1
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
2
|
Zhan X, Gao K, Jia Y, Deng W, Liu N, Guo X, Li H, Li J. Enhanced Desulfurization Performance of ZIF-8/PEG MMMs: Effect of ZIF-8 Particle Size. MEMBRANES 2023; 13:membranes13050515. [PMID: 37233576 DOI: 10.3390/membranes13050515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Constructing efficient and continuous transport pathways in membranes is a promising and challenging way to achieve the desired performance in the pervaporation process. The incorporation of various metal-organic frameworks (MOFs) into polymer membranes provided selective and fast transport channels and enhanced the separation performance of polymeric membranes. Particle size and surface properties are strongly related to the random distribution and possible agglomeration of MOFs particles, which may lead to poor connectivity between adjacent MOFs-based nanoparticles and result in low-efficiency molecular transport in the membrane. In this work, ZIF-8 particles with different particle sizes were physically filled into PEG to fabricate mixed matrix membranes (MMMs) for desulfurization via pervaporation. The micro-structures and physi-/chemical properties of different ZIF-8 particles, along with their corresponding MMMs, were systematically characterized by SEM, FT-IR, XRD, BET, etc. It was found that ZIF-8 with different particle sizes showed similar crystalline structures and surface areas, while larger ZIF-8 particles possessed more micro-pores and fewer meso-/macro-pores than did the smaller particles. ZIF-8 showed preferential adsorption for thiophene rather than n-heptane molecules, and the diffusion coefficient of thiophene was larger than that of thiophene in ZIF-8, based on molecular simulation. PEG MMMs with larger ZIF-8 particles showed a higher sulfur enrichment factor, but a lower permeation flux than that found with smaller particles. This might be ascribed to the fact that larger ZIF-8 particles provided more and longer selective transport channels in one single particle. Moreover, the number of ZIF-8-L particles in MMMs was smaller than the number of smaller ones with the same particle loading, which might weaken the connectivity between adjacent ZIF-8-L nanoparticles and result in low-efficiency molecular transport in the membrane. Moreover, the surface area available for mass transport was smaller for MMMs with ZIF-8-L particles due to the smaller specific surface area of the ZIF-8-L particles, which might also result in lower permeability in ZIF-8-L/PEG MMMs. The ZIF-8-L/PEG MMMs exhibited enhanced pervaporation performance, with a sulfur enrichment factor of 22.5 and a permeation flux of 183.2 g/(m-2·h-1), increasing by 57% and 389% compared with the results for pure PEG membrane, respectively. The effects of ZIF-8 loading, feed temperature, and concentration on desulfurization performance were also studied. This work might provide some new insights into the effect of particle size on desulfurization performance and the transport mechanism in MMMs.
Collapse
Affiliation(s)
- Xia Zhan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Kaixiang Gao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yucheng Jia
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Deng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ning Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xuebin Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Clarizia G, Bernardo P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. MEMBRANES 2022; 12:1096. [PMID: 36363651 PMCID: PMC9693152 DOI: 10.3390/membranes12111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
The cornerstones of sustainable development require the treatment of wastes or contaminated streams allowing the separation and recycling of useful substances by a more rational use of energy sources. Separation technologies play a prominent role, especially when conducted by inherently environmentally friendly systems such as membrane operations. However, high-performance materials are more and more needed to improve the separative performance of polymeric materials nanocomposites are ideally suited to develop advanced membranes by combining organic polymers with suitable fillers having superior properties. In this area, polyether block amide copolymers (Pebax) are increasingly adopted as host matrices due to their distinctive properties in terms of being lightweight and easy to process, having good resistance to most chemicals, flexibility and high strength. In this light, the present review seeks to provide a comprehensive examination of the progress in the development of Pebax-based nanocomposite films for their application in several sensitive fields, that are challenging and at the same time attractive, including olefin/paraffin separation, pervaporation, water treatment, flexible films for electronics, electromagnetic shielding, antimicrobial surfaces, wound dressing and self-venting packaging. It covers a wide range of materials used as fillers and analyzes the properties of the derived nanocomposites and their performance. The general principles from the choice of the material to the approaches for the heterogeneous phase compatibilization as well as for the performance improvement were also surveyed. From a detailed analysis of the current studies, the most effective strategies to overcome some intrinsic limitations of these nanocomposites are highlighted, providing guidelines for the correlated research.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
4
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Effect of MoS2 Yolk-Shell Nanostructure on the Thiophene Separation Performance of PEG Membrane. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/5780884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Constructing facilitated transport based on π-complexation has been drawing more and more attention in mixed matrix membranes (MMMs) for pervaporative desulfurization. Herein, a unique molybdenum disulfide (MoS2) yolk-shell nanostructure (MYNS) was prepared and incorporated into the polyethylene glycol (PEG) matrix to fabricate MMMs for model gasoline desulfurization by PV. Moreover, the effects of MYNS content, feed sulfur concentration, and feed temperature on the performance of PEG/MYNS MMMs were evaluated. It was found that there is good interfacial compatibility between the MYNS filler and the PEG matrix, and the resultant MMMs show enhanced swelling resistance against thiophene. The PV results revealed that the as-fabricated MMMs are thiophene-selective, and their desulfurization performance in the pervaporative removal of thiophene from n-octane is remarkably evaluated due to the addition of MYNS. The MMMs display the highest sulfur enrichment factor of 4.02 with an associated permeation flux of 2587 g·m−2·h−1 with the MYNS loading of 3 wt. % when carrying out in an n-octane and thiophene (500 μg·g−1) mixture at 343 K. Furthermore, a consistent increment in the permeation flux accompanied with a continuous reduction in the enrichment factor was observed with increasing the feed sulfur concentration and feed temperature. This work may offer great potential for practical gasoline desulfurization applications.
Collapse
|
7
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|
8
|
Peng P, Lan Y, Zhang Q, Luo J. Application of graphene structure/polyurethane membrane in pervaporative desulfurization. J Appl Polym Sci 2022. [DOI: 10.1002/app.51514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
- Key Laboratory of Biobased Material Science & Technology (Education Ministry) Northeast Forestry University Harbin China
| | - Qinman Zhang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Juxiang Luo
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| |
Collapse
|
9
|
Taymazov D, Zhang H, Li WX, Li PP, Xie F, Gong XY, Zhang SN, Ma XH, Xu ZL. Construction of MoS2 hybrid membranes on ceramic hollow fibers for efficient dehydration of isopropanol solution via pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zhang XF, Wang Z, Song L, Yao J. In situ growth of ZIF-8 within wood channels for water pollutants removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118527] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Dual-functional interconnected pebble-like structures in highly crystalline poly(ethylene oxide) membranes for CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Akbari A, Karimi-Sabet J, Ghoreishi SM. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Yang G, Xie Z, Zhang S, Zheng H, Cai K, Cran M, Ng D, Wu C, Gray S. Functionalized Carbon Nanotube-Mediated Transport in Membranes Containing Fixed-Site Carriers for Fast Pervaporation Desalination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50918-50928. [PMID: 33108870 DOI: 10.1021/acsami.0c16934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Facilitated transport membranes (FTMs) comprising fixed carrier agents hold considerable potential for obtaining selective and fast separation of mixed molecules in either gas or liquid state. However, diffusion through the membrane is inevitably affected by the resistance from the polymer matrix, where the carrier is absent. Herein, a poly(vinyl alcohol) (PVA)-based separating layer combining the merits of fixed-site transport agents and inorganic nanofillers was developed to reduce the transport resistance. Carbon nanotubes (CNTs) with different degrees of oxidation were prepared and incorporated into the sulfonic acid (-SO3H)-modified PVA matrix. The resultant composite membrane consisting of a microporous polytetrafluoroethylene substrate and a thin PVA-based separating layer (∼700 nm thick) was subject to pervaporation desalination of sodium chloride solution (35,000 ppm) at 30 °C. The effect of -SO3H as a fixed transport agent in the PVA matrix was first investigated experimentally, showing an increase of water flux by 21.8% compared with a control membrane without the transport agent. Subsequently, the CNT-incorporated FTM exhibited good stability (50 h) and improvement in water transport, which was ∼161% of the control FTM (PVA with -SO3H) without loss of selectivity. Such high and stable performance achieved in the CNT-incorporated FTM originated from the construction of low-resistance transport pathways by CNTs between -SO3H groups as well as their uniform dispersion in the polymer matrix.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Shixin Zhang
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Kewei Cai
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
15
|
Yang G, Xie Z, Cran M, Wu C, Gray S. Dimensional Nanofillers in Mixed Matrix Membranes for Pervaporation Separations: A Review. MEMBRANES 2020; 10:E193. [PMID: 32825195 PMCID: PMC7559426 DOI: 10.3390/membranes10090193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic-inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure-performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South, VIC 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (G.Y.); (M.C.)
| |
Collapse
|
16
|
Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Strzelewicz A, Krasowska M, Dudek G, Cieśla M. Design of polymer membrane morphology with prescribed structure and diffusion properties. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117526] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Zhang H, Taymazov D, Li MP, Huang ZH, Liu WL, Zhang X, Ma XH, Xu ZL. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Zhang Y, Song J, Mayta JQ, Pan F, Gao X, Li M, Song Y, Wang M, Cao X, Jiang Z. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1830-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Dong H, Li J, Chen M, Wang H, Jiang X, Xiao Y, Tian B, Zhang X. High-throughput Production of ZnO-MoS 2-Graphene Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2233. [PMID: 31373301 PMCID: PMC6678946 DOI: 10.3390/ma12142233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
High-throughput production of highly efficient photocatalysts for hydrogen evolution remains a considerable challenge for materials scientists. Here, we produced extremely uniform high-quality graphene and molybdenum disulfide (MoS2) nanoplatelets through the electrochemical-assisted liquid-phase exfoliation, out of which we subsequently fabricated MoS2/graphene van der Waals heterostructures. Ultimately, zinc oxide (ZnO) nanoparticles were deposited into these two-dimensional heterostructures to produce an artificial ZnO/MoS2/graphene nanocomposite. This new composite experimentally exhibited an excellent photocatalytic efficiency in hydrogen evolution under the sunlight illumination ( λ > 400 n m ), owing to the extremely high electron mobilities in graphene nanoplatelets and the significant visible-light absorptions of MoS2. Moreover, due to the synergistic effects in MoS2 and graphene, the lifetime of excited carriers increased dramatically, which considerably improved the photocatalytic efficiency of the ZnO/MoS2/graphene heterostructure. We conclude that the novel artificial heterostructure presented here shows great potential for the high-efficient photocatalytic hydrogen generation and the high throughput production of visible-light photocatalysts for industrial applications.
Collapse
Affiliation(s)
- Haocong Dong
- Key Laboratory of Film Materials & Application for Equipment, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen 361000, China
| | - Junzhu Li
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen 361000, China
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mingguang Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hongwei Wang
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen 361000, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochuan Jiang
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen 361000, China
- Department of Astronomy, Xiamen University, Xiamen 361000, China
| | - Yongguang Xiao
- Key Laboratory of Film Materials & Application for Equipment, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Bo Tian
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen 361000, China.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
23
|
Liu YC, Chen CY, Lin GS, Chen CH, Wu KCW, Lin CH, Tung KL. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
|
25
|
|
26
|
Pan F, Li W, Zhang Y, Sun J, Wang M, Wu H, Jiang Z, Lin L, Wang B, Cao X, Zhang P. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE J 2018. [DOI: 10.1002/aic.16399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Weidong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ye Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Baoyi Wang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Xingzhong Cao
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Peng Zhang
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
27
|
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Chen C, Mei W, Yu W, Chen X, Zeng L, Tsang Y, Chao Z, Liu X. Enhanced sunlight-driven photocatalytic property of Mg-doped ZnO nanocomposites with three-dimensional graphene oxide/MoS2 nanosheet composites. RSC Adv 2018; 8:17399-17409. [PMID: 35539250 PMCID: PMC9080509 DOI: 10.1039/c8ra02382d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide (GO) has been the focus of attention as it can enhance the photocatalytic activity of semiconductors due to its large specific surface area and remarkable optical and electronic properties. However, the enhancing effect is not ideal because of its easy self-agglomeration and low electronic conductivity. To improve the enhancing effect of GO for ZnO, three-dimensional GO/MoS2 composite carriers (3D GOM) were prepared by electrostatic interactions and then, Mg-doped ZnO nanoparticles (MZ) were supported on the surface of 3D GOM by utilizing the layer-by-layer assembly method. Compared with GO/Mg-ZnO composite (GOMZ), the resultant three-dimensional GO/MoS2/Mg-ZnO composite (GOMMZ) exhibited excellent photocatalytic performance due to the effective synergistic effect between GO and MoS2 sheet, and its degradation rate was nearly 100% within 120 min of exposure to visible light; this degradation rate was nearly 8 times higher than that of the GOMZ composite. Moreover, the introduction of the MoS2 sheet intensified the photocurrent density of the GOMZ composite and endowed it with optical memory ability. Graphene oxide (GO) has been the focus of attention as it can enhance the photocatalytic activity of semiconductors due to its large specific surface area and remarkable optical and electronic properties.![]()
Collapse
Affiliation(s)
- Chuansheng Chen
- College of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Wei Mei
- College of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Weiwei Yu
- College of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Xi'an Chen
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- People's Republic of China
| | - Longhui Zeng
- Department of Applied Physics
- Hong Kong Polytechnic University
- Hong Kong
- China
| | - Yuenhong Tsang
- Department of Applied Physics
- Hong Kong Polytechnic University
- Hong Kong
- China
| | - Zisheng Chao
- College of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Xiaoyan Liu
- College of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| |
Collapse
|