness of the foulant layer were shown by the example of AMX-Sb membrane contacted with red wine from one side and 0.02 M sodium chloride solution from the other side. This enabled us to determine to what extent foulants affect the electrical resistance of ion-exchange membranes, the ohmic resistance and the thickness of diffusion layers, the intensity of water splitting, and the electroconvection in under- and over-limiting current modes. It was established that short-term (10 h) contact of the AMX-Sb membrane with wine reduces the water-splitting due to the screening of fixed groups on the membrane surface by wine components. On the contrary, biofouling, which develops upon a longer membrane operation, enhances water splitting, due to the formation of a bipolar structure on the AMX-Sb surface. This bipolar structure is composed of a positively charged surface of anion-exchange membrane and negatively charged outer membranes of microorganisms. Using optical microscopy and microbiological analysis, it was found that more intense biofouling is observed on the AMX-Sb surface, that has not been in contacted with wine.
Collapse
Affiliation(s)
- Anton Kozmai
- Membrane Institute, Kuban State University, 149 Stavropolskaya Street, 350040 Krasnodar, Russia; (V.S.); (M.S.); (N.P.); (V.N.)
| | - Veronika Sarapulova
- Membrane Institute, Kuban State University, 149 Stavropolskaya Street, 350040 Krasnodar, Russia; (V.S.); (M.S.); (N.P.); (V.N.)
| | - Mikhail Sharafan
- Membrane Institute, Kuban State University, 149 Stavropolskaya Street, 350040 Krasnodar, Russia; (V.S.); (M.S.); (N.P.); (V.N.)
| | - Karina Melkonian
- Central Research Laboratory, Kuban State Medical University, 4 Sedina Street, 350063 Krasnodar, Russia; (K.M.); (T.R.); (Y.K.)
| | - Tatiana Rusinova
- Central Research Laboratory, Kuban State Medical University, 4 Sedina Street, 350063 Krasnodar, Russia; (K.M.); (T.R.); (Y.K.)
| | - Yana Kozmai
- Central Research Laboratory, Kuban State Medical University, 4 Sedina Street, 350063 Krasnodar, Russia; (K.M.); (T.R.); (Y.K.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya Street, 350040 Krasnodar, Russia; (V.S.); (M.S.); (N.P.); (V.N.)
| | - Lasaad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182 CNRS, Université Paris-Est, 2 Rue Henri Dunant, 94320 Thiais, France;
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya Street, 350040 Krasnodar, Russia; (V.S.); (M.S.); (N.P.); (V.N.)
| |
Collapse
|
16
|
Golubenko D, Yaroslavtsev A. Development of surface-sulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. MEMBRANES 2020; 10:membranes10080160. [PMID: 32707798 PMCID: PMC7463669 DOI: 10.3390/membranes10080160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/13/2023]
Abstract
Reverse electrodialysis (RED) technology represents a promising electro-membrane process for renewable energy harvesting from aqueous streams with different salinity. However, the performance of the key components of the system, that is, the ion exchange membranes, is limited by both the presence of multivalent ions and fouling phenomena, thus leading to a reduced generated net power density. In this context, the behavior of anion exchange membranes (AEMs) in RED systems is more severely affected, due to the undesirable interactions between their positively charged fixed groups and, mostly negatively charged, foulant materials present in natural streams. Therefore, controlling both the monovalent anion permselectivity and the membrane surface hydrophilicity is crucial. In this respect, different surface modification procedures were considered in the literature, to enhance the above-mentioned properties. This review reports and discusses the currently available approaches for surface modifications of AEMs, such as graft polymerization, dip coating, and layer-by-layer, among others, mainly focusing on preparing monovalent permselective AEMs with antifouling characteristics, but also considering hydrophilicity aspects and identifying the most promising modifying agents to be utilized. Thus, the present study aimed at providing new insights for the further design and development of selective, durable, and cost-effective modified AEMs for an enhanced RED process performance, which is indispensable for a practical implementation of this electro-membrane technology at an industrial scale.
Collapse
|
18
|
Merino-Garcia I, Kotoka F, Portugal CA, Crespo JG, Velizarov S. Characterization of Poly(Acrylic) Acid-Modified Heterogenous Anion Exchange Membranes with Improved Monovalent Permselectivity for RED. MEMBRANES 2020; 10:membranes10060134. [PMID: 32604781 PMCID: PMC7345084 DOI: 10.3390/membranes10060134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/03/2022]
Abstract
The performance of anion-exchange membranes (AEMs) in Reverse Electrodialysis is hampered by both presence of multivalent ions and fouling phenomena, thus leading to reduced net power density. Therefore, we propose a monolayer surface modification procedure to functionalize Ralex-AEMs with poly(acrylic) acid (PAA) in order to (i) render a monovalent permselectivity, and (ii) minimize organic fouling. Membrane surface modification was carried out by putting heterogeneous AEMs in contact with a PAA-based aqueous solution for 24 h. The resulting modified membranes were firstly characterized by contact angle, water uptake, ion exchange capacity, fixed charge density, and swelling degree measurements, whereas their electrochemical responses were evaluated through cyclic voltammetry. Besides, their membrane electro-resistance was also studied via electrochemical impedance spectroscopy analyses. Finally, membrane permselectivity and fouling behavior in the presence of humic acid were evaluated through mass transport experiments using model NaCl containing solutions. The use of modified PAA-AEMs resulted in a significantly enhanced monovalent permselectivity (sulfate rejection improved by >35%) and membrane hydrophilicity (contact angle decreased by >15%) in comparison with the behavior of unmodified Ralex-AEMs, without compromising the membrane electro-resistance after modification, thus demonstrating the technical feasibility of the proposed membrane modification procedure. This study may therefore provide a feasible way for achieving an improved Reverse Electrodialysis process efficiency.
Collapse
|
19
|
Han JH, Jeong N, Kim CS, Hwang KS, Kim H, Nam JY, Jwa E, Yang S, Choi J. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode. WATER RESEARCH 2019; 166:115078. [PMID: 31542547 DOI: 10.1016/j.watres.2019.115078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
When operating reverse electrodialysis (RED) with several hundreds of cell pairs, a large stack voltage of more than 10 V facilitates water electrolysis, even when redox couples are employed for the electrode reaction. Upon feeding natural water containing multivalent ions, ion crossover through a shielding membrane causes inorganic scaling around the cathode and the interior of the membrane stack, due to the combination with the hydroxide ions produced via water reduction. In this work, we introduce a bipolar membrane (BPM) as a shielding membrane at the cathode to suppress inorganic precipitation. Water splitting in the bilayer structure of the BPM can block the ions diffusing from the catholyte and the feed solution, maintaining the current density. To evaluate the effect of the BPM on the inorganic precipitates, diluted sea salt solution is allowed to flow through the outermost feed channel near the cathode, in order to maintain as large a stack voltage as possible, which is important to induce water splitting in the BPM when incorporated into an RED stack of 100 cell pairs. We measure the electric power of the RED according to the arrangement of the BPM and compare it with that of conventional RED. The degree of inorganic scaling is also compared according to the kind of shielding membrane used (anion exchange membrane, cation exchange membrane, and BPM (Neosepta or Fumasep)). The BPM (Neosepta) shows the best performance for suppressing the formation of precipitates. It can hence be used to design a highly stable electrode system for long-term operation of a large-scale RED feeding natural water.
Collapse
Affiliation(s)
- Ji-Hyung Han
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea.
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Chan-Soo Kim
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Kyo Sik Hwang
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Hanki Kim
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - SeungCheol Yang
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea; School of Materials Science and Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, South Korea
| | - Jiyeon Choi
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| |
Collapse
|
20
|
Vanoppen M, van Vooren T, Gutierrez L, Roman M, Croué LJP, Verbeken K, Philips J, Verliefde A. Secondary treated domestic wastewater in reverse electrodialysis: What is the best pre-treatment? Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Mei Y, Liu L, Lu YC, Tang CY. Reverse Electrodialysis Chemical Cell for Energy Harvesting from Controlled Acid-Base Neutralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4640-4647. [PMID: 30916548 DOI: 10.1021/acs.est.8b06361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a novel reverse electrodialysis (RED) chemical cell that integrates RED with acid/base neutralization. This RED neutralization process (REDn) approximately doubled the power density compared to a conventional RED stack (REDc), thanks to the additional salinity gradients established by H+ and OH- ions as a result of the neutralization reaction. Detailed analysis shows that the power performance, i.e., the open circuit voltage and power density, of the REDn cell was greatly limited by concentration polarization and uphill transport of ions. Addressing these issues could potentially lead to an order of magnitude improvement in power density as predicted by the Nernst equation. The current study provides a simple strategy for effectively extracting energy from the neutralization of waste acid and base solutions. Future studies shall further explore the treatment of acid mine drainage and landfill leachate with the RED chemical cell as well as its extension to a wider range of reactions.
Collapse
Affiliation(s)
- Ying Mei
- Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong Special Administrative Region , P. R. China
| | - Lei Liu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering , The Chinese University of Hong Kong , Shatin, New Territiories, Hong Kong Special Administrative Region , P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering , The Chinese University of Hong Kong , Shatin, New Territiories, Hong Kong Special Administrative Region , P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong Special Administrative Region , P. R. China
| |
Collapse
|
22
|
Electrode system for large-scale reverse electrodialysis: water electrolysis, bubble resistance, and inorganic scaling. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Luque Di Salvo J, Cosenza A, Tamburini A, Micale G, Cipollina A. Long-run operation of a reverse electrodialysis system fed with wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:871-887. [PMID: 29660712 DOI: 10.1016/j.jenvman.2018.03.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main detrimental factors of system performance. Pressure drops increase was related to the physical obstruction of the feed channels defined by the spacers, while membrane fouling was related to the adsorption of foulants over the membrane surfaces. In order to manage channels partial clogging and fouling, different kinds of easily implemented in situ backwashings (i.e. neutral, acid, alkaline) were adopted, without the need for an abrupt interruption of the RED unit operation. The application of periodic ElectroDialysis (ED) pulses is also tested as fouling prevention strategy. The results collected suggest that RED can be used to produce electric power by unworthy wastewaters, but additional studies are still needed to characterize better membrane fouling and further improve system performance with these solutions.
Collapse
Affiliation(s)
- Javier Luque Di Salvo
- Dipartimento dell'Innovazione Industriale e Digitale - Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università di Palermo (UNIPA) - viale delle Scienze Ed.6, 90128 Palermo, Italy
| | - Alessandro Cosenza
- Dipartimento dell'Innovazione Industriale e Digitale - Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università di Palermo (UNIPA) - viale delle Scienze Ed.6, 90128 Palermo, Italy
| | - Alessandro Tamburini
- Dipartimento dell'Innovazione Industriale e Digitale - Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università di Palermo (UNIPA) - viale delle Scienze Ed.6, 90128 Palermo, Italy.
| | - Giorgio Micale
- Dipartimento dell'Innovazione Industriale e Digitale - Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università di Palermo (UNIPA) - viale delle Scienze Ed.6, 90128 Palermo, Italy
| | - Andrea Cipollina
- Dipartimento dell'Innovazione Industriale e Digitale - Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università di Palermo (UNIPA) - viale delle Scienze Ed.6, 90128 Palermo, Italy
| |
Collapse
|
24
|
Mei Y, Yao Z, Ji L, Toy PH, Tang CY. Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Jiang S, Ladewig BP. High Ion-Exchange Capacity Semihomogeneous Cation Exchange Membranes Prepared via a Novel Polymerization and Sulfonation Approach in Porous Polypropylene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38612-38620. [PMID: 29028302 DOI: 10.1021/acsami.7b13076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Semihomogeneous cation exchange membranes with superior ion exchange capacity (IEC) were synthesized via a novel polymerization and sulfonation approach in porous polypropylene support. The IEC of membranes could reach up to 3 mmol/g because of high mass ratio of functional polymer to membrane support. Especially, theoretical IEC threshold value agreed well with experimental threshold value, indicating that IEC could be specifically designed without carrying out extensive experiments. Also, sulfonate groups were distributed both on membrane surface and across the membranes, which corresponded well with high IEC of the synthesized membranes. In addition, the semifinished membrane showed hydrophobic property because of the formation of polystyrene. In contrast, the final membranes demonstrated super hydrophilic property, indicating the adequate sulfonation of polystyrene. Furthermore, when sulfonation reaction time increased, the conductivity of membranes also showed a tendency to increase, revealing the positive relationship between conductivity and IEC. Finally, the final membranes showed sufficient thermal stability for electrodialysis applications such as water desalination.
Collapse
Affiliation(s)
- Shanxue Jiang
- Barrer Centre, Department of Chemical Engineering, Imperial College London , South Kensington, SW7 2AZ London, United Kingdom
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London , South Kensington, SW7 2AZ London, United Kingdom
| |
Collapse
|