1
|
Rehman A, Sohail M, Baig N, Yuan K, Abdala A, Wahab MA. Next-generation stimuli-responsive smart membranes: Developments in oil/water separation. Adv Colloid Interface Sci 2025; 341:103487. [PMID: 40174372 DOI: 10.1016/j.cis.2025.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Effective treatment of oil-contaminated wastewater is essential due to its severe environmental and health impacts. The membrane-based separation is cost-effective, energy-efficient, and eco-friendly; however, fouling has remained a pressing issue. Stimuli-responsive membranes, which adjust their pore structure and surface properties in response to external triggers such as light, pH, and temperature, offer enhanced fouling resistance and improved separation performance. This review provides a comprehensive analysis of stimuli-responsive membranes for oil/water separation, emphasizing the role of smart polymeric materials engineered for controllable separation processes. We critically assess the strengths of these advanced membranes, including their tuneable wettability and energy-efficient operation, while identifying key limitations such as long-term stability, response time, scalability, and cost-effectiveness. Furthermore, the review explores various polymer types, synthesis methods, and fabrication techniques, evaluating their effectiveness in separation applications. Finally, the review concludes by outlining the challenges and proposing future directions to enhance the performance of stimuli-responsive membranes. By offering valuable insights into the dynamic control of membrane structures and properties, this study aims to inspire the development of next-generation stimuli-responsive membranes, drive their commercialization, and promote sustainable water treatment solutions.
Collapse
Affiliation(s)
- Aamal Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Kai Yuan
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, P.O. Box 23874, Qatar.
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical, and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
2
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
3
|
Sun Y, Ma L, Wei T, Zheng M, Mao C, Yang M, Shuai Y. Green, Low-carbon Silk-based Materials in Water Treatment: Current State and Future Trends. CHEMSUSCHEM 2024; 17:e202301549. [PMID: 38298106 DOI: 10.1002/cssc.202301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.
Collapse
Affiliation(s)
- Yuxu Sun
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Lantian Ma
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong SAR, P. R.China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
4
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
5
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Muslimova IB, Zhatkanbayeva ZK, Omertasov DD, Melnikova GB, Yeszhanov AB, Güven O, Chizhik SA, Zdorovets MV, Korolkov IV. Stimuli-Responsive Track-Etched Membranes for Separation of Water-Oil Emulsions. MEMBRANES 2023; 13:membranes13050523. [PMID: 37233585 DOI: 10.3390/membranes13050523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions. The influence of the monomer concentration (1-4 vol%), the molar ratio of RAFT agent: initiator (1:2-1:100) and the grafting time (30-120 min) on the contact angle (CA) was studied. The optimal conditions for ST and 4-VP grafting were found. The obtained membranes showed pH-responsive properties: at pH 7-9, the membrane was hydrophobic with a CA of 95°; at pH 2, the CA decreased to 52°, which was due to the protonated grafted layer of poly-4-vinylpyridine (P4VP), which had an isoelectric point of pI = 3.2. The obtained membranes with controlled hydrophobic-hydrophilic properties were tested by separating the direct and reverse "oil-water" emulsions. The stability of the hydrophobic membrane was studied for 8 cycles. The degree of purification was in the range of 95-100%.
Collapse
Affiliation(s)
- Indira B Muslimova
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Zh K Zhatkanbayeva
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
| | - Dias D Omertasov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
| | - Galina B Melnikova
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus
| | - Arman B Yeszhanov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Sergei A Chizhik
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus
| | - Maxim V Zdorovets
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
- Department of Intelligent Information Technology, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| | - Ilya V Korolkov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| |
Collapse
|
7
|
Wang Y, Yang S, Zhang J, Chen Z, Zhu B, Li J, Liang S, Bai Y, Xu J, Rao D, Dong L, Zhang C, Yang X. Scalable and switchable CO 2-responsive membranes with high wettability for separation of various oil/water systems. Nat Commun 2023; 14:1108. [PMID: 36849553 PMCID: PMC9970982 DOI: 10.1038/s41467-023-36685-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Qi B, Fan B, Xu B, Zhou M, Yu Y, Cui L, Wang Q, Wang P. Enzymatic construction of temperature-responsive PDMAPS-decorated textiles for oil-water separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Salahshoori I, Mohseni A, Namayandeh Jorabchi M, Ghasemi S, Afshar M, Wohlrab S. Study of modified PVDF membranes with high-capacity adsorption features using Quantum mechanics, Monte Carlo, and Molecular Dynamics Simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Yang Y, Guo Z, Liu W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204624. [PMID: 36192169 DOI: 10.1002/smll.202204624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Since superwetting surfaces have emerged, on-demand oil/water separation materials serve as a new direction for meeting practical needs. This new separation mode uses a single porous material to allow oil-removing and water-removing to be achieved alternately. In this review, the fundamentals of wettability are systematically summarized in oil/water separation. Most importantly, the two states, bioinspired surface and intelligent surface, are summarized for on-demand oil/water separation. Specifically, bioinspired surfaces include micro/nanostructures, bioinspired chemistry, Janus-featured surfaces, and dual-superlyophobic surfaces that these superwetting materials can possess asymmetric wettability in one structure system or opposite underliquid wettability by prewetting. Furthermore, an intelligent surface can be adopted by various triggers such as pH, thermal and photo stimuli, etc., to control wettability for switchable oil/water separation reversibly, expressing a thought beyond nature to realize innovative oil/water separation by external stimuli. Remarkably, this review also discusses the advantages of all the materials mentioned above, expanding the separation scope from the on-demand oil/water mixtures to the multiphase immiscible liquid-liquid mixtures. Finally, the prospects of on-demand oil/water separation materials are also concluded.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhang J, Hou Y, Lei L, Hu S. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Sun N, Shao W, Zheng J, Zhang Y, Li J, Liu S, Wang K, Niu J, Li B, Gao Y, Liu F, Jiang H, He J. Fabrication of fully degradable branched poly (lactic acid) nanofiber membranes for high‐efficiency filter paper materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.53186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Sun
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Weili Shao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Jin Zheng
- Innovation and Entrepreneurship Academy Zhongyuan University of Technology Zhengzhou Henan Province People's Republic of China
| | - Yuting Zhang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Junli Li
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Simeng Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Kai Wang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Jingyi Niu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Bo Li
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Fan Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| | - Huadong Jiang
- Jiangxi Zhanghu Medical Technology Co., Ltd Fuzhou People's Republic of China
| | - Jianxin He
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou People's Republic of China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou People's Republic of China
| |
Collapse
|
14
|
Cui W, Fan T, Li Y, Wang X, Liu X, Lu C, Ramakrishna S, Long YZ. Robust functional Janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Zhang H, Zhen Q, Liu ZY, Cui JQ, Qian XM. Facile fabrication of polylactic acid/polyethylene glycol micro-nano fabrics with aligned fibrous roughness for enhancing liquid anisotropic wetting performance via double-stage drafting melt blowing process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Gao N, Wang L, Zhang Y, Liang F, Fan Y. Modified ceramic membrane with pH/ethanol induced switchable superwettability for antifouling separation of oil-in-acidic water emulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
18
|
Wang Q, Wang D, Cheng W, Huang J, Cao M, Niu Z, Zhao Y, Yue Y, Han G. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydr Polym 2022; 282:119049. [DOI: 10.1016/j.carbpol.2021.119049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
|
19
|
|
20
|
Dmitrieva ES, Anokhina TS, Novitsky EG, Volkov VV, Borisov IL, Volkov AV. Polymeric Membranes for Oil-Water Separation: A Review. Polymers (Basel) 2022; 14:polym14050980. [PMID: 35267801 PMCID: PMC8912433 DOI: 10.3390/polym14050980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.
Collapse
Affiliation(s)
| | - Tatyana S. Anokhina
- Correspondence: ; Tel.: +7-(495)-647-59-27 (ext. 202); Fax: +7-(495)-633-85-20
| | | | | | | | | |
Collapse
|
21
|
Wan H, Mills R, Wang Y, Wang K, Xu S, Bhattacharyya D, Xu Z. Gravity-driven electrospun membranes for effective removal of perfluoro-organics from synthetic groundwater. J Memb Sci 2022; 644:120180. [PMID: 35911189 PMCID: PMC9337624 DOI: 10.1016/j.memsci.2021.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging contaminants in water and soil. Electrospun membranes with open structure could treat PFAS in a gravity-driven mode with ultralow pressure needs. The electrospun ultrathin fibers (67 ± 27 nm) was prepared for the enhanced specific surface area; where polyvinylidene fluoride (PVDF) backbones and the grafted quaternary ammonium moieties (QA; PVDF-g-QA membranes) provided both hydrophobicity and anion-exchange ability (electrostatic interaction). High affinity towards the perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS) molecules (denoted as PFOX collectively) was observed, and >95% PFOX was removed from synthetic groundwater with a flux of 32.3 Lm-2h-1 at ΔPo = 313 Pa. With a higher octanol/water partitioning coefficient (Log Kow = 6.3) and close dispersion interaction parameter to the membrane backbones (16.6% difference in δd), the effective PFOS removal remained under alkaline and high conductivity conditions due to the intensive hydrophobic interaction compared to that of PFOA. Long-term studies exhibited >90% PFOX removal in an 8 h test with a capacity of 258 L/m2. Under mild regeneration conditions, PFOA and PFOS were concentrated by 35-fold and 39-fold, respectively. Overall, the gravity-driven electrospun PVDF-g-QA membranes, with adsorptive effectiveness and ease of regeneration, showed great potential in PFAS remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Yixing Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keyu Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sunjie Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Li Y, He Y, Zhuang J, Shi H. An intelligent natural fibrous membrane anchored with ZnO for switchable oil/water separation and water purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhou N, Yang S, Liu Y, Tuo X, Gong Y, Guo J. Performance evaluation on particle‐reinforced rigid/flexible composites via fused deposition modeling
3D
printing. J Appl Polym Sci 2022. [DOI: 10.1002/app.52149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ning Zhou
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| | - Shuochen Yang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| | - Yanyue Liu
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian Liaoning China
| |
Collapse
|
24
|
Zhang Z, Dai G, Liu Y, Fan W, Yang K, Li Z. A reusable, biomass-derived, and pH-responsive collagen fiber based oil absorbent material for effective separation of oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Obaid M, Mohamed HO, Alayande AB, Kang Y, Ghaffour N, Kim IS. Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Hu Z, Wang H, Li L, Wang Q, Jiang S, Chen M, Li X, Shaotong J. pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Res Int 2021; 147:110532. [PMID: 34399510 DOI: 10.1016/j.foodres.2021.110532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
This study demonstrates a pH-responsive antibacterial film based on polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin (PVA/PAA-AEP) for intelligent food packaging. The thermal, mechanical, barrier and light transmittance properties of PVA/PAA are enhanced by PAA presence of ≤6%. The interactions between PVA and PAA were hydrogen and ester bonds. The pH-responsive characteristic is dependent on the protonation/deprotonation tendency of the carboxylic groups on PAA in acidic/alkaline environment. The PVA/PAA3 is selected for the incorporation of AEP and its pH-responsive swelling follows Ritger-Peppas and Schott second-order models. The AEP is hydrogen bonded with the matrix of PVA/PAA3 and the release of AEP is pH-responsive and a rate-limiting step following the First-order model. With pH decrease, the predominant release control was gradually changing from polymer relaxation to Fick diffusion. The PVA/PAA3-AEP films demonstrate AEP content dependent antioxidant and antimicrobial activities. Furthermore, the antibacterial efficiency against Listeria monocytogenes and Staphylococcus aureus is significantly better than Escherichia coli. The target film PVA/PAA3-AEP3 can effectively prolong the shelf-life of pork (TVB-N < 25 mg/100 g) by 4 days at 25 °C, suggesting its great potential in intelligent food packaging.
Collapse
Affiliation(s)
- Zheng Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, 230601 Hefei, Anhui, PR China
| | - Minmin Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000 Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| | - Jiang Shaotong
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
28
|
Copolymer Membrane Fabrication for Highly Efficient Oil‐in‐Water Emulsion Separation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wang Y, Li C, Tuo X, Gong Y, Guo J. Polyethylene glycol modified epoxy acrylate
UV
curable
3D
printing materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyang Wang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Cheng Li
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| |
Collapse
|
30
|
Zhang X, Liu C, Yang J, Huang XJ, Xu ZK. Wettability Switchable Membranes for Separating Both Oil-in-water and water-in-oil emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Assaifan AK, Aijaz MO, Luqman M, Drmosh QA, Karim MR, Alharbi HF. Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Su R, Li S, Wu W, Song C, Liu G, Yu Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
A superwettable functionalized-fabric with pH-sensitivity for controlled oil/water, organic solvents separation, and selective oil collection from water-rich system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Yang F, Xiong C, Lian Y, Wang X, Wei Z, Long S, Zhang G, Yang J. A solvent‐resistance
OTS
/
PDA
/
O‐PASS
composite membrane for
water‐in‐oil
emulsions separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Faming Yang
- Polymer Science and Engineering college, Sichuan University Chengdu China
| | - Chen Xiong
- Polymer Science and Engineering college, Sichuan University Chengdu China
| | - Yingfu Lian
- Polymer Science and Engineering college, Sichuan University Chengdu China
| | - Xiaojun Wang
- Analytical and Testing Center, Sichuan University Chengdu China
| | - Zhimei Wei
- Analytical and Testing Center, Sichuan University Chengdu China
| | - Shengru Long
- Analytical and Testing Center, Sichuan University Chengdu China
| | - Gang Zhang
- Analytical and Testing Center, Sichuan University Chengdu China
| | - Jie Yang
- Analytical and Testing Center, Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| |
Collapse
|
35
|
Chen B, Wang Y, Tuo X, Gong Y, Guo J. Tensile properties and corrosion resistance of
PCL
‐based
3D
printed composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.50253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bicheng Chen
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yiyang Wang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian China
| |
Collapse
|
36
|
Wang X, Zhang D, Wu J, Protsak I, Mao S, Ma C, Ma M, Zhong M, Tan J, Yang J. Novel Salt-Responsive SiO 2@Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42169-42178. [PMID: 32835481 DOI: 10.1021/acsami.0c12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continuously growing interest in the controlled and tunable transport or separation of target molecules has attracted more attention recently. However, traditional "on-off" stimuli-responsive membranes are limited to nongradient feedback, which manifests as filtration efficiency that cannot be increased or decreased gradually along with the different stimuli conditions; indeed, only the transformation of on/off state is visible. Herein, we design and fabricate a series of robust salt-responsive SiO2@cellulose membranes (SRMs) by simply combining salt-responsive poly[3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (polyDVBAPS)-modified SiO2 nanoparticles and cellulose membranes under negative-pressure filtering. The antipolyelectrolyte effect induces stretch/shrinkage of polyDVBAPS chains inside the channels and facilities the directional aperture size and surface wettability variation, greatly enhancing the variability of interfacial transport and separation efficiency. Due to the linear salt-responsive feedback mechanism, the optimal SRMs achieve highly efficient target macromolecule separation (>75%) and rapid oil/saline separation (>97%) with a continuous gradient and adjustable permeability, instead of simply an "on-off" switch. The salt-responsive factors (SiO2-polyDVBAPS) could be reversibly separated or self-assembled to membrane substrates; thus, SRMs achieved unprecedented repeatability and reusability even after long-term cyclic testing, which exceeds those of currently reported membranes. Such SRMs possess simultaneously a superfast responsive time, a controllable gradient permeability, a high gating ratio, and an excellent reusability, making our strategy a potentially exciting approach for efficient osmotic transportation and target molecule separation in a more controllable manner.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong Zhang
- Department of Chemical, Biomolecular and Corrosion Engineering. The University of Akron, Ohio 44325, United States
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou 570228, PR China
| | - Meng Ma
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, PR China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
37
|
Venault A, Chen LA, Maggay IV, Marie Yap Ang MB, Chang HY, Tang SH, Wang DM, Chou CJ, Bouyer D, Quémener D, Lee KR, Chang Y. Simultaneous amphiphilic polymer synthesis and membrane functionalization for oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Wang X, Liu Y, Zhang M, Luo Z, Yang D. Beadlike Porous Fibrous Membrane with Switchable Wettability for Efficient Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaotong Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Luo
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Gore PM, Naebe M, Wang X, Kandasubramanian B. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121823. [PMID: 31859169 DOI: 10.1016/j.jhazmat.2019.121823] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 05/06/2023]
Abstract
Present study reports superhydrophobic-oleophilic, environment-friendly, & biodegradable silk material derived from Bombyx mori silkworm, for practical oil-water separation and oil recovery applications. In this study, raw silk fibers were degummed using water and Na2CO3 (at 100 °C), for removal of outer gummy sericin protein layer, which was confirmed using FTIR & FE-SEM analysis. The water & Na2CO3 degummed silk fibers showed superhydrophobicity with water contact angles (WCA) of 153° & 158°, respectively, demonstrating Wenzel & Cassi-Baxter states. Degummed silk fibers showed superoleophilicity (OCA∼0°) towards petroleum oils like Petrol, Diesel, & Engine oil. The water & Na2CO3 degummed silk fibers showed oil-water separation efficiencies of 95 % & 87.5 %, respectively. Both degummed silk fibers showed more than 50 % efficiency till 10 separation cycles. Further, raw & degummed silk fibers showed an environmental biocompatibility, by their biodegradation under in-house developed biotic de-compost culture consisting of biodegrading micro-organisms. Their analysis showed that biotic de-compost culture rendered biodegradation weight loss of 11 % and 18 %, respectively, in 35 days. Successive results showed that, degummed silk fibers can be effectively utilized for practical oil-water separation, and further, they can be environmentally biodegraded, thereby mitigating their waste generation and disposal problem.
Collapse
Affiliation(s)
- Prakash M Gore
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia; Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India.
| |
Collapse
|
40
|
Wei C, Lin L, Zhao Y, Zhang X, Yang N, Chen L, Huang X. Fabrication of pH-Sensitive Superhydrophilic/Underwater Superoleophobic Poly(vinylidene fluoride)- graft-(SiO 2 Nanoparticles and PAMAM Dendrimers) Membranes for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19130-19139. [PMID: 32227976 DOI: 10.1021/acsami.9b22881] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The efficient treatment of oil-water emulsions under acidic condition remains a widespread concern. Poly(amidoamine) (PAMAM) dendrimer with hyperbranched structures and a large amount of primary and tertiary amino groups has exhibited advantages to solve this issue. Here, a novel poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM dendrimers) (PVDF-g-SiO2 NPs/PAMAM) membrane was fabricated using a surface-grafting strategy. SiO2 NPs were immobilized on PVDF-g-poly(acrylic acid) (PAA) membranes for improving the surface roughness, and PAMAM dendrimers were further immobilized on the membrane surface by interfacial polymerization (IP) for improving the surface energy. The obtained membrane demonstrated a water contact angle and a stable underwater-oil contact angle of 0° and >150°, respectively. These characteristics endowed the membrane with excellent water permeability [>3100 L/(m2·h) at 0.9 bar] and separation efficiency (>99%) during oil-water separation. Furthermore, the PAMAM chain will extend from a collapsed state into a fully extension state because of the protonation of amine groups under acidic condition, thus achieving a low underwater oil-adhesion property, fouling resistance, desirable stability, and recyclability (over 12 cycles) during usage. This work shows a promising prospect for the treatment of corrosive emulsions under acidic condition.
Collapse
Affiliation(s)
- Chenjie Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaojun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
41
|
El-Samak AA, Ponnamma D, Hassan MK, Ammar A, Adham S, Al-Maadeed MAA, Karim A. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1714651] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali A. El-Samak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | | | | | - Ali Ammar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park, Doha, Qatar
| | | | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
42
|
Virtanen T, Rudolph G, Lopatina A, Al-Rudainy B, Schagerlöf H, Puro L, Kallioinen M, Lipnizki F. Analysis of membrane fouling by Brunauer-Emmet-Teller nitrogen adsorption/desorption technique. Sci Rep 2020; 10:3427. [PMID: 32098983 PMCID: PMC7042297 DOI: 10.1038/s41598-020-59994-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
Membrane fouling is the major factor limiting the wider applicability of the membrane-based technologies in water treatment and in separation and purification processes of biorefineries, pulp and paper industry, food industry and other sectors. Endeavors to prevent and minimize fouling requires a deep understanding on the fouling mechanisms and their relative effects. In this study, Brunauer-Emmett-Teller (BET) nitrogen adsorption/desorption technique was applied to get an insight into pore-level membrane fouling phenomena occurring in ultrafiltration of wood-based streams. The fouling of commercial polysulfone and polyethersulfone membranes by black liquor, thermomechanical pulping process water and pressurized hot-water extract was investigated with BET analysis, infrared spectroscopy, contact angle analysis and pure water permeability measurements. Particular emphasis was paid to the applicability of BET for membrane fouling characterization. The formation of a fouling layer was detected as an increase in cumulative pore volumes and pore areas in the meso-pores region. Pore blocking was seen as disappearance of meso-pores and micro-pores. The results indicate that the presented approach of using BET analysis combined with IR spectroscopy can provide complementary information revealing both the structure of fouling layer and the chemical nature of foulants.
Collapse
Affiliation(s)
- Tiina Virtanen
- LUT University, Department of Separation Science, P.O. Box 20, FI-53851, Lappeenranta, Finland.
| | - Gregor Rudolph
- Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Anastasiia Lopatina
- LUT University, Department of Separation Science, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Basel Al-Rudainy
- Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Herje Schagerlöf
- Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Liisa Puro
- LUT University, Department of Separation Science, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Mari Kallioinen
- LUT University, Department of Separation Science, P.O. Box 20, FI-53851, Lappeenranta, Finland
| | - Frank Lipnizki
- Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
43
|
Roy S, Bhalani DV, Jewrajka SK. Surface segregation of segmented amphiphilic copolymer of poly(dimethylsiloxane) and poly(ethylene glycol) on poly(vinylidene fluoride) blend membrane for oil–water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115940] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
|
45
|
Zaarour B, Zhu L, Jin X. A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bilal Zaarour
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
- Textile Industries Mechanical Engineering and Techniques DepartmentFaculty of Mechanical and Electrical Engineering, Damascus University Damascus Syria
| | - Lei Zhu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of TextilesDonghua University, No. 2999 North Renmin Road Songjiang, Shanghai 201620 China
| |
Collapse
|
46
|
A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. MATERIALS 2020; 13:ma13020493. [PMID: 31968692 PMCID: PMC7013497 DOI: 10.3390/ma13020493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023]
Abstract
Cleaning of wastewater for the environment is an emerging issue for the living organism. The separation of oily wastewater, especially emulsified mixtures, is quite challenged due to a large amount of wastewater produced in daily life. In this review, the membrane technology for oily wastewater treatment is presented. In the first part, the global membrane market, the oil spill accidents and their results are discussed. In the second and third parts, the source of oily wastewater and conventional treatment methods are represented. Among all methods, membrane technology is considered the most efficient method in terms of high separation performance and easy to operation process. In the fourth part, we provide an overview of membrane technology, fouling problem, and how to improve the self-cleaning surface using functional groups for effectively treating oily wastewater. The recent development of surface-modified membranes for oily wastewater separation is investigated. It is believed that this review will promote understanding of membrane technology and the development of surface modification strategies for anti-fouling membranes.
Collapse
|
47
|
Wan H, Islam MS, Briot NJ, Schnobrich M, Pacholik L, Ormsbee L, Bhattacharyya D. Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J Memb Sci 2020; 594:117454. [PMID: 31929677 PMCID: PMC6953629 DOI: 10.1016/j.memsci.2019.117454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The poly(methacrylic acid) (PMAA) was synthesized in the pores of commercial microfiltration PVDF membranes to allow incorporation of catalytic palladium/iron (Pd/Fe) nanoparticles for groundwater remediation. Particles of 17.1 ± 4.9 nm size were observed throughout the pores of membranes using a focused ion beam. To understand the role of Pd fractions and particle compositions, 2-chlorobiphenyl was used as a model compound in solution phase studies. Results show H2 production (Fe0 corrosion in water) is a function of Pd coverage on the Fe. Insufficient H2 production caused by higher coverage (> 10.4% for 5.5 wt%) hindered dechlorination rate. With 0.5 wt% Pd, palladized-Fe reaction rate (surface area normalized reaction rate, ksa = 0.12 L/(m2-h) was considerably higher than isolated Pd and Fe particles. For groundwater, in a single pass of Pd/Fe-PMAA-PVDF membranes (0.5 wt% Pd), chlorinated organics, such as trichloroethylene (177 ppb) and carbon tetrachloride (35 ppb), were degraded to 16 and 0.3 ppb, respectively, at 2.2 seconds of residence time. The degradation rate (observed ksa) followed the order of carbon tetrachloride > trichloroethylene > tetrachloroethylene > chloroform. A 36 h continuous flow study with organic mixture and the regeneration process show the potential for on-site remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| | | | - Lucy Pacholik
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Lindell Ormsbee
- Department of Civil Engineering University of Kentucky, Lexington, KY, 40506-0046, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0046, USA
| |
Collapse
|
48
|
Lou L, Kendall RJ, Smith E, Ramkumar SS. Functional PVDF/rGO/TiO2 nanofiber webs for the removal of oil from water. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Ruan X, Xu T, Chen D, Ruan Z, Hu H. Superhydrophobic paper with mussel-inspired polydimethylsiloxane–silica nanoparticle coatings for effective oil/water separation. RSC Adv 2020; 10:8008-8015. [PMID: 35497842 PMCID: PMC9049918 DOI: 10.1039/c9ra08018j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/19/2020] [Indexed: 11/21/2022] Open
Abstract
Although various filtration materials with (super)wetting properties have been fabricated for effective oil/water separation, eco-friendly and low-cost materials are still highly desired. This work details the facile preparation of efficient oil–water separation papers with superhydrophobic properties that successfully combine micro/nanoscale hierarchical particles and low surface energy components with porous substrates. The superhydrophilic papers were coated with a polydopamine layer and then immersed in the mixture of polydimethylsiloxane (PDMS) and hydrophobic-silica nanoparticles. The resultant paper can separate oil–water mixtures under gravity driving conditions, where heavy oil penetrates through the sample and water is collected on the surface. And the as-prepared sample had favorable separation efficiency (>99%). More importantly, the oil flux almost remained at the original value after 10 cycles, indicating excellent recyclability. In addition, the as-prepared paper exhibits good stability in acidic, alkaline and salty media. Although various filtration materials with (super)wetting properties have been fabricated for effective oil/water separation, eco-friendly and low-cost materials are still highly desired.![]()
Collapse
Affiliation(s)
- Xuewei Ruan
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Baocheng Machine Science Technology Co., Ltd
| | - Tiancheng Xu
- Zhejiang Baocheng Machine Science Technology Co., Ltd
- Ningbo
- P. R. China
| | - Dingjiang Chen
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Ziwen Ruan
- Zhejiang Baocheng Machine Science Technology Co., Ltd
- Ningbo
- P. R. China
| | - Haitu Hu
- Zhejiang Baocheng Machine Science Technology Co., Ltd
- Ningbo
- P. R. China
| |
Collapse
|
50
|
PVDF/TBAPF6 hierarchical nanofiber gel membrane for lithium ion capacitor with ultrahigh ion conductivity and excellent interfacial compatibility. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|