1
|
Xu X, Kao H, Yu X, Zhou J, Hou P, Xu G, Chen J. Green Fabrication of Superhydrophilic/Underwater Superoleophobic Composite Membrane for High-Efficiency Oil/Water Separation in Harsh Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11661-11669. [PMID: 38781140 DOI: 10.1021/acs.langmuir.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Due to the high oil spill incidence and industrial wastewater discharge including oil and emulsified oil, designing and synthesizing oil-water separation materials which can maintain stability under harsh environmental conditions with high separation efficiencies remains a great challenge. The present work developed an easy, green, cost-effective, and easily scaled-up approach for fabricating cellulose-based membranes. First, we coated polydopamine (PDA) onto fibers of filter membrane (FM). Then, the PDA-FM membrane was immersed into the mixed solution of poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) and further thermally cross-linked at 150 °C to create a superhydrophilic/underwater superoleophobic membrane (PVA/PAA@PDA-FM) to separate oil/water mixtures. The simple thermally cross-linking process promotes multiple covalent chemical bonds generation between cellulose filter membrane, PAA, PDA, and PVA, endowing membranes with excellent stability and resistance to acidity, alkalinity, and salinity. The PVA/PAA@PDA-FM membrane not only demonstrates great separation performance (>99.8%) and great flux (>1000 L m-2 h-1) in oil-water immiscible mixtures but also maintains high separation efficiency under conditions of high acidity, alkalinity, and salinity. Additionally, the PVA/PAA@PDA-FM membrane exhibits excellent separation capacity in oil-water emulsions, which can maintain the >99.6% separation efficiency even after 40 cycles in harsh environments, showing outstanding reusability. Thus, due to the multiple cross-linked networks in the membrane, the excellent performance makes the PVA/PAA@PDA-FM membrane a good application prospect in water purification and oily wastewater treatment.
Collapse
Affiliation(s)
- Xiangpeng Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Hongming Kao
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Xinran Yu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jingmiao Zhou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Panchao Hou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Gonghao Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jing Chen
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Shastri A, Gore PM, Kandasubramanian B. Engineering superhydrophobicity: a survey of coating techniques for silicone-based oil-water separation membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41854-41872. [PMID: 38869805 DOI: 10.1007/s11356-024-33686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024]
Abstract
Oil spills in the ocean and the release of contaminated wastewater from industries cause significant harm to the ecosystem and water sources. To tackle this environmental problem, oil-water mixture separation has been the subject of extensive research over the past few decades. Improving oil absorbents is crucial in removing organic contaminants from wastewater produced by industrial activities. To this end, there is an increasing need for materials that can efficiently and flexibly recover oils from contaminated ocean waters, industrial wastewater, and other sources. Silicones are often used for this purpose because of their exceptional mechanical and thermal durability, as well as their low toxicity. The materials produced from silicones, such as foam, sponge, or substrate, exhibit excellent oil-absorbing properties (maximum oil absorption range, 23.2-77 g/g) and outstanding compression cycles. This article review highlights the advancements in the manufacturing of silicone-based products that have been extensively researched for oil-water separation. Understanding the interdependencies that determine the structure, performance, and manufacturing strategy is essential to producing selective oil absorbents with more commercial potential in the future. Recycling of silicones has also become increasingly important as a goal for the circular economy.
Collapse
Affiliation(s)
- Abhilasha Shastri
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, Marathwada Campus, Jalna, 431203, Maharashtra, India
| | - Prakash M Gore
- Walchandnagar Industries Ltd., Walchandnagar, Pune, 413114, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
3
|
Hu DD, Zhang YX, Li YD, Zeng JB. Fully biobased hydrogel based on chitosan and tannic acid coated cotton fabric for underwater superoleophobicity and efficient oil/water separation. Int J Biol Macromol 2024; 254:127892. [PMID: 37952799 DOI: 10.1016/j.ijbiomac.2023.127892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this backdrop, this study aimed to fabricate an environmental-friendly UWSO textile using biobased materials. To achieve this, hydrogel consisting of chitosan (CS) and poly(tannic acid) (PTA) were formed and coated on cotton fabric (CTF) via dip-coating followed by oxidative polymerization. CS&PTA hydrogel endowed the CTF with a rough surface and high surface energy, leading to an UWSO CTF with an underwater oil contact angle as high as 166.84°. The CS&PTA/CTF had excellent separation capability toward various oil/water mixtures, showing separation efficiency above 99.84 % and water flux higher than 23, 999 L m-2 h-1. Moreover, CS&PTA/CTF possessed excellent mechanical and environmental stability with underwater superoleophobicity unchanged after sandpaper friction, ultrasonication, organic solvents, NaCl (m/v, 30 %) solution, and acid/base solution immersion, due to the strong interaction between the hydrogel and cotton fabric generated by the mussel-inspired adhesion owing to the presence of PTA. The fully biobased UWSO CTF exhibits great promising to be an alternative to traditional superwetting materials for separation of oil/water mixtures.
Collapse
Affiliation(s)
- Dan-Dan Hu
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ye-Xin Zhang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Dong Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Bing Zeng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Cho H, Chung J, Lee S. Robustly Adherable Hierarchical Nanostructures via Self-Bonding and Self-Texturing of Aluminum Nitride for Applications in Highly Efficient Oil/Water Separation. ACS OMEGA 2023; 8:42732-42740. [PMID: 38024741 PMCID: PMC10652374 DOI: 10.1021/acsomega.3c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The release of wastewater containing oily contaminants into water bodies and soils severely threatens the environment and human health. Although several conventional techniques are used in treating oil/water mixtures and emulsions, these methods are often expensive, time-consuming, and inefficient. Porous membranes or sponges are widely used in filtration or absorption, but their use is limited by their low separation efficiencies and secondary contamination. Recently, a novel technology that is designed to selectively separate oil from oil/water mixtures or emulsions by using materials with special wetting surfaces was developed. Superwetting surfaces may be used to selectively separate oils from emulsions. This approach enables the use of materials with relatively large pores, resulting in high throughput properties and efficiencies. In this study, a facile method is proposed for use in preparing a superhydrophobic-superoleophilic felt fabric for utilization in separating oil/water mixtures and emulsions. By hydrolyzing aluminum nitride nanopowders, the desired micro-/nanostructures may be successfully fabricated and firmly attached to a fabric surface without using a binder resin. This results in various materials with special wetting properties, regardless of their sizes and shapes and the successful separation of oil and water from oil/water mixtures and emulsions in harsh environments. This approach exhibits promise as a low-cost, scalable, and efficient method of separating oily wastewater, with the potential for use in wider industrial applications.
Collapse
Affiliation(s)
- Handong Cho
- Department
of Mechanical Engineering, Mokpo National
University, Muan, Jeonnam 58554, Republic of Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Shi D, Gong T, Wang R, Qing W, Shao S. Control the hydrophilic layer thickness of Janus membranes by manipulating membrane wetting in membrane distillation. WATER RESEARCH 2023; 237:119984. [PMID: 37099871 DOI: 10.1016/j.watres.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
Janus membranes with asymmetric wettability have attracted wide attentions for their robust anti-oil-wetting/fouling abilities in membrane distillation (MD). Compared to traditional surface modification approaches, in this study, we provided a new approach which manipulated surfactant-induced wetting to fabricate Janus membrane with a controllable thickness of the hydrophilic layer. The membranes with 10, 20, and 40 μm of wetted layers were obtained by stopping the wetting induced by 40 mg L-1 Triton X-100 (J = 25 L m-2 h-1) at about 15, 40, and 120 s, respectively. Then, the wetted layers were coated using polydopamine (PDA) to fabricate the Janus membranes. The resulting Janus membranes showed no significant change in porosities or pore size distributions compared with the virgin PVDF membrane. These Janus membranes exhibited low in-air water contact angles (< 50°), high underwater oil contact angles (> 145°), and low adhesion with oil droplets. Therefore, they all showed excellent oil-water separation performance with ∼100% rejection and stable flux. The Janus membranes showed no significant decline in flux, but a trade-off existed between the hydrophilic layer thicknesses and the vapor flux. Utilizing membranes with tunable hydrophilic layer thickness, we elucidated the underlying mechanism of such trade-off in mass transfer. Furthermore, the successful modification of membranes with different coatings and in-situ immobilization of silver nanoparticles indicated that this facile modification method is universal and can be further expanded for multifunctional membrane fabrication.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, PR China
| | - Rui Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, PR China.
| |
Collapse
|
6
|
Hliavitskaya T, Plisko T, Bildyukevich A, Liubimova A, Shumskaya A, Mikchalko A, Rogachev AA, Melnikova GB, Pratsenko SA. Novel Hydrophobic Ultrafiltration Membranes for Treatment of Oil-Contaminated Wastewater. MEMBRANES 2023; 13:402. [PMID: 37103829 PMCID: PMC10145576 DOI: 10.3390/membranes13040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Cutting fluids are the main source of oily wastewater in the metalworking industry. This study deals with the development of antifouling composite hydrophobic membranes for treatment of oily wastewater. The novelty of this study is that a low energy electron-beam deposition technique was applied for a polysulfone (PSf) membrane with a molecular-weight cut-off of 300 kDa, which is promising for use in the treatment of oil-contaminated wastewater, by using polytetrafluoroethylene (PTFE) as target materials. The effect of the thickness of the PTFE layer (45, 660, and 1350 nm) on the structure, composition, and hydrophilicity of membranes was investigated using scanning electron microscopy, water contact angle (WCA) measurements, atomic force microscopy, and FTIR-spectroscopy. The separation and antifouling performance of the reference and modified membranes were evaluated during ultrafiltration of cutting fluid emulsions. It was found that the increase in the PTFE layer thickness results in the significant increase in WCA (from 56° up to 110-123° for the reference and modified membranes respectively) and decrease in surface roughness. It was found that cutting fluid emulsion flux of modified membranes was similar to the flux of the reference PSf-membrane (7.5-12.4 L·m-2·h-1 at 6 bar) while cutting fluid rejection (RCF) of modified membranes increased compared to the reference membrane (RCF = 58.4-93.3% for modified and RCF = 13% for the reference PSf membrane). It was established that despite the similar flux of cutting fluid emulsion, modified membranes demonstrate 5-6.5 times higher flux recovery ratio (FRR) compared to the reference membrane. The developed hydrophobic membranes were found to be highly efficient in oily wastewater treatment.
Collapse
Affiliation(s)
- Tatsiana Hliavitskaya
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alena Liubimova
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alena Shumskaya
- Institute of Chemistry of New Materials, 220141 Minsk, Belarus
| | | | - Alexandr A. Rogachev
- Institute of Chemistry of New Materials, 220141 Minsk, Belarus
- F. Skorina Gomel State University, 246019 Gomel, Belarus
| | - Galina B. Melnikova
- Lykov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Svetlana A. Pratsenko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
7
|
Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Oil separation from oil/water mixed drop under a Lamb wave field is one of the emerging acoustofluidic technologies that integrate acoustics and microfluidics. In recent years, this technology has attracted significant attention due to its effective, fast, contactless, and pollution-free. It has been validated in the separation of oil/water mixture on different non-piezoelectric substrates and shows great potential in incompatible liquids applications. Here, we summarize our recent progress in this exciting field and show great potential in different applications. This review introduces the theories and mechanisms of oil/water mixed drop separation induced by Lamb waves, the applications of this technology in the separation of oil/water mixed drop, and discusses the challenges and prospects of this field.
Collapse
|
8
|
Jiang C, Tian Y, Wang L, Zhao S, Hua M, Yao L, Xu S, Ge J, Pan G. Facile Approach for the Potential Large-Scale Production of Polylactide Nanofiber Membranes with Enhanced Hydrophilic Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1784. [PMID: 36902900 PMCID: PMC10003793 DOI: 10.3390/ma16051784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Polylactide (PLA) nanofiber membranes with enhanced hydrophilic properties were prepared through electrospinning. As a result of their poor hydrophilic properties, common PLA nanofibers have poor hygroscopicity and separation efficiency when used as oil-water separation materials. In this research, cellulose diacetate (CDA) was used to improve the hydrophilic properties of PLA. The PLA/CDA blends were successfully electrospun to obtain nanofiber membranes with excellent hydrophilic properties and biodegradability. The effects of the additional amount of CDA on the surface morphology, crystalline structure, and hydrophilic properties of the PLA nanofiber membranes were investigated. The water flux of the PLA nanofiber membranes modified with different CDA amounts was also analyzed. The addition of CDA improved the hygroscopicity of the blended PLA membranes; the water contact angle of the PLA/CDA (6/4) fiber membrane was 97.8°, whereas that of the pure PLA fiber membrane was 134.9°. The addition of CDA enhanced hydrophilicity because it tended to decrease the diameter of PLA fibers and thus increased the specific surface area of the membranes. Blending PLA with CDA had no significant effect on the crystalline structure of the PLA fiber membranes. However, the tensile properties of the PLA/CDA nanofiber membranes worsened due to the poor compatibility between PLA and CDA. Interestingly, CDA endowed the nanofiber membranes with improved water flux. The water flux of the PLA/CDA (8/2) nanofiber membrane was 28,540.81 L/m2·h, which was considerably higher than that of the pure PLA fiber membrane (387.47 L/m2·h). The PLA/CDA nanofiber membranes can be feasibly applied as an environmentally friendly oil-water separation material because of their improved hydrophilic properties and excellent biodegradability.
Collapse
Affiliation(s)
- Changmei Jiang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yuan Tian
- Chinatesta Textile Testing Services (Zhejiang), Shaoxing 312000, China
| | - Luolan Wang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Shiyou Zhao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Ming Hua
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Lirong Yao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| |
Collapse
|
9
|
Zhang Z, Xia Z, Huang J, Jing F, Zhang X, Li H, Wang S, Sun G. Uneven phosphoric acid interfaces with enhanced electrochemical performance for high-temperature polymer electrolyte fuel cells. SCIENCE ADVANCES 2023; 9:eade1194. [PMID: 36696498 PMCID: PMC9876549 DOI: 10.1126/sciadv.ade1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Ultrahigh mass transport resistance and excessive coverage of the active sites introduced by phosphoric acid (PA) are among the major obstacles that limit the performance of high-temperature polymer fuel cells, especially compared to their low-temperature counterparts. Here, an alternative strategy of electrode design with fibrous networks is developed to optimize the redistribution of acid within the electrode. Via structural tailoring with varied electrospinning parameters, uneven migration of PA with dispersed droplets is observed, subverting the immersion model of conventional porous electrode. Combining with experimental and calculation results, the microscaled uneven PA interfaces could not only provide extra diffusion pathways for oxygen but also minimize the thickness of PA layers. This electrode architecture demonstrates enhanced electrochemical performance of oxygen reduction within the PA phase, resulting in a 28% enhancement of the maximum power density for the optimally designed electrode as cathode compared to that of a conventional one.
Collapse
Affiliation(s)
- Zinan Zhang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhangxun Xia
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jicai Huang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fenning Jing
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Zhang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huanqiao Li
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Suli Wang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gongquan Sun
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Eryildiz B, Ozbey‐Unal B, Menceloglu YZ, Keskinler B, Koyuncu I. Development of robust superhydrophobic
PFA
/
TMI
/
PVDF
membrane by electrospinning/electrospraying techniques for air gap membrane distillation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bahriye Eryildiz
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| | - Bahar Ozbey‐Unal
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Gebze Technical University Kocaeli Turkey
- Earth and Marine Sciences Institute, Gebze Technical University Kocaeli Turkey
| | - Yusuf Z. Menceloglu
- Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Sabanci University Istanbul Turkey
- Nanotechnology Research and Application Center, Sabanci University Istanbul Turkey
- Department of Materials Science and Nanoengineering Faculty of Engineering and Natural Science, Sabanci University Istanbul Turkey
| | - Bulent Keskinler
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Gebze Technical University Kocaeli Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey
- Department of Environmental Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
11
|
Gurave PM, Dubey S, Nandan B, Srivastava RK. Pickering Emulsion-Templated Nanocomposite Membranes for Excellent Demulsification and Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54233-54244. [PMID: 36404643 DOI: 10.1021/acsami.2c16483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A worldwide steady increase in oily wastewater, due to oil spillage and various industrial discharges, requires immediate efforts toward development of an effective strategy and materials to preserve the natural water bodies. Designing a superwettable fibrous membrane of robust structure and anti-fouling property for efficient separation of oil-water mixtures and emulsions is therefore highly demanding. The electrospun fibrous membrane, which possesses porosity and flexibility and properties including superwettability and tunable functionality, can be considered as apposite materials for this cause. In this approach, we combined two strategies, viz., Pickering emulsion and near gel resin (nGR) emulsion electrospinning together to produce a fibrous nanocomposite membrane for efficient oil-water separation and demulsification. nGR Pickering emulsions were stabilized using hydrophilic SiO2 nanoparticles and successfully optimized for fabricating the crosslinked core sheath-structured fibrous membrane. The prepared membrane provided twofold functionality due to the core sheath structure of the fibers. The crosslinked polystyrene core offered high oil adsorption capacity, whereas SiO2-functionalized crosslinked polyvinyl alcohol sheath provided a rough, superhydrophilic surface with underwater oleophobic behavior to the membrane. The optimized SiO2-Pickering emulsion-templated nanocomposite membrane demonstrated excellent underwater anti-oil adhesion behavior (UWOCA ∼148°) with efficient oil-water separation capacity of more than 99% and separation flux up to 3346 ± 91 L m-2 h-1. The membrane was evaluated against various oil-water emulsions and found to have a superior separation efficiency. Moreover, excellent anti-oil adhesion property provided the intact membrane, where consistent separation performance was achieved up to 10 separation cycles without any loss. The membrane was used for separation of hot oil-water emulsions and showed no structural disintegration or loss in separation performance when exposed to elevated temperatures. The developed nanocomposite membranes could efficiently be used for separation and demulsification, and their applications can be explored in various other fields including selective sorption, catalysis, and storage in future.
Collapse
Affiliation(s)
- Pramod M Gurave
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Shubhang Dubey
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
12
|
PTFE porous membrane technology: A comprehensive review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Huang Z, Shen L, Lin H, Li B, Chen C, Xu Y, Li R, Zhang M, Zhao D. Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Tu W, Liu Y, Chen M, Ma L, Li L, Yang B. Photocatalytic self-cleaning graphene oxide membrane coupled with carbon nitride and Ti3C2-Mxene for enhanced wastewater purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Sarbatly R, Chiam CK. An Overview of Recent Progress in Nanofiber Membranes for Oily Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172919. [PMID: 36079957 PMCID: PMC9458146 DOI: 10.3390/nano12172919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Oil separation from water becomes a challenging issue in industries, especially when large volumes of stable oil/water emulsion are discharged. The present short review offers an overview of the recent developments in the nanofiber membranes used in oily wastewater treatment. This review notes that nanofiber membranes can efficiently separate the free-floating oil, dispersed oil and emulsified oil droplets. The highly interconnected pore structure nanofiber membrane and its modified wettability can enhance the permeation flux and reduce the fouling. The nanofiber membrane is an efficient separator for liquid-liquid with different densities, which can act as a rejector of either oil or water and a coalescer of oil droplets. The present paper focuses on nanofiber membranes' production techniques, nanofiber membranes' modification for flux and separation efficiency improvement, and the future direction of research, especially for practical developments.
Collapse
Affiliation(s)
- Rosalam Sarbatly
- Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Nanofiber and Membrane Research Laboratory, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Chel-Ken Chiam
- Nanofiber and Membrane Research Laboratory, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Oil and Gas Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
17
|
Lu X, Chen Y, Yan W, Wang K, Zhou Y, Gao C. Amphiphobic polytetrafluoroethylene membrane with a ring-on-string-like micro/nano structure for air purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
19
|
Zhang X, Li X, Wang A, Yang B, Hou T, Lu Y, Zhou J. Porous superhydrophobic‐superoleophilic polytetrafluoroethylene fibrous membranes with tertiary structures for efficient oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xianggui Zhang
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| | - Xianglong Li
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| | - Antuo Wang
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| | - Bin Yang
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education Zhejiang Sci‐Tech University Zhejiang Hangzhou China
| | - Teng Hou
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| | - Yishen Lu
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| | - Jing Zhou
- College of Textile Science and Engineering (International College of Silk) Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
20
|
Li H, Wu L, Zhang H, Yu F, Peng L. Mussel-inspired fabrication of superhydrophobic cellulose-based paper for the integration of excellent antibacterial activity, effective oil/water separation and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Feng Q, Zhan Y, Yang W, Sun A, Dong H, Chiao YH, Liu Y, Chen X, Chen Y. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti 3C 2T x MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics. J Colloid Interface Sci 2022; 612:156-170. [PMID: 34992016 DOI: 10.1016/j.jcis.2021.12.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Developing the multi-functional membranes including oil/water emulsion separation and removal of hazardous organic pollutants is essential to the purification of the complicated wastewater. However, it remains a daunting challenge to combine these intended functions while maintaining high separation efficiency. Herein, we developed a new 2D lamellar MXene/poly (arylene ether nitrile) (PEN) fibrous composite membrane through the self-assembly of TiO2 nanoparticles intercalated MXene nanosheets onto the porous PEN nanofibrous mats and bioinspired polydopamine triggered chemical-crosslinking with polyethyleneimine (PEI). Such nano-intercalation and mussel-inspired crosslinking could effectively regulate the interlayer spacing of the MXene nanosheet skin layer and surface wettability of the composite membrane, which also further contributed to the fast separation and unique bifunctional feature. It was found that the MXene@TiO2/PEN fibrous composite membrane exhibited low oil-adhesion and superhydrophilic (WCA = 0°)/underwater superoleophobic (UOCA > 155°) properties, which could efficiently separate various surfactant-stabilized oil-in-water emulsions under low pressure of 0.04 MPa while keeping good stability (Under 1 M HCl and 2 M NaOH solutions) and recyclability. Interestingly, the fibrous composite membrane achieved favorable permeation flux of 908-1003 Lm-2h-1 (2270-2507.5 Lm-2h-1bar-1) in comparison to other reported MXene based multifunctional composite membranes. Moreover, owing to the synergistic effect of MXene nanosheets and TiO2 nanoparticles, the MXene@TiO2/PEN membrane showed excellent photocatalytic degradation performance for various dyes under visible light, i.e. the photocatalytic degradation efficiency for 15 ppm MB, MO, CV, and MeB solutions achieved 92.31%, 93.50%, 98.06%, and 99.30% within 60 min, respectively. Such 2D MXene bio-functional composite membranes with outstanding oil/water emulsions separation and photocatalytic degradation of dyes pave an avenue for treating complicated oily wastewater.
Collapse
Affiliation(s)
- Qingying Feng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Wei Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Ao Sun
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Hongyu Dong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Ximin Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| | - Yiwen Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
22
|
Cao M, Xiao F, Yang Z, Chen Y, Lin L. Construction of Polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
PAN/PVA composite nanofibrous membranes for separating oil-in-water emulsion. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Wang L, Zang L, Zhang S, Chang J, Shen F, Zhang Y, Sun L. Superhydrophobic fibers with strong adhesion to water for oil/water separation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Stephen DP, Palanisamy SB. Advances in biopolymer composites and biomaterials for the removal of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Domestic, agriculture, and industrial activities contaminate the waterbodies by releasing toxic substances and pathogens. Removal of pollutants from wastewater is critical to ensuring the quality of accessible water resources. Several wastewater treatments are often used. Researchers are increasingly focusing on adsorption, ion exchange, electrostatic interactions, biodegradation, flocculation, and membrane filtration for the efficient reduction of pollutants. Biopolymers are a combination of two or more products produced by the living organisms used to give the desired finished product with a unique attribute. Biomaterials are also similar to traditional polymers by having higher flexibility, biodegradability, low toxicity, and nontoxic secondary byproducts producing ability. Grafting, functionalization, and crosslinking will be used to enhance the characteristics of biopolymers. The present chapter will illustrate some of the important biopolymers and its compos that will impact wastewater treatment in the future. Most commonly used biopolymers including chitosan (CS), activated carbon (AC), carbon-nanotubes (CNTs), and graphene oxide (GO) are discussed. Finally, the opportunities and difficulties for applying adsorbents to water pollution treatment are discussed.
Collapse
Affiliation(s)
| | - Suresh Babu Palanisamy
- Department of Biotechnology, Saveetha School of Engineering , Saveetha Institute of Medical and Technical Sciences (SIMATS) , Saveetha Nagar, Thandalam , Chennai 602 105 , Tamil Nadu , India
- Faculty of Pharmaceutical Sciences , UCSI University , 56000 Cheras , Kuala Lumpur , Malaysia
| |
Collapse
|
27
|
Fabrication of polyphenylene sulfide nanofibrous membrane via sacrificial templated-electrospinning for fast gravity-driven water-in-oil emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Liang T, Wang B, Fan Z, Liu Q. Fabrication of Superhydrophobic SA-CeO 2@Cu Mesh and Its Application in Oil-Water Separation. ACS OMEGA 2021; 6:25323-25328. [PMID: 34632190 PMCID: PMC8495691 DOI: 10.1021/acsomega.1c03128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
CeO2 was synthesized by the co-precipitation method on the Cu mesh substrate and modified the surface of CeO2@Cu mesh by stearic acid (SA). The superhydrophobic behavior was ascribed to the combination of hierarchical micro-nanostructure of CeO2 and the hydrophobic alkyl groups from SA. The SA-CeO2@Cu mesh had antiacid and base stability and excellent durability as well as high separation efficiency. The separation efficiency can be up to 98.0% after separating 30 times.
Collapse
Affiliation(s)
- Ting Liang
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing 163000, P. R. China
| | - Biao Wang
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing 163000, P. R. China
| | - Zhenzhong Fan
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing 163000, P. R. China
| | - Qingwang Liu
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing 163000, P. R. China
| |
Collapse
|
29
|
Ge JC, Wu G, Yoon SK, Kim MS, Choi NJ. Study on the Preparation and Lipophilic Properties of Polyvinyl Alcohol (PVA) Nanofiber Membranes via Green Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2514. [PMID: 34684954 PMCID: PMC8541033 DOI: 10.3390/nano11102514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 01/27/2023]
Abstract
As an environmentally friendly water-soluble polymer, polyvinyl alcohol (PVA) has attracted extensive attention because of its non-toxic, degradable, low cost, and good biocompatibility. Electrospinning is a kind of nanotechnology, and the nanofiber membrane prepared by it has the advantages of large surface area-to-volume ratios, nano- to micron-sized fibers, etc. Herein, a simple and facile one-step green electrospinning method was developed to fabricate various environmentally friendly PVA nanofiber membranes. The lipophilic properties of PVA membranes were investigated and optimized according different PVA concentrations. The PVA electrospun fiber prepared from the solution at a concentration of 10 wt% had the highest adsorption capacity for the adsorption of new and waste engine oils, and the waste engine oil adsorption capacity (12.70 g/g) was higher than that of new engine oil (11.67 g/g). It also has a relatively large BET surface area (12.05 m2/g), a pore volume (0.04 cm3/g), and an appropriate pore diameter (13.69 nm) and fiber diameter (174.21 nm). All electrospun PVA membranes showed excellent lipophilic properties due to their oil contact angles of much less than 30°. Therefore, PVA electrospun fibrous membranes have great application potential in the field of purifying engine oil due to the excellent lipophilic properties and oil absorption capacity.
Collapse
Affiliation(s)
| | | | - Sam Ki Yoon
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Korea; (J.C.G.); (G.W.)
| | - Min Soo Kim
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Korea; (J.C.G.); (G.W.)
| | - Nag Jung Choi
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Korea; (J.C.G.); (G.W.)
| |
Collapse
|
30
|
Hou C, Cao C. Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO 2 used for oil/water separation. RSC Adv 2021; 11:31675-31687. [PMID: 35496827 PMCID: PMC9041685 DOI: 10.1039/d1ra06393f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
At present, the preparation methods of oil–water separation membranes include chemical vapor deposition, electrospinning, atom transfer radical polymerization, etc. Basically, they all have issues of low recycling rate and incontinuous use. In this paper, the epoxy polymer P(GMA-r-MMA) obtained by traditional radical polymerization of glycidyl methacrylate (GMA) monomer and methacrylic acid (MMA) monomer, and pentafluoropropionic acid (PFPA) is used to modify polymer P(GMA-r-MMA) to obtain fluorine-containing epoxy polymer P(GMA-r-MMA)-g-PFPA. Secondly, fluorine-containing epoxy polymer P(GMA-r-MMA)-g-PFPA and amino-modified nano SiO2 is blended, and the cotton fabric is dip-coated to obtain a superhydrophobic surface, thereby preparing an oil–water separation membrane. By controlling the solution concentration, dipping time, drying time and other conditions, the superhydrophobic performance of the separation membrane was characterized, and the best construction conditions for the superhydrophobic surface were obtained: 0.3 mg mL−1 polymer concentration, immersion time 6 h, drying temperature 120°, and drying time 4 h, and the maximum water contact angle can reach to 150° ± 2°. Finally, the cotton fabric was modified under the best dipping conditions, and used as an oil–water separation membrane to study the oil–water separation performance of n-hexane, n-octane, kerosene, chloroform and water mixtures in batch operation and continuous operation. In batch operations, the separation efficiency can reach 99% and can achieve 5 consecutive high-efficiency separations without intermittent drying. In continuous flow operation, oil–water separation can last for more than 12 hours and the separation efficiency can reach 98%. It also has stable oil–water separation performance for oil–water emulsion. Cotton modified with polymer P(GMA-r-MMA)-g-PFPA and modified silica can obtain super-hydrophobic surfaces, and can be used as oil–water separation membrane for hexane, octane, kerosene, chloroform and water mixtures in batch and continuous operation.![]()
Collapse
Affiliation(s)
- Chengmin Hou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology Xi'an 710048 Shaanxi Province People's Republic of China
| | - Congjun Cao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology Xi'an 710048 Shaanxi Province People's Republic of China
| |
Collapse
|
31
|
Bayram F, Mercan ES, Karaman M. One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Optimized microporous structure of ePTFE membranes by controlling the particle size of PTFE fine powders for achieving high oil-water separation performances. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Wang X, Ao W, Sun S, Zhang H, Zhou R, Li Y, Wang J, Ding H. Tunable Adhesive Self-Cleaning Coating with Superhydrophobicity and Photocatalytic Activity. NANOMATERIALS 2021; 11:nano11061486. [PMID: 34205225 PMCID: PMC8229519 DOI: 10.3390/nano11061486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Superhydrophobic coatings with intelligent properties have attracted much attention because of their wide application in many fields. However, there is a limited amount of literature on superhydrophobic coatings whose wettability and adhesion can be adjusted by UV irradiation and calcination at the same time. In this study, amorphous SiO2 microspheres (A-SiO2) and nano-TiO2 particles (N-TiO2) were used to fabricate A-SiO2/N-TiO2 composites by wet grinding, and then, they were modified with polydimethylsiloxane (PDMS) and sprayed onto substrate surfaces to obtain a tunable adhesive superhydrophobic A-SiO2/N-TiO2@PDMS coating. It is worth noting that the wettability and adhesion of the coating to water droplets could be adjusted by UV irradiation and calcination. The mechanisms of the aforementioned phenomena were studied. Moreover, methyl orange solution could be degraded by the coating due to its photocatalysis. The as-prepared coating had good adaptation to different substrates and outdoor environments. Moreover, the surfaces of these coatings exhibited the same liquid repellency towards different droplets. This research provides an environmental strategy to prepare advanced self-cleaning coatings.
Collapse
|
34
|
Wang Y, Shen H, Cui C, Hou L, Chen W, Liu Q, Xu J, Wang Z, Hu J. Towards to better permeability and antifouling sulfonated poly (aryl ether ketone sulfone) with carboxyl group ultrafiltration membrane blending with amine functionalization of SBA-15. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Rasouli S, Rezaei N, Hamedi H, Zendehboudi S, Duan X. Design, fabrication, and characterization of a facile superhydrophobic and superoleophilic mesh-based membrane for selective oil-water separation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yang H, Wang Y, Fang S, Wang G, Zhu L, Zeng Z, Wang L. Janus polyvinylidene fluoride membranes with controllable asymmetric configurations and opposing surface wettability fabricated via nanocasting for emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Electrospun fibrous membrane with controlled hierarchical structure and wettability for effective emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Wang Y, Wang J, Ding Y, Zhou S, Liu F. In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Three-dimensional structure design of tubular polyvinyl chloride hybrid nanofiber membranes for water-in-oil emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118905] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Zheng W, Huang J, Li S, Ge M, Teng L, Chen Z, Lai Y. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:67-87. [PMID: 33382588 DOI: 10.1021/acsami.0c18794] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clean water resources are essential to our human society. Oil leakage has caused water contamination, which leads to serious shortage of clean water, environmental deterioration, and even increasing number of deaths. It is of great urgency to solve the oil-polluted water problems worldwide. Efficient oil/water separation, especially emulsified oil/water mixture separation, is widely used to mitigate water pollution issues. Recently, advanced materials with special wettability have been employed for oily wastewater remediation. Moreover, by endowing them with various intelligent functions, smart materials can effectively separate complex oil/water mixtures including extremely stable emulsions. In this review, oil/water separation mechanisms and various fabrication methods of special wettability separation materials are summarized. We highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing, and switchable oil/water separation materials, which can achieve self-cleaning, self-healing, and efficient oily wastewater treatment. In each section, the acting mechanisms, fabricating technologies, representative studies, and separation efficiency are briefly introduced. Lastly, the challenges and outlook for oil/water separation based on the special wettability materials are discussed.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Mingzheng Ge
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, P. R. China
| | - Lin Teng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
41
|
Barthwal S, Lim SH. A durable, fluorine-free, and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118716] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Liu Y, Yang B, Xu J, Zhao H, He Y. Oil-water separation performance of aligned single walled carbon nanotubes membrane: A reactive molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117576] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Zhu Z, Zhong L, Chen X, Zheng W, Zuo J, Zeng G, Wang W. Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Chen H, Huang M, Liu Y, Meng L, Ma M. Functionalized electrospun nanofiber membranes for water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139944. [PMID: 32535464 DOI: 10.1016/j.scitotenv.2020.139944] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Electrospun nanofiber membranes (ENMs) have high porosity, high specific surface area and unique interconnected structure. It has huge advantages and potential in the treatment and recycling of wastewater. In addition, ENMs can be easily functionalized by combining multifunctional materials to achieve different water treatment effects. Based on this, this review summarizes the preparation of functionalized ENMs and its detailed application in the field of water treatment. First, the process and influence factors of electrospinning process are introduced. ENMs with high porosity, thin and small fiber diameter have better performance. Secondly, the modification methods of ENMs are analyzed. Pre-electrospinning and post-electrospinning modification technology can prepare specific functionalized ENMs. Subsequently, functionalized ENMs show water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial. Subsequently, the application of functionalized ENMs in water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial capabilities were listed. Finally, we also made some predictions about the future development direction of ENMs in water treatment, and hope this article can provide some clues and guidance for the research of ENMs in water treatment.
Collapse
Affiliation(s)
- Haisheng Chen
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mengdie Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
46
|
Jia W, Kharraz JA, Guo J, An AK. Superhydrophobic (polyvinylidene fluoride-co-hexafluoropropylene)/ (polystyrene) composite membrane via a novel hybrid electrospin-electrospray process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Qing W, Li X, Wu Y, Shao S, Guo H, Yao Z, Chen Y, Zhang W, Tang CY. In situ silica growth for superhydrophilic-underwater superoleophobic Silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118476] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Zhou T, Zhong Q, Li J, Yao Y, Xiang R, Zhu P. Superhydrophobic polytetrafluoroethylene nanofiber membranes prepared by vacuum sintering and their application in vacuum membrane distillation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tao Zhou
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
- Chengdu Biotop Pharma Tech. Co., Ltd. Chengdu Sichuan People's Republic of China
| | - Qin Zhong
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| | - Jingde Li
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| | - Yongyi Yao
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
- National Engineering Research Centre for Flue Gas Desulfurization Techniques, College of Architecture and EnvironmentSichuan University Chengdu Sichuan People's Republic of China
| | - Ruili Xiang
- Analytical and Testing CenterSichuan University Chengdu Sichuan People's Republic of China
| | - Puxin Zhu
- Textile InstituteSichuan University Chengdu Sichuan People's Republic of China
| |
Collapse
|
49
|
Ma W, Li Y, Zhang M, Gao S, Cui J, Huang C, Fu G. Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34999-35010. [PMID: 32663393 DOI: 10.1021/acsami.0c09059] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater pollution has always been one of the most severe worldwide environmental problems. In addition, in light of the frequent oil spills that have occurred in recent years, the treatment of oily wastewater is particularly important. In this work, a novel zeolitic imidazolate framework-8@thiolated graphene (ZIF-8@GSH) composites-based polyimide (PI) nanofibrous membrane was developed via a facile electrospinning and in situ hydrothermal synthesis approaches for effective purification of oily wastewater. The membrane showed superhydrophobicity/superoleophilicity and high separation efficiency (>99.9%) for a wide range of oil/water mixtures and water-in-oil emulsions. Besides, the membrane demonstrated excellent photocatalytic dye degradation, antibacterial, self-cleaning, and mechanochemical durable abilities, showing high potential in oily wastewater treatment and water remediation.
Collapse
Affiliation(s)
- Wenjing Ma
- College of Chemistry and Chemical Engineering, Southeast University (SEU), Nanjing, 211189, P. R. China
| | - Yuansheng Li
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Mengjie Zhang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Shuting Gao
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Jiaxin Cui
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Guodong Fu
- College of Chemistry and Chemical Engineering, Southeast University (SEU), Nanjing, 211189, P. R. China
| |
Collapse
|
50
|
Qing W, Wu Y, Li X, Shi X, Shao S, Mei Y, Zhang W, Tang CY. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118226] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|