1
|
Yang J, Zhu S, Zhang H. Polycation-Intercalated MXene Membrane with Enhanced Permselective and Anti-Microbial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2885. [PMID: 37947731 PMCID: PMC10650023 DOI: 10.3390/nano13212885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) nanomaterial-based membranes feature attractive properties for molecular separation and transport, which exhibit huge potential in various chemical processes. However, the low permeability and bio-fouling of the MXene membrane in water treatment become huge obstacles to its practical application. Herein, a highly permselective and anti-bacterial 2D nanofiltration membrane is fabricated by intercalating a polycation of polydiallyldimethylammonium chloride (PDDA) into the Ti3C2Tx MXene laminar architecture through a facile and patternable electrostatic assembly strategy. As a result, the as-fabricated Ti3C2Tx/PDDA composite membrane exhibits higher water permeance up to 73.4 L m-2 h-1 with a rejection above 94.6% for MgCl2. The resultant membrane simultaneously possesses good resistance to swelling and long-term stability in water environments, even after 8 h. Additionally, the Ti3C2Tx/PDDA membrane also demonstrates a high flux recovery ratio of nearly 96.1% to bovine serum albumin proteins after being cleaned. More importantly, the current membrane shows excellent anti-adhesive and anti-microbial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), with inhibition rates of 90% and 95% against E. coli and S. aureus, respectively. This holds great potential for the application of the polyelectrolyte-intercalated MXene membrane in serving as a promising platform to separate molecules and/or ions in an aquatic environment.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| |
Collapse
|
2
|
Qiu S, Li Z, Ye X, Ying X, Zhou J, Wang Y. Selective Swelling of Polystyrene (PS)/Poly(dimethylsiloxane) (PDMS) Block Copolymers in Alkanes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shoutian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Xiang Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| |
Collapse
|
3
|
Coceancigh H, Xue L, Nagasaka S, Higgins DA, Ito T. Solvent-Induced Swelling Behaviors of Microphase-Separated Polystyrene- block-Poly(ethylene oxide) Thin Films Investigated Using In Situ Spectroscopic Ellipsometry and Single-Molecule Fluorescence Microscopy. J Phys Chem B 2022; 126:8338-8349. [PMID: 36219821 DOI: 10.1021/acs.jpcb.2c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Block copolymers have attracted considerable interest in the fields of nanoscience and nanotechnology because these polymers afford well-defined nanostructures via self-assembly. An in-depth understanding of solvent effects on the physicochemical properties of these microdomains is crucial for their preparation and utilization. Herein, we employed in situ spectroscopic ellipsometry and single-molecule fluorescence techniques to gain detailed insights into microdomain properties in polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films exposed to ethanol- and water-saturated N2. We observed a quick increase and a subsequent gradual decrease in the ellipsometric thickness of PS-b-PEO films upon exposure to ethanol-saturated N2. This observation was unexpected because ethanol-saturated N2 induced negligible thickness change for PS and PEO homopolymer films. The similarity in maximum thickness gain observed under ethanol- and water-saturated N2 implied the swelling of PEO microdomains. Ethanol vapor permeation through the PEO microdomains was supported by the redshift of the ensemble and single-molecule fluorescence emission of Nile red in PS-b-PEO films. Single-molecule tracking data showed the initial enhancement and subsequent reduction of the diffusion of hydrophilic sulforhodamine B molecules in PS-b-PEO films upon exposure to ethanol-saturated N2, consistent with the spectroscopic ellipsometry results. The higher ethanol susceptibility of the PEO microdomains was attributable to their amorphous nature, as shown by FTIR data.
Collapse
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Lianjie Xue
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Shinobu Nagasaka
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, Manhattan, Kansas66506-0401, United States
| |
Collapse
|
4
|
Septani CM, Kua MF, Chen CY, Lin JM, Sun YS. Micellization, aggregation, and gelation of polystyrene-block-poly(ethylene oxide) in cosolvents added with hydrochloric acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Aissou K, Bouzit H, Krusch F, Méricq JP, Cot D, Masquelez N, Roualdes S, Quémener D. Asymmetric Solvent-Annealed Triblock Terpolymer Thick Films Topped by a Hexagonal Perforated Lamellar Nanostructure. Macromol Rapid Commun 2021; 43:e2100585. [PMID: 34734443 DOI: 10.1002/marc.202100585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/15/2021] [Indexed: 11/10/2022]
Abstract
Asymmetric and nanostructured polystyrene-block-poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO or SVEO, S:V:EO ≈ 56:34:10, 79.5 kg mol-1 ) thick films blended with 20 wt% of a short PS homopolymer (hPS, 10.5 kg mol-1 ) are achieved by combining the non-solvent induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment. Here, the NIPS step allows for the formation of a highly-permeable sponge-like substructure topped by a dense thin layer exhibiting poorly-ordered nanopores while the subsequent SVA treatment enables to reconstruct the material top surface into a porous monolayer of well-ordered hexagonal perforated lamellae (HPL). This optimized film architecture generated by NIPS-SVA shows a water permeability of 860 L h-1 m-2 bar-1 , which is roughly two times higher than the flux measured through NIPS made PS-b-P2VP-b-PEO/hPS materials having poorly-ordered nanopores. The post-SVA treatment is also revealed as a powerful tool to tailor the thickness of the nanostructure formed within the blended material because monoliths entirely composed of a HPL phase are produced by increasing the time of exposure to a chloroform stream. The water flux of such PS-b-P2VP-b-PEO/hPS monoliths is found to be an order of magnitude lower than that of their asymmetric film homologues.
Collapse
Affiliation(s)
- Karim Aissou
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Hana Bouzit
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Felix Krusch
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Jean Pierre Méricq
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Didier Cot
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Stéphanie Roualdes
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| | - Damien Quémener
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Universite de, Montpellier, Montpellier, 34090, France
| |
Collapse
|
6
|
Shao DD, Wang L, Yan XY, Cao XL, Shi T, Sun SP. Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Guo L, Wang Y, Steinhart M. Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chem Soc Rev 2021; 50:6333-6348. [PMID: 33890584 DOI: 10.1039/d0cs00500b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Removing hazardous particulate and macromolecular contaminants as well as viruses with sizes from a few nm up to the 100 nm-range from water and air is crucial for ensuring sufficient sanitation and hygiene for a growing world population. To this end, high-performance separation membranes are needed that combine high permeance, high selectivity and sufficient mechanical stability under operating conditions. However, design features of separation membranes enhancing permeance reduce selectivity and vice versa. Membrane configurations combining high permeance and high selectivity suffer in turn from a lack of mechanical robustness. These problems may be tackled by using block copolymers (BCPs) as a material platform for the design of separation membranes. BCPs are macromolecules that consist of two or more chemically distinct block segments, which undergo microphase separation yielding a wealth of ordered nanoscopic domain structures. Various methods allow the transformation of these nanoscopic domain structures into customized nanopore systems with pore sizes in the sub-100 nm range and with narrow pore size distributions. This tutorial review summarizes design strategies for nanoporous state-of-the-art BCP separation membranes, their preparation, their device integration and their use for water purification.
Collapse
Affiliation(s)
- Leiming Guo
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| | | | | |
Collapse
|
8
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| |
Collapse
|
9
|
Yang H, Shi X, Chu S, Shao Z, Wang Y. Design of Block-Copolymer Nanoporous Membranes for Robust and Safer Lithium-Ion Battery Separators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003096. [PMID: 33854886 PMCID: PMC8025019 DOI: 10.1002/advs.202003096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Lithium-ion batteries (LIBs) suffer from unsatisfied performance and safety risks mainly because of the separators. Herein, a block copolymer (BCP) composed of robust and electrolyte-affinitive polysulfone (PSF) and Li+-affinitive polyethylene glycol (PEG) is rationally designed to prepare a new type of LIB separator. The copolymer is subjected to selective swelling, producing nanoporous membranes with PEG chains enriched along the pore walls. Intriguingly, when used as LIB separators, thus-produced BCP membranes efficiently integrate the merits of both PSF and PEG chains, endowing the separators thermal resistance as high as 150 °C and excellent wettability. Importantly, the nanoporous separator is able to close the pores with a temperature of 125 °C, offering the battery a thermal shutdown function. The membrane exhibits ultrahigh electrolyte uptake up to 501% and a prominent ionic conductivity of 10.1 mS cm-1 at room temperature. Batteries assembled with these membranes show excellent discharge capacity and C-rate performance, outperforming batteries assembled from other separators including the extensively used Celgard 2400. This study demonstrates a facile strategy, selective swelling of block copolymer, to engineer high-performance and safer LIB separators, which is also applicable to produce advanced copolymer-based separators for other types of batteries.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjingJiangsu211816P. R. China
- Present address:
College of Chemistry & Chemical EngineeringYantai UniversityYantaiShandong264005P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjingJiangsu211816P. R. China
| | - Shiyong Chu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjingJiangsu211816P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjingJiangsu211816P. R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjingJiangsu211816P. R. China
- Present address:
College of Chemistry & Chemical EngineeringYantai UniversityYantaiShandong264005P. R. China
| |
Collapse
|
10
|
Shi X, Wang L, Yan N, Wang Z, Guo L, Steinhart M, Wang Y. Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation (N Y) 2021; 2:100088. [PMID: 34557742 PMCID: PMC8454551 DOI: 10.1016/j.xinn.2021.100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022] Open
Abstract
Thin polymer coatings covering on porous substrates are a common composite structure required in numerous applications, including membrane separation, and there is a strong need to push the coating thicknesses down to the nanometer scale to maximize the performances. However, producing such ultrathin polymer coatings in a facile and efficient way remains a big challenge. Here, uniform ultrathin polymer covering films (UPCFs) are realized by a facile and general approach based on rapid solvent evaporation. By fast evaporating dilute polymer solutions spread on the surface of porous substrates, we obtain ultrathin coatings (down to ∼30 nm) exclusively on the top surface of porous substrates, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. Upon selective swelling of the block copolymer and crosslinking of PVA, we obtain highly permeable membranes delivering ∼2–10 times higher permeance in ultrafiltration and pervaporation than state-of-the-art membranes with comparable selectivities. We have invented a very convenient but highly efficient process for the direct preparation of defective-free ultrathin coatings on porous substrates, which is extremely desired in different fields in addition to membrane separation. Fast solvent evaporation is developed to produce UPCFs on porous substrates Selective swelling to cavitate block copolymers to form interconnected mesopores UPCFs enable the preparation of highly permeable membranes
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Nina Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Zhaogen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Leiming Guo
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
- Corresponding author
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
- Corresponding author
| |
Collapse
|
11
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization. MATERIALS 2020; 13:ma13215020. [PMID: 33172217 PMCID: PMC7664414 DOI: 10.3390/ma13215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Surface modification on microporous polyethylene (PE) membranes was facilitated by plasma polymerizing with two hydrophilic precursors: ethylene oxide vinyl ether (EO1V) and diethylene oxide vinyl ether (EO2V) to effectively improve the fouling against mammalian cells (Chinese hamster ovary, CHO cells) and proteins (bovine serum albumin, BSA). The plasma polymerization procedure incorporated uniform and pin-hole free ethylene oxide-containing moieties on the filtration membrane in a dry single-step process. The successful deposition of the plasma polymers was verified by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses. Water contact angle measurements and permeation experiments using cell and protein solutions were conducted to evaluate the change in hydrophilicity and fouling resistance for filtrating biomolecules. The EO1V and EO2V plasma deposited PE membranes showed about 1.45 fold higher filtration performance than the pristine membrane. Moreover, the flux recovery reached 80% and 90% by using deionized (DI) water and sodium hydroxide (NaOH) solution, indicating the efficacy of the modification and the good reusability of the modified PE membranes.
Collapse
|
13
|
Burts KS, Plisko TV, Bildyukevich AV, Penkova AV, Pratsenko SA. Modification of polysulfone ultrafiltration membranes using block copolymer Pluronic F127. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hampu N, Werber JR, Hillmyer MA. Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45351-45362. [PMID: 32986409 DOI: 10.1021/acsami.0c13726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly selective and water permeable dual-layer ultrafiltration (UF) membranes comprising a disordered poly(methyl methacrylate-stat-styrene)-block-poly(lactide) selective layer and a polysulfone (PSF) support layer were fabricated using a co-casting technique. A dilute solution of diblock polymer was spin coated onto a solvent-swollen PSF layer, rapidly heated to dry and disorder the block polymer layer, and subsequently immersed into an ice water coagulation bath to kinetically trap the disordered state in the block polymer selective layer and precipitate the support layer by nonsolvent-induced phase separation. Subsequent removal of the polylactide block generated porous membranes suitable for UF. The permeability of these dual-layer membranes was modulated by tuning the concentration of the PSF casting solution, while the size-selectivity was maintained because of the narrow pore size distribution of the self-assembled block polymer selective layer. Elimination of the thermal annealing step resulted in a dramatic increase in the water permeability without adversely impacting the size-selectivity, as the disordered nanostructure present in the concentrated casting solution was kinetically trapped upon rapid drying. The co-casting strategy outlined in this work may enable the scalable fabrication of block polymer membranes with both high permeability and high selectivity.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Room-temperature swelling of block copolymers for nanoporous membranes with well-defined porosities. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Shao H, Cheng J, Kang D, Qin S. Fabrication of a novel hollow fiber composite membrane with a double-layer structure for enhanced water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zhang C, Yin C, Wang Y, Zhou J, Wang Y. Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Selective swelling of polysulfone/poly(ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zhou J, Wang Y. Selective Swelling of Block Copolymers: An Upscalable Greener Process to Ultrafiltration Membranes? Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01747] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
20
|
Xiao A, Zhang Z, Shi X, Wang Y. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44783-44791. [PMID: 31689069 DOI: 10.1021/acsami.9b18062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covalent organic frameworks (COFs) with ordered arrays of sub-2 nm regular pores are drawing increasing attention in membrane separation, and it remains highly desirable for effective and controllable strategies to fabricate COF-based membranes. Herein, we demonstrate a perforated polymer-assisted transfer strategy enabling COF nanofilms for molecular separation. Solvothermal synthesis is used for the confined growth of TpPa, a stable, imine-linked COF, on the smooth surfaces of silicon substrates. Continuous, crystalline COF nanofilms are obtained, and their thicknesses are tunable in the range from a few tens to several hundred nanometers depending on monomer concentrations and reaction time. A block copolymer layer is coated on the COF nanofilms, which is then perforated to produce interconnected mesopores by the mechanism of selective swelling-induced pore generation. The perforated polymer coating functions as a protective but permeable layer enabling the easy transfer of the COF nanofilm onto porous substrates. Thus, we obtain a new type of composite membranes with the microporous COF nanofilm as the selective layer, sandwiched between the macroporous substrate and the mesoporous protective layer. The composite membranes exhibit good separation performances with water permeance up to ∼51 L m-2 h-1 bar-1 and high rejection rates to various dyes. This work demonstrates a new method to prepare COF-based membranes for molecular separation, and the invented perforated polymer-assisted transfer technology is expected to find applications in transferring other ultrathin materials to demanded substrates.
Collapse
Affiliation(s)
- Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , Jiangsu , P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , Jiangsu , P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , Jiangsu , P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , Jiangsu , P. R. China
| |
Collapse
|
21
|
Shi X, Xiao A, Zhang C, Wang Y. Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Liu Y, Ou H, Li S, You Q, Liu H, Liao G, Wang D. One-step preparation of polyimide-inlaid amine-rich porous organic block copolymer for efficient removal of chlorophenols from aqueous solution. J Environ Sci (China) 2019; 78:215-229. [PMID: 30665640 DOI: 10.1016/j.jes.2018.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
A novel polyimide-inlaid amine-rich porous organic block copolymer (PI-b-ARPOP) was prepared via one-step polymerization by using different molar ratios of melamine (MA)/terephthalaldehyde (TA)/pyromellitic dianhydride (PMDA), at molar ratios of 4/3/1, 4/2/2 and 4/1/3. The copolymer contained both aminal groups belonging to ARPOP and imide groups belonging to PI, and the bonding styles of the monomers and growth orientations of the polymeric chains were diversiform, forming an excellent porous structure. Notably, MA/TA/PMDA (4/2/2) had a surface area and pore volume of 487.27 m2/g and 1.169 cm3/g, respectively. The adsorption performance of the materials towards 2,4-dichlorophenol (2,4-DCP) in ultra-pure water was systematically studied. The pH value of 7 was optimal in aqueous solution. Na+ and Cl- ions did not negatively affect the adsorption process, while humic acid (HA) slightly decreased the capacity. The equilibrium time was 40 sec, and the maximum adsorption capacity reached 282.49 mg/g at 298 K. The removal process was endothermic and spontaneous, and the copolymer could maintain its porous structure and consistent performance after regeneration by treatment with alkali. Moreover, to further assess the practical applicability of the material, the adsorption performance towards 2,4-DCP in river water was also investigated. This paper demonstrated that the PI-b-ARPOP can be an efficient and practical adsorbent to remove chlorophenols from aqueous solution.
Collapse
Affiliation(s)
- Yanyang Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Haijian Ou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shangqing Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qingliang You
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Huixian Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Guiying Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Dongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
Zhou J, Zhang C, Shen C, Wang Y. Synthesis of poly(2-dimethylaminoethyl methacrylate)-block- poly(styrene-alt-N-phenylmaleimide) and its thermo-tolerant nanoporous films prepared by selective swelling. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Govinna N, Sadeghi I, Asatekin A, Cebe P. Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nelaka Govinna
- Department of Physics and Astronomy, Center for Nanoscopic Physics Tufts University 574 Boston Avenue, Medford Massachusetts 02155
| | - Ilin Sadeghi
- Department of Chemical and Biological Engineering Science and Technology Center 4 Colby Street, Medford Massachusetts 02155
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering Science and Technology Center 4 Colby Street, Medford Massachusetts 02155
| | - Peggy Cebe
- Department of Physics and Astronomy, Center for Nanoscopic Physics Tufts University 574 Boston Avenue, Medford Massachusetts 02155
| |
Collapse
|
25
|
|
26
|
Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Cho Y, Kim Y, Choi TL, Lim J, Char K. Swelling-induced pore generation in fluorinated polynorbornene block copolymer films. Polym Chem 2018. [DOI: 10.1039/c8py00646f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis of fluorinated polynorbornene BCPs and swelling-induced pore generation of their films using fluorous solvent.
Collapse
Affiliation(s)
- Yunshik Cho
- The National Creative Research Initiative Center for Intelligent Hybrids
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul
- Korea
| | - Youngjin Kim
- The National Creative Research Initiative Center for Intelligent Hybrids
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul
- Korea
| | - Tae-Lim Choi
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Jeewoo Lim
- Department of Chemistry
- Kyung Hee University
- Seoul
- Korea
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul
- Korea
| |
Collapse
|