1
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
2
|
Senanayake M, Aryal D, Grest GS, Perahia D. Response of ionizable block copolymer assemblies to solvent dielectrics: A molecular dynamics study. J Chem Phys 2023; 159:194904. [PMID: 37982486 DOI: 10.1063/5.0174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Ionizable copolymers assembly in solutions is driven by the formation of ionic clusters. Fast clustering of the ionizable blocks often leads to the formation of far-from equilibrium assemblies that ultimately impact the structure of polymer membranes and affect their many applications. Using large-scale atomistic molecular dynamics simulations, we probe the effects of electrostatics on the formation of ionizable copolymer micelles that dominate their solution structure, with the overarching goal of defining the factors that control the assembly of structured ionizable copolymers. A symmetric pentablock ionizable copolymer, with a randomly sulfonated polystyrene center tethered to polyethylene-r-propylene block, terminated by poly(t-butyl styrene), in solvents of varying dielectric constants from 2 to 20, serves as the model system. We find that independent of the solvents, this polymer forms a core-shell micelle with the ionizable segment segregating to the center of the assembly. The specific block conformation, however, strongly depends on the sulfonation levels and the dielectric constant and the polarity of the solvents.
Collapse
Affiliation(s)
- Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Dipak Aryal
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
3
|
Zheng W, Liu CH, Nieh MP, Cornelius CJ. Sulfonated Pentablock Copolymer Membrane Morphological Anisotropy and Its Impact on Dimensional Swelling, Proton Conductivity, and the Transport of Protons and Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjian Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Chris J. Cornelius
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
4
|
Yang Y, Tocchetto R, Nixon K, Sun R, Elabd YA. Dehumidification via polymer electrolyte membrane electrolysis with sulfonated pentablock terpolymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lehmann ML, Yang G, Nanda J, Saito T. Unraveling Ion Transport in Trifluoromethanesulfonimide Pentablock Copolymer Membranes in Nonaqueous Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle L. Lehmann
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, Tennessee 37966, United States
| | - Guang Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jagjit Nanda
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemical Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37966, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Investigating the performance of functionalized and pristine graphene oxide impregnated Nexar™ nanocomposite membranes for PEM fuel cell. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
|
8
|
Yang B, Bai L, Li T, Deng L, Liu L, Zeng S, Han J, Zhang X. Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Senanayake M, Aryal D, Grest GS, Perahia D. Interfacial Response and Structural Adaptation of Structured Polyelectrolyte Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dipak Aryal
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
10
|
Thomas ER, Jain A, Mann SC, Yang Y, Green MD, Walker WS, Perreault F, Lind ML, Verduzco R. Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Colón-Ortiz J, Patel SY, Berninzon A, Gabounia G, Landers JM, Neimark AV. In-situ growth and characterization of metal oxide nanoparticles within block-copolymer polyelectrolyte membranes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Colón-Ortiz J, Ramesh P, Tsilomelekis G, Neimark AV. Permeation dynamics of dimethyl methylphosphonate through polyelectrolyte composite membranes by in-situ Raman spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Khan WR, Herrera A, Wang D, Motealleh B, Cornelius CJ. Multi-block versus random quaternary ammonium Poly(arylene ether sulfone) membrane dependent water and alcohol mass uptake, directionally-dependent swelling and ion conductivity, and alcohol transport. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Akhtar FH, Vovushua H, Villalobos LF, Shevate R, Kumar M, Nunes SP, Schwingenschlögl U, Peinemann KV. Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Chen Y, Liu Z, Lin M, Lin Q, Tong B, Chen D. Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9390-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
|