1
|
Deng W, Zhang Z, Liu L, Zhou Z, Wu L. Tannin-assisted interfacial polymerization towards COF membranes for efficient dye separation. RSC Adv 2024; 14:16510-16519. [PMID: 38769964 PMCID: PMC11104732 DOI: 10.1039/d4ra02838d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Membrane separation has been shown to have significant potential in addressing the global shortage of clean water. Covalent organic frameworks (COFs) have gained significant attention in the field of membrane separation due to their structural stability and controllable pore size. Here, a modification of polyethersulfone ultrafiltration membranes with TA-assisted COFs is prepared by interfacial polymerization and co-deposition. Intriguingly, in comparison to the conventional COF synthesis method, the interfacial polymerization reaction used n-butanol as the oil-phase monomer to prevent substrate corrosion. More importantly, the TA-assisted co-deposition not only introduces a large number of environmentally friendly hydrophilic groups to enhance the hydrophilicity of the membrane surface, but also the phenolic hydroxyl group contained in TA generates a quinone group upon oxidation. This group can undergo a Michael addition reaction with the amine group, followed by interfacial polymerization to regulate the COFs pore size. Consequently, the optimized membrane exhibited a high permeation flux of 122.03 L m-2 h-1 bar-1 without altering the pore size structure of the original membranes and demonstrated separation performance for various dyes (Mw: 300-1300 g mol-1), with a retention rate of over 98%. Despite multiple filtrations of methyl blue dye, the membrane prepared by simple rinsing still exhibited high retention rates (>98%) with exceptional stability and retention performance. The optimized membrane demonstrated good hydrophilicity and dye separation performance, indicated promising potential for dye separation applications.
Collapse
Affiliation(s)
- Weishan Deng
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zekun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
2
|
Lou Y, Xi J, Jiang S, Chu Y, Deng W, Bian H, Xu Z, Xiao H, Wu W. Nanocellulose-based membranes with pH- and temperature-responsive pore size for selective separation. Int J Biol Macromol 2024; 263:130176. [PMID: 38368977 DOI: 10.1016/j.ijbiomac.2024.130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Smart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.75 nm to 144.81 nm, and the pure water flux can be regulated from 342 to 2118 L·m-2·h-1 with remarkable variation in the pH range of 1-11 and temperature range of 20-60 °C. The adjustability of pore size is able to achieve the gradient selective separation of particles and polymers with different sizes. In addition, owing to the underwater superoleophobicity and the nanoscale pore structure, the membrane separation efficiencies of emulsified oils are higher than 99 %. Moreover, the controllable pore size endows the membrane with good self-cleaning performance. This nanocellulose-based smart gating membrane has potential applications in the fields of controllable permeation, selective separation, fluid transport, and drug/chemical controlled release systems.
Collapse
Affiliation(s)
- Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Xi J, Zhang Y, Lou Y, Chu Y, Dai H, Xu Z, Xiao H, Wu W. A smart gating nanocellulose membrane showing selective separation and self-cleaning performance. Int J Biol Macromol 2023:125236. [PMID: 37302630 DOI: 10.1016/j.ijbiomac.2023.125236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
A smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m-2·h-1·bar-1 to 1088 L·m-2·h-1·bar-1. The gating ratio of the membrane can reach 2.47. The photothermal effect of CNT rapidly warms up the membrane to the lowest critical solution temperature in the water, avoiding the constraint that the whole water phase cannot be heated throughout the practical use process. The membrane can precisely control the nanoparticles to concentrate at 25.3 nm, 47.7 nm or 102 nm by adjust the temperature. In addition, the water permeance can be restored to 370 L·m-2·h-1·bar-1 by washing the membrane under light. The smart gating membrane has a wide application in substance multi-stage separation and selective separation, and it can realize self-cleaning.
Collapse
Affiliation(s)
- Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Sengupta A, Vu A, Qian X, Wickramasinghe SR. Remote Performance Modulation of Ultrafiltration Membranes by Magnetically and Thermally Responsive Polymer Chains. MEMBRANES 2021; 11:membranes11050340. [PMID: 34064385 PMCID: PMC8147820 DOI: 10.3390/membranes11050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration membranes, that respond to an external magnetic field and local temperature have been developed. Surface-initiated activator-generated electron transfer (AGET) atom transfer radical polymerization (ATRP) has been used to graft poly(N-isopropylacrylamide) (PNIPAm) from the surface of 300 kDa regenerated cellulose membranes. The polymerization initiator was selectively attached to the entire membrane surface, only the outer membrane surface or only the inner pore surface. A superparamagnetic nanoparticle was attached to the end of the polymer chain. The DI water flux as well as the flux and rejection of bovine serum albumin were investigated in the absence and presence of a 20 and 1000 Hz oscillating magnetic field. In an oscillating magnetic field, the tethered superparamagnetic nanoparticles can cause movement of the PNIPAm chains or induce heating. A 20 Hz magnetic field maximizes movement of the chains. A 1000 Hz magnetic field leads to greater induced heating. PNIPAm displays a lower critical solution temperature at 32 °C. Heating leads to collapse of the PNIPAm chains above their Lower Critical Solution Temperature (LCST). This work highlights the versatility of selectively grafting polymer chains containing a superparamagnetic nanoparticle from specific membrane locations. Depending on the frequency of the oscillating external magnetic field, membrane properties may be tuned.
Collapse
Affiliation(s)
- Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai 400085, India
| | - Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayettteville, AR 72701, USA;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayettteville, AR 72701, USA; (A.S.); (A.V.)
- Correspondence: ; Tel.: +1-479-575-8475
| |
Collapse
|
6
|
Vu A, Sengupta A, Freeman E, Qian X, Ulbricht M, Wickramasinghe SR. Tailoring and Remotely Switching Performance of Ultrafiltration Membranes by Magnetically Responsive Polymer Chains. MEMBRANES 2020; 10:membranes10090219. [PMID: 32882913 PMCID: PMC7558725 DOI: 10.3390/membranes10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022]
Abstract
Magnetically responsive ultrafiltration membranes were prepared by grafting poly(2-hydroxyethyl methacrylate) chains from the outer surface of 100-kDa regenerated cellulose ultrafiltration membranes. Surface-initiated atom transfer radical polymerization was used to graft the polymer chains. Grafting from the internal pore surface was suppressed by using glycerol as a pore-filling solvent during initiator immobilization at varied densities. Glycerol suppresses the initiator attachment to the pore surface. Polymerization times of up to four hours were investigated. Superparamagnetic nanoparticles were covalently attached to the chain end. Membrane performance was determined using bovine serum albumin and dextran as model solutes. Increasing the grafted polymer chain density and length led to a decrease in the permeate flux and an increase in the apparent rejection coefficient. In an oscillating magnetic field, movement of the grafted polymer chains led to a decrease in the permeate flux, as well as an increase in the apparent rejection coefficient of the model solutes.
Collapse
Affiliation(s)
- Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Emily Freeman
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Correspondence:
| |
Collapse
|
7
|
|
8
|
Jelken J, Pandiyarajan CK, Genzer J, Lomadze N, Santer S. Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30844-30851. [PMID: 30114362 DOI: 10.1021/acsami.8b09580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, ∼100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances.
Collapse
Affiliation(s)
- Joachim Jelken
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - C K Pandiyarajan
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695-7905 , United States
| | - Nino Lomadze
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy , University of Potsdam , 14476 Potsdam , Germany
| |
Collapse
|
9
|
Schöttner S, Hossain R, Rüttiger C, Gallei M. Ferrocene-Modified Block Copolymers for the Preparation of Smart Porous Membranes. Polymers (Basel) 2017; 9:E491. [PMID: 30965794 PMCID: PMC6418580 DOI: 10.3390/polym9100491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022] Open
Abstract
The design of artificially generated channels featuring distinct remote-switchable functionalities is of critical importance for separation, transport control, and water filtration applications. Here, we focus on the preparation of block copolymers (BCPs) consisting of polystyrene-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) having molar masses in the range of 91 to 124 kg mol-1 with a PHEMA content of 13 to 21 mol %. The BCPs can be conveniently functionalized with redox-active ferrocene moieties by a postmodification protocol for the hydrophilic PHEMA segments. Up to 66 mol % of the hydroxyl functionalities can be efficiently modified with the reversibly redox-responsive units. For the first time, the ferrocene-containing BCPs are shown to form nanoporous integral asymmetric membranes by self-assembly and application of the non-solvent-induced phase separation (SNIPS) process. Open porous structures are evidenced by scanning electron microscopy (SEM) and water flux measurements, while efficient redox-switching capabilities are investigated after chemical oxidation of the ferrocene moieties. As a result, the porous membranes reveal a tremendously increased polarity after oxidation as reflected by contact angle measurements. Additionally, the initial water flux of the ferrocene-containing membranes decreased after oxidizing the ferrocene moieties because of oxidation-induced pore swelling of the membrane.
Collapse
Affiliation(s)
- Sebastian Schöttner
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Rimjhim Hossain
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Christian Rüttiger
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Markus Gallei
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| |
Collapse
|