1
|
Athukoralalage SSA, Datson Z, Darwish N, Zhu Y, Chung KHK, Chew K, Rowan AE, Amiralian N. Dual-Functional Antimicrobial and Low-Fouling Cellulose Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16027-16039. [PMID: 40017042 DOI: 10.1021/acsami.4c21252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Surfaces contaminated with pathogens raise significant concerns due to their potential role in increasing the risk of disease transmission and subsequent infection. Existing surface coatings face several challenges that undermine their effectiveness and their broader applicability. These include the impact of surface topography on pathogen adhesion, which leads to biofouling, high production costs, scalability issues, as well as environmental concerns stemming from the utilization of toxic antifoulants and biocides. Here, we report dual-functional surface coatings with intrinsic antimicrobial and low fouling properties that are synergistic. The coatings are a porous reactive cellulose fibers network with dialdehyde functionality that demonstrates high antibacterial and antiviral performance against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, and influenza A/H1N1 virus. Furthermore, we showed that the wettability of the coating significantly reduces the adhesion and colony formation of bacteria and their dead debris after inactivation by dialdehyde groups. The reactive cellulose fibers did not demonstrate any acute toxicity on L929 cells, which can meet the safe use of coating on the contact surfaces. The cellulose fibers coating derived from agricultural waste is cost-effective, eco-friendly, and highly scalable and is promising for use in packaging, household products, public facilities, and medical settings surfaces.
Collapse
Affiliation(s)
- Sandya S A Athukoralalage
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Zane Datson
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Ka H K Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Keng Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
A. Aziz SNS, Abu Seman MN, Saufi SM, Mohammad AW, Khayet M. Effect of Methacrylic Acid Monomer on UV-Grafted Polyethersulfone Forward Osmosis Membrane. MEMBRANES 2023; 13:232. [PMID: 36837735 PMCID: PMC9967052 DOI: 10.3390/membranes13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
UV irradiation is one of the procedures that has been considered for membrane surface graft polymerization. It is commonly utilized for enhancing the wettability of polyethersulfone (PES) membranes. In this research study, the monomer methacrylic acid (MAA) was used for the UV grafting process of a commercial NF2 PES membrane for the preparation of a forward osmosis (FO) membrane. Three different monomer concentrations and three different UV irradiation times were considered. The intrinsic characteristics of both the surface-modified and pristine membranes were determined via a non-pressurized test method. Compared to the NF2 PES, the surface of the modified membranes was rendered more hydrophilic, as the measured water contact angle was reduced considerably from 65° to 32-58°. The membrane surface modification was also confirmed by the data collected from other techniques, such as atomic force microscopy (AFM), field emission-scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, the modified membranes exhibited a greater water permeate flux (Jw) compared to the NF2 PES membrane. In this study, the water permeability (A), solute permeability (B) and structural parameter (S) were determined via a two-stage FO non-pressurized test method, changing the membrane orientation. Compared to the FO pressurized test, smaller S values were obtained with significantly high A and B values for the two non-pressurized tests. The adopted method in the current study is more adequate for determining the intrinsic characteristics of FO membranes.
Collapse
Affiliation(s)
- S. N. S. A. Aziz
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - M. N. Abu Seman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
- Earth Resources and Sustainability (ERAS) Centre, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - S. M. Saufi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - A. W. Mohammad
- Chemical and Water Desalination Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Calle Punto Net No 4, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
4
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Wang C, Park MJ, Yu H, Matsuyama H, Drioli E, Shon HK. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Aghaei A, Dadashi Firouzjaei M, Karami P, Aktij SA, Elliott M, Mansourpanah Y, Rahimpour A, Soares J, Sadrzadeh M. The Implications of 3D‐Printed Membranes for Water and Wastewater Treatment and Resource Recovery. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Aghaei
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| | | | - Pooria Karami
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Mark Elliott
- Department of Civil, Construction and Environmental Engineering University of Alabama Tuscaloosa USA
| | | | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| | - Joao Soares
- Department of Chemical & Materials Engineering, 12‐263 Donadeo Innovation Centre for Engineering, Group of Applied Macromolecular Engineering University of Alberta Edmonton AB Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10‐241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton AB Canada
| |
Collapse
|
7
|
Novel organic solvent nanofiltration membrane based on inkjet printing-assisted layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Qian X, Ostwal M, Asatekin A, Geise GM, Smith ZP, Phillip WA, Lively RP, McCutcheon JR. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang C, Park MJ, Seo DH, Phuntsho S, Gonzales RR, Matsuyama H, Drioli E, Shon HK. Inkjet printed polyelectrolyte multilayer membrane using a polyketone support for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Barbhuiya NH, Misra U, Singh SP. Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: A review. CHEMOSPHERE 2022; 286:131757. [PMID: 34371356 DOI: 10.1016/j.chemosphere.2021.131757] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over the last few years, the list of water contaminants has grown tremendously due to many anthropogenic activities. Various conventional technologies are available for water and wastewater treatment. However, micropollutants of emerging concern (MEC) are posing a great threat due to their activity at trace concentration and poor removal efficiency by the conventional treatment processes. Advanced technology like membrane technology can remove MEC to some extent. However, issues like the different chemical properties of MEC, selectivity, and fouling of membranes can affect the removal efficiency. Moreover, the concentrate from the membrane filtration may need further treatment. Enzymatic degradation of pollutants and foulants is one of the green approaches for removing various contaminants from the water as well as mitigating membrane fouling. Biocatalytic membranes (BCMs), in which enzymes are immobilized on membranes, combines the advantages of membrane separation and enzymatic degradation. This review article discussed various commonly used enzymes in BCMs for removing MEC and fouling. The majorly used enzymes were oxidoreductases and hydrolases for removing MEC, antifouling, and self-cleaning ability. The various BCM synthesis processes based on entrapment, crosslinking, and binding have been summarized, along with the effects of the addition of the nanoparticles on the performances of the BCMs. The scale-up, commercial viability, challenges, and future direction for improving BCMs have been discussed and shown bright possibilities for these new generation membranes.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Utkarsh Misra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
11
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
12
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Li R, Li J, Rao L, Lin H, Shen L, Xu Y, Chen J, Liao BQ. Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118790] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Yanar N, Kallem P, Son M, Park H, Kang S, Choi H. A New era of water treatment technologies: 3D printing for membranes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
|
16
|
Li R, Fan H, Shen L, Rao L, Tang J, Hu S, Lin H. Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. CHEMOSPHERE 2020; 250:126236. [PMID: 32088617 DOI: 10.1016/j.chemosphere.2020.126236] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/29/2023]
Abstract
While polyphenol-based coating has been regarded as a promising alternative to functionalize membrane surface, it usually suffers from problems of low-efficient procedure and low utilization rate of the polyphenolic compounds, hindering its large-scale implementations. To solve these problems, this study provided a first report on inkjet printing of polyphenols (catechol (CA) or tannic acid (TA)) and sodium periodate (SP) on a polyvinylidene fluoride (PVDF) membrane to improve membrane performance. A series of analyses showed the efficient formation of homogenous films on the PVDF membrane surface and the improvement of hydrophilicity by the inkjet printing technique. The PVDF membranes decorated with the optimized polyphenolic coating exhibited a promising oil/water separation efficiency (higher than 99%) with a high average water permeation flux of 5.2 times higher than that of the pristine membrane. Meanwhile, the modified membranes illustrated a good stability under acidic conditions (pH = 2-7). The novel method proposed in this study is facile, cost-saving and environment-friendly. The advantages of the proposed method and the modified membranes demonstrated the great significance of the proposed method in practical applications.
Collapse
Affiliation(s)
- Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hangxu Fan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jiayi Tang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Sufei Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
17
|
Application of UV irradiation enhanced by CuS photosensitive nanoparticles to mitigate polysulfone membrane fouling. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ. Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Rezania H, Vatanpour V, Arabpour A, Shockravi A, Ehsani M. Structural manipulation of PES constituents to prepare advanced alternative polymer for ultrafiltration membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.48690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hamidreza Rezania
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Atefeh Arabpour
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Abbas Shockravi
- Department of Organic and Polymer Chemistry, Faculty of ChemistryKharazmi University, P.O. Box 15719‐14911 Tehran Iran
| | - Morteza Ehsani
- Iran Polymer and Petrochemical Institute, P.O. Box 14965/115 Tehran Iran
| |
Collapse
|
20
|
Pang WY, Ahmad AL, Zaulkiflee ND. Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109358. [PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
Collapse
Affiliation(s)
- Wen Yu Pang
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia.
| | - Nur Dina Zaulkiflee
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
| |
Collapse
|
21
|
Jiang Y, Zhang Y, Chen B, Zhu X. Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Kaganovich M, Zhang W, Freger V, Bernstein R. Effect of the membrane exclusion mechanism on phosphate scaling during synthetic effluent desalination. WATER RESEARCH 2019; 161:381-391. [PMID: 31226537 DOI: 10.1016/j.watres.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Calcium phosphate scaling is one of the main limitations in effluent desalination using membranes. This may be overcome by tailoring membranes with lower rejection of the scalant ions. In this study, we systematically examined the use of negatively and positively charged membranes, rejecting ions mainly based on Donnan exclusion, as a low-scaling alternative to dielectric-exclusion-dominated polyamide NF membranes for effluent desalination. The two charged membranes exhibited a lower calcium and especially phosphate rejection than the polyamide membrane. Consequently, the calcium phosphate supersaturation and then the propensity to scaling of the charged membranes were much lower than the polyamide membrane. This also allowed filtering at a much higher recovery ratio with the charged membranes. It was also found that, despite the fact that the charged membranes had an opposite fixed charge, their scaling behavior was similar. Apparently, although these membranes showed opposite selectivity towards scalant ions (phosphate and calcium) in single salt solutions, the rejection pattern in mixed salt solutions resulted in similar saturation indices, much lower than for polyamide membrane. The scale formed on all three membranes was identified as amorphous calcium phosphate (ACP), although its saturation index was lower than its solubility factor. This was explained by concentration polarization which increases the saturation index in the solution adjacent to the membrane surface. Tests in absence of permeate flux showed a much slower precipitation that took a few days compared with filtration conditions (few hours). In addition, under these conditions, the effect of the scaling on the membrane permeability was generally reduced and the scale contained crystalline calcium phosphate products, different from ACP. The results indicate that the ion rejection and resulting polarization next to the membrane surface plays a crucial role in scaling. Thus, tuning ion selectivity of NF membranes towards scalant ions presents a promising alternative for scaling mitigation during effluent desalination.
Collapse
Affiliation(s)
- Michaela Kaganovich
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Wei Zhang
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Roy Bernstein
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel.
| |
Collapse
|
23
|
Xia Y, Dai X, Gai J. Preparation of high‐performance reverse osmosis membrane by zwitterionic polymer coating in a facile one‐step way. J Appl Polym Sci 2019. [DOI: 10.1002/app.48355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| | - Xiaojun Dai
- Institute of Chemical MaterialsChina Academy of Engineering Physics Mianyang 621900 People's Republic of China
| | - Jing‐Gang Gai
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
24
|
Superhydrophilic and oleophobic membrane functionalized with heterogeneously tailored two-dimensional layered double hydroxide nanosheets for antifouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Thakur AK, Singh SP, Kleinberg MN, Gupta A, Arnusch CJ. Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10914-10921. [PMID: 30794741 DOI: 10.1021/acsami.9b00510] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Graphene nanomaterials can feature both superb electrical conductivity and unique physical properties such as extreme surface wettability, which are potentially applicable for many purposes including water treatment. Laser-induced graphene (LIG) is an electrically conductive three-dimensional porous carbon material prepared by direct laser writing on various polymers in ambient conditions with a CO2 laser. Low-fouling LIG coatings in water technology have been reported; however, the mechanical strength and the separation properties of LIG-coated membranes are limited. Here, we show mechanically robust electrically conductive LIG-poly(vinyl alcohol) (PVA) composite membranes with tailored separation properties suitable for ultrafiltration processes. PVA has outstanding chemical and physical stability with good film-forming properties and is a biocompatible and nontoxic polymer. Compared to LIG-coated filters, the PVA-LIG composite membrane filters exhibited up to 63% increased bovine serum albumin rejection and up to ∼99.9% bacterial rejection, which corresponded well to the measured molecular weight cutoff ∼90 kDa. Compared to LIG fabricated on a polymer membrane control, the composite membranes showed similar excellent antifouling properties including low protein adsorption, and the antibiofilm effects were more pronounced at lower PVA concentrations. Notably for the antibacterial capabilities, the LIG-supporting layer maintained its electrical conductivity and a selected LIG-PVA composite used as electrodes showed complete elimination of mixed bacterial culture viability and indicated that the potent antimicrobial killing effects were maintained in the composite. This work demonstrates that the use of LIG for practical industrial filtration applications is possible.
Collapse
Affiliation(s)
- Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Swatantra P Singh
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
- Center for Environmental Science and Engineering (CESE) , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Abhishek Gupta
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| |
Collapse
|
26
|
Shtreimer Kandiyote N, Mohanraj G, Mao C, Kasher R, Arnusch CJ. Synergy on Surfaces: Anti-Biofouling Interfaces Using Surface-Attached Antimicrobial Peptides PGLa and Magainin-2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11147-11155. [PMID: 30122046 DOI: 10.1021/acs.langmuir.8b01617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synergistic effect of antimicrobial compounds is an important phenomenon that can increase the potency of treatment and might be useful against the formation of biofilms on surfaces. A strong inhibition of microbial viability on surfaces can potentially delay the development of biofilms on treated surfaces, thereby enhancing the performance of water-purification technologies and medical devices, for example, to prevent hospital-acquired infections. However, the synergistic effects of surface-immobilized antimicrobial peptides (AMPs) have not yet been reported. Here, we demonstrate the synergistic antimicrobial effects of the AMPs PGLa and magainin-2 on modified reverse-osmosis (RO) membranes. These AMPs are known to act synergistically in the free state, but their antimicrobial synergistic effects have not yet been reported in a surface-immobilized state. The AMPs were functionalized with alkyne linkers and covalently attached to RO membranes modified with azides, using a click chemistry reaction. The resulting RO membranes showed reduced contact angles, indicating increased wettability. X-ray photoelectron spectroscopy confirmed the presence of the two peptides on the membranes via changes in the amounts of carbon, oxygen, and sulfur, which led to an increased S/C ratio, probably because of the sulfur present in the methionine residue of the peptides. The synergistic activity was measured with the free peptides in solution and covalently bound on RO membrane surfaces by observing increased leakage of 5(6)-carboxyfluorescein from large unilamellar vesicles. The synergistic antimicrobial activity against Pseudomonas aeruginosa was observed using surface-activity assays, where the AMP-modified RO membranes showed an effective inhibition of P. aeruginosa biofilm growth, as compared with unmodified membranes. An enhanced activity of antimicrobials on surfaces might lead to potent antimicrobial surfaces, which could result in more fouling-resistant water-treatment membranes.
Collapse
Affiliation(s)
- Nitzan Shtreimer Kandiyote
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Gunasekaran Mohanraj
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Canwei Mao
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus , Midreshet Ben Gurion 84990 , Israel
| |
Collapse
|
27
|
Mohanraj G, Mao C, Armine A, Kasher R, Arnusch CJ. Ink-Jet Printing-Assisted Modification on Polyethersulfone Membranes Using a UV-Reactive Antimicrobial Peptide for Fouling-Resistant Surfaces. ACS OMEGA 2018; 3:8752-8759. [PMID: 31459007 PMCID: PMC6644663 DOI: 10.1021/acsomega.8b00916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/17/2018] [Indexed: 05/29/2023]
Abstract
Antimicrobial peptides (AMPs) are promising candidates for surface coatings to control biofilm growth on water treatment membranes because of their broad activity and the low tendency of bacteria to develop resistance to AMPs. However, general and convenient surface modification methods are limited, and a deeper understanding of the antimicrobial mechanism of action is needed for surface-attached AMPs. Here, we show a method for covalently attaching AMPs on porous ultrafiltration membranes using ink-jet printing and provide insight into the mode of action for the covalently tethered peptide RWRWRWA-(Bpa) (Bpa, 4-benzophenylalanine) against Pseudomonas aeruginosa. AMP-coated ultrafiltration membranes showed surface antibacterial activity and reduced biofilm growth. Fluorescence microscopy analysis revealed that the modified surfaces could cause cell membrane disruption, which was seen by live uptake of propidium iodide stain, and scanning electron microscopy images showed compromised cell membranes of attached bacteria. This study indicated that the mode of action of covalently tethered AMPs was similar to that of freely soluble AMPs. The deeper understanding of the mode of action of AMPs covalently attached to surfaces could lead to a more rational approach for designing surfaces with antibacterial activity.
Collapse
Affiliation(s)
- Gunasekaran Mohanraj
- Department
of Desalination and Water Treatment, Zuckerberg Institute
for Water Research, The Jacob Blaustein Institutes for Desert Research, and Microalgal Biotechnology
Laboratory, French Associates Institute for Agriculture and Biotechnology
of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet
Ben Gurion 84990, Israel
| | - Canwei Mao
- Department
of Desalination and Water Treatment, Zuckerberg Institute
for Water Research, The Jacob Blaustein Institutes for Desert Research, and Microalgal Biotechnology
Laboratory, French Associates Institute for Agriculture and Biotechnology
of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet
Ben Gurion 84990, Israel
| | - Asatryan Armine
- Department
of Desalination and Water Treatment, Zuckerberg Institute
for Water Research, The Jacob Blaustein Institutes for Desert Research, and Microalgal Biotechnology
Laboratory, French Associates Institute for Agriculture and Biotechnology
of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet
Ben Gurion 84990, Israel
| | - Roni Kasher
- Department
of Desalination and Water Treatment, Zuckerberg Institute
for Water Research, The Jacob Blaustein Institutes for Desert Research, and Microalgal Biotechnology
Laboratory, French Associates Institute for Agriculture and Biotechnology
of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet
Ben Gurion 84990, Israel
| | - Christopher J. Arnusch
- Department
of Desalination and Water Treatment, Zuckerberg Institute
for Water Research, The Jacob Blaustein Institutes for Desert Research, and Microalgal Biotechnology
Laboratory, French Associates Institute for Agriculture and Biotechnology
of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet
Ben Gurion 84990, Israel
| |
Collapse
|
28
|
Gao Y, Liang L, Zhao S, Qi Y, Zhang W, Sun X, Wang Z, Wang J, Song B. Hydrophilic and antimicrobial core–shell nanoparticles containing guanidine groups for ultrafiltration membrane modification. RSC Adv 2018; 8:24690-24700. [PMID: 35542134 PMCID: PMC9082451 DOI: 10.1039/c8ra03934h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Physical blending is a common technique to improve the water flux and antifouling performance of ultrafiltration (UF) membranes. In the present work, a novel hydrophilic and antimicrobial core–shell nanoparticle was synthesized through the chemical grafting of poly(guanidine-hexamethylenediamine-PEI) (poly(GHPEI)) on the surface of silica nanoparticles (SNP). The synthesized core–shell nanoparticles, poly(GHPEI) functionalized silica nanoparticles (SNP@PG), were incorporated into polyethersulfone (PES) to fabricate hybrid UF membranes by a phase inversion process. The chemical composition, surface and cross section morphologies, hydrophilicity, water flux and protein rejection of the membranes were evaluated by a series of characterizations. Results show that the prepared PES/SNP@PG hybrid membrane exhibits not only improved water flux, which is around 2.6 times that of the pristine PES membrane, but also excellent resistance to organic fouling and biofouling. Hydrophilic and antimicrobial core–shell nanoparticles containing guanidine groups (SNP@PG) were applied to fabricate membranes with improved water flux and fouling resistance.![]()
Collapse
Affiliation(s)
- Yongqiang Gao
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Lei Liang
- Spine Center Department of Orthopaedics
- Changzheng Hospital
- Second Military Medical University
- Shanghai
- PR China
| | - Song Zhao
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Yunlong Qi
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Wen Zhang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Xuefei Sun
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Zhi Wang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jixiao Wang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Baodong Song
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|