1
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Bi Y, Meng X, Tan Z, Geng Q, Peng J, Yong Q, Sun X, Guo M, Wang X. A novel ZIF-L/PEI thin film nanocomposite membrane for removing perfluoroalkyl substances (PFASs) from water: Enhanced retention and high flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171727. [PMID: 38492592 DOI: 10.1016/j.scitotenv.2024.171727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Membrane separation technology is widely recognized as an effective method for removing perfluoroalkyl substances (PFASs) in water treatment. ZIF-L, a metal-organic framework (MOF) family characterized by its mat-like cavities and leaf-like morphology, has garnered considerable interest and has been extensively employed in fabricating thin-film nanocomposite (TFN) membranes. In this study, a robust, high-performance TFN membrane to remove PFASs in a nanofiltration (NF) process was created through an interfacial polymerization approach on the surface of polysulfone (PSF), incorporating ZIF-L within the selective layer. The TFN membrane modified by adding 5 wt% ZIF-L (relative to the weight of ethylene imine polymer (PEI)) exhibits 2.3 times higher water flux (up to 47.56 L·m-2·h-1·bar-1) than the pristine thin film composite membrane (20.46 L·m-2·h-1·bar-1), and the rejection for typical PFASs were above 95 % (98.47 % for perfluorooctanesulfonic acid (PFOS) and 95.85 % for perfluorooctanoic acid (PFOA)). The effectiveness of the ZIF-L/PEI TFN membrane in retaining representative PFASs was examined under various conditions, including different pressures, feed concentrations, aqueous environments, and salt ions. Notably, the experiments demonstrated that even after contamination with humic acid (HA), >88 % of the water flux could be restored by washing. Additionally, density functional theory (DFT) calculations were employed to predict the distinct intermolecular interactions between PFASs and ZIF-L as well as PEI. These calculations provide additional insights into the interception mechanism of TFN membranes towards PFASs. Based on this study, TFN membranes incorporating MOF as nanofillers show great potential as an effective method for purifying PFASs from aqueous environments and possess superior environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yujie Bi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijun Tan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianqian Geng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiaozhi Yong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaojie Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Maleh MS, Raisi A. Heteroepitaxial growth of ZIF-67 nanoparticles on the ZIF-L(Zn) nanosheets for fabrication of Pebax mixed matrix membranes with highly efficient CO 2 separation. CHEMOSPHERE 2023; 344:140249. [PMID: 37758079 DOI: 10.1016/j.chemosphere.2023.140249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
ZIF-67 nanoparticles were grown on ZIF-L(Zn) nanosheets by in-situ heteroepitaxial method, resulting in ZIF-67@ZIF-L(Zn) as a charming two-dimensional (2D) nanocomposite for incorporation into the Pebax-1657 and improving its CO2/N2 separation performance. The fabricated nanofillers and membranes were analyzed by characterization tests (FTIR, XRD, FESEM, and EDAX-mapping) and gas separation experiments (effect of filler loading, filler type, feed pressure, and long-term stability). It was observed that the nanosheets were well dispersed in the matrix, and they had formed a proper interaction by creating hydrogen bonds at the interface; in addition, due to their crystalline nature, they increased the crystallinity of the MMMs. The results of the gas permeability test showed that these nanofillers, with their composite structure, had a synergistic effect on the gas solubility and screening and caused a significant improvement in the separation performance of MMMs. So that the best performance achieved with a CO2 permeability of 72.9 Barrer and a CO2/N2 selectivity of 102.9 at 10 bar for the MMM containing 2 wt% of ZIF-L(Zn)@ZIF-67, also exceeding Robeson's upper bound. Moreover, Mindex as a criterion for evaluation of the gas separation performance of MMMs in simultaneous improvement of the permeability and selectivity was proposed in this work. The Mindex values in the range of 0.5-1.5 were calculated for the MMM containing 2 wt% of ZIF-L(Zn)@ZIF-67 nanosheet which indicating a good quality for the gas separation performance. Furthermore, at equal filler loading (2 wt%), this membrane outperformed all MMMs containing other nanofillers (ZIF-67, ZIF-8, ZIF-L(Co), or ZIF-L(Zn)).
Collapse
Affiliation(s)
- Mohammad Salehi Maleh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran.
| | - Ahmadreza Raisi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran.
| |
Collapse
|
4
|
Kundu S, Haldar R. A roadmap to enhance gas permselectivity in metal-organic framework-based mixed-matrix membranes. Dalton Trans 2023; 52:15253-15276. [PMID: 37603374 DOI: 10.1039/d3dt01878d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Performing gas separation at high efficiency with minimum energy input and reduced carbon footprint is a major challenge. While several separation methods exist at various technology readiness levels, porous membrane-based separation is considered as a disruptive technology. To attain sustainability and required efficiency, different approaches of membrane design have been explored. However, the selectivity-permeation trade-off and membrane aging have restricted further advancement. In this regard, a new generation composite made of organic polymers and metal-organic framework (MOF) fillers shows substantial promise. Organic polymer matrix allows easy processibility, but it has poor permselectivity for gas molecules. Metal-organic frameworks are excellent sieving materials; however, they suffer from poor processibility issues. A combination of these two components makes an ideal sieving membrane, which can potentially outnumber the existing energy intensive distillation strategies. In this perspective, we have discussed key indices that regulate gas permselectivity by a careful selection of the existing literature. While the target gas flux and selectivity values have been a part of many previous reviews and articles, we have presented a concise discussion on the interface design of the MOF-polymer membrane, morphology, and orientation control of MOF fillers in the matrix. Following this, a future roadmap to overcome challenges related to MOF-polymer interfacial defects is outlined.
Collapse
Affiliation(s)
- Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| |
Collapse
|
5
|
Hong YW, Laysandra L, Chiu YC, Kang DY. Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37411032 DOI: 10.1021/acsami.3c06518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.
Collapse
Affiliation(s)
- Yao-Wei Hong
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Zhong J, Qian L, Wang H, Liu Y, Yao L, Lai Y, Song J, Wang X, Li Y, Xing X, Mo G, Tan Y, Chen Z, Wu Z. Crystalline Structure and Thermal Stability of an Unknown ZIF-L300 Phase. Inorg Chem 2023; 62:4385-4391. [PMID: 36857465 DOI: 10.1021/acs.inorgchem.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
In recent years, the synthesis, crystalline structure, and applications of zeolite imidazole frameworks (ZIFs) have attracted extensive attention. Since the ZIF-L phase was synthesized, a new phase was observed during the heating process, but its crystal structure is unknown. The unknown new phase, which was named ZIF-L300 in this study, was confirmed again. In this study, the X-ray powder diffraction technique and Rietveld refinement were used to solve the crystalline structure of the unknown ZIF-L300 phase. The results demonstrate that ZIF-L300 has the same chemical formula (ZnC8N4H10) as in ZIF-8 and belongs to a hexagonal structure with a space group of P61. The lattice parameters have been determined as follows: a = b = 8.708(7) Å, c = 24.195(19) Å, α = β = 90°, and γ = 120°. The X-ray absorption fine structure (XAFS) technique was also used to extract the local atomic structures. The in situ X-ray diffraction (XRD) technique was used to monitor the structural evolution of the as-prepared ZIF-L in a temperature range from room temperature to 600 °C. The results show that the sample experiences a change process from the initial ZIF-L orthorhombic phase (<210 °C), to the ZIF-L300 hexagonal phase (∼300 °C), then to an amorphous phase (∼390 °C), and finally to a zincite ZnO phase (>420 °C). These sorts of structural information are helpful to the application of ZIF materials and enrich the knowledge of the thermal stability of ZIF materials.
Collapse
Affiliation(s)
- Jiajun Zhong
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiong Qian
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hao Wang
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Liu
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yao
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuecheng Lai
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxin Song
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xin Wang
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yikun Li
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong 510006, China
| | - Xueqing Xing
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Mo
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Tan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P R China
| | - Zhongjun Chen
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Wu
- Institute of High Energy of Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Buddin MMHS, Ahmad AL, Zainuddin MIF. Prediction of CO 2 Permeance across ZIF-L@PDMS/PES Composite Membrane. MEMBRANES 2023; 13:134. [PMID: 36837637 PMCID: PMC9966868 DOI: 10.3390/membranes13020134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current work predicted the permeance of CO2 across a ZIF-L@PDMS/PES composite membrane using two different models. The membrane was fabricated by dipping a PES hollow fiber membrane in a coating solution made using PDMS that contained ZIF-L. First, flat sheet ZIF-L@PDMS membranes were fabricated to verify the role of ZIF-L on the gas separation performance of the membrane. Based on the data, the presence of ZIF-L in the PDMS matrix allowed enhancement of both permeability and selectivity of CO2, where the maximum value was obtained at 1 wt% of ZIF-L. The performance of ZIF-L@PDMS layer, as a function of ZIF-L loading, was well-predicted by the Cussler model. Such information was then used to model the CO2 permeance across ZIF-L@PDMS/PES composite membrane via the correction factor, which was introduced in the resistance in series model. This work discovered that the model must consider the penetration depth and the inorganic loading (in the case of ZIF-L@PDMS/PES). The error between the predicted CO2 permeance and the experimental results was found to be minimal.
Collapse
Affiliation(s)
- Meor Muhammad Hafiz Shah Buddin
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal 14300, Malaysia
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal 14300, Malaysia
| | | |
Collapse
|
8
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Jiao H, Shi Y, Shi Y, Zhang F, Lu K, Zhang Y, Wang Z, Jin J. In-situ etching MOF nanoparticles for constructing enhanced interface in hybrid membranes for gas separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Loh CY, Ye W, Fang S, Lin J, Gu A, Zhang X, Burrows AD, Xie M. Advances in two-dimensional materials for energy-efficient and molecular precise membranes for biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128065. [PMID: 36202283 DOI: 10.1016/j.biortech.2022.128065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Waste management has become an ever-increasing global issue due to population growth and rapid globalisation. For similar reasons, the greenhouse effect caused by fossil fuel combustion, is leading to chronic climate change issues. A novel approach, the waste-to-hydrogen process, is introduced to address the concern of waste generation and climate change with an additional merit of production of a renewable, higher energy density than fossil fuels and sustainable transportation fuel, hydrogen (H2) gas. In the downstream H2 purifying process, membrane separation is one of the appealing options for the waste-to-hydrogen process given its low energy consumption and low operational cost. However, commercial polymeric membranes have hindered membrane separation process due to their low separation performance. By introducing novel two-dimensional materials as substitutes, the limitation of purifying using conventional membranes can potentially be solved. Herein, this article provides a comprehensive review of two-dimensional materials as alternatives to membrane technology for the gas separation of H2 in waste-to-hydrogen downstream process. Moreover, this review article elaborates and provides some perspectives on the challenges and future potential of the waste-to-hydrogen process and the use of two-dimensional materials in membrane technology.
Collapse
Affiliation(s)
- Ching Yoong Loh
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengqiong Fang
- School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiuyang Lin
- School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ailiang Gu
- Jiangsu DDBS Environmental Remediation Co., Ltd., 210012 Nanjing, China
| | - Xinyu Zhang
- School of Civil and Environmental Engineering, Shandong Jianzhu University, 250101, China
| | - Andrew D Burrows
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
12
|
Abstract
Biogas and biohydrogen, due to their renewable nature and zero carbon footprint, are considered two of the gaseous biofuels that will replace conventional fossil fuels. Biogas from anaerobic digestion must be purified and converted into high-quality biomethane prior to use as a vehicle fuel or injection into natural gas networks. Likewise, the enrichment of biohydrogen from dark fermentation requires the removal of CO2, which is the main pollutant of this new gaseous biofuel. Currently, the removal of CO2 from both biogas and biohydrogen is carried out by means of physical/chemical technologies, which exhibit high operating costs and corrosion problems. Biological technologies for CO2 removal from biogas, such as photosynthetic enrichment and hydrogenotrophic enrichment, are still in an experimental development phase. In this context, membrane separation has emerged as the only physical/chemical technology with the potential to improve the performance of CO2 separation from both biogas and biohydrogen, and to reduce investment and operating costs, as a result of the recent advances in the field of nanotechnology and materials science. This review will focus on the fundamentals, potential and limitations of CO2 and H2 membrane separation technologies. The latest advances on membrane materials for biogas and biohydrogen purification will be systematically reviewed.
Collapse
|
13
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
14
|
Liu Y, Xie W, Liang S, Li X, Fan Y, Luo S. Polyimide/ZIFs mixed matrix membranes with tunable interfacial interaction for efficient gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
High-performance ZIF-302 mixed-matrix membranes for efficient CO2 capture. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Singla S, Shetti NP, Basu S, Mondal K, Aminabhavi TM. Hydrogen production technologies - Membrane based separation, storage and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113963. [PMID: 34700079 DOI: 10.1016/j.jenvman.2021.113963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 05/27/2023]
Abstract
The production of hydrogen, its separation, and storage for use as a primary source of energy is an important component of the green energy economy of the world. Hydrogen is a potential non-carbon-based energy source, which is gradually replacing the dependency on fossil fuels. It is anticipated that as the alternative fuel since hydrogen can be produced from green and clean sources. The evolution of hydrogen from renewable and non-renewable sources by various technologies has now gained tremendous research and industrial interest. The most appropriate methods for hydrogen generation involve the direct conversion of solar energy, exploitation of solar and wind energy for the electrolysis of water, besides conversion of fuel and biomass. To produce cleaner hydrogen and its separation from the chemical impurities is crucial and several methods including photobiological, photoelectrochemical, electrochemical, photocatalytic, thermochemical, thermolysis, and steam gasification have been used. The diverse types of membranes along with the pressure gas swing adsorption technique is another technique used to separate hydrogen, but the storage of hydrogen in an inexpensive, safe, compact, and environmentally friendly manner is one of the major concerns contributing to the country's economy. Apart from the countless advantages, storage and handling of hydrogen is a serious concern. Owing to its high inflammability, enough safety measures should be adopted during its production and storage as a fuel. It is necessary to provide information regarding the production technologies, storage, and separation methods of hydrogen and the present review addresses these issues.
Collapse
Affiliation(s)
- Shelly Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, 83415, USA; Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
17
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
21
|
High loading and high-selectivity H2 purification using SBC@ZIF based thin film composite hollow fiber membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Zhou M, Liu M, Jiang H, Chen R. Controllable Synthesis of Pd-ZIF-L-GO: The Role of Drying Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Manman Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
24
|
Zhang D, Xin L, Xia Y, Dai L, Qu K, Huang K, Fan Y, Xu Z. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Soto C, Torres-Cuevas ES, González-Ortega A, Palacio L, Lozano ÁE, Freeman BD, Prádanos P, Hernández A. Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers (Basel) 2021; 13:polym13060931. [PMID: 33803520 PMCID: PMC8003052 DOI: 10.3390/polym13060931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′′-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed matrix membranes (MMMs) loaded with 20% (w/w) of two porous polymer networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs, and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized, and their gas separation properties evaluated for H2, N2, O2, CH4, and CO2. Both TR process and the addition of PPN increased permeability with minor decreases in selectivity for all gases tested. Excellent results were obtained, in terms of the permeability versus selectivity compromise, for H2/CH4 and H2/N2 separations with membranes approaching the 2008 Robeson’s trade-off line. The best gas separation properties were obtained when PPN-2 was used. Finally, gas permeation was characterized in terms of chain intersegmental distance and fraction of free volume of the membrane along with the kinetic diameters of the permeated gases. The intersegmental distance increased after TR and/or the addition of PPN-2. Permeability followed an exponential dependence with free volume and a quadratic function of the kinetic diameter of the gas.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Alfonso González-Ortega
- Department of Organic Chemistry, School of Sciences, Faculty of Sceince, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain;
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| |
Collapse
|
26
|
Feng Y, Wang H, Yao J. Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Akbari A, Karimi-Sabet J, Ghoreishi SM. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zhang Y, Lee WH, Seong JG, Bae JY, Zhuang Y, Feng S, Wan Y, Lee YM. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
|
30
|
Mei X, Yang S, Lu P, Zhang Y, Zhang J. Improving the Selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H 2/CO 2 Separation. Front Chem 2020; 8:528. [PMID: 32754574 PMCID: PMC7366856 DOI: 10.3389/fchem.2020.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Gas separation membranes are essential for the capture, storage, and utilization (CSU) of CO2, especially for H2/CO2separation. However, both glassy and rubbery polymer membranes lead a relatively poor selectivity for H2/CO2 separation because the differences in kinetic diameters of these gases are small. The present study establishing the mixed matrix membranes (MMMs) consist of a nano-sized zeolitic imidazolate frameworks (ZIF-8) blended with the polysulfone (PSf) asymmetric membranes. The gas transport properties (H2, CO2, N2, and CH4) of MMMs with a ZIF-8 loading up to 10 wt% were tested and showing significant improvement on permeance of the light gases (e.g., H2 and CO2). Moreover, the depositional polydopamine (PDA) layer further enhanced the ideal H2/CO2 selectivity, and the PDA-modified MMMs approach the Robeson upper bound of H2/CO2 separation membranes. Hence, the PDA post-modification strategy can effectively repair the defects of MMMs and improved the H2/CO2selectivity.
Collapse
Affiliation(s)
- Xueyi Mei
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Peng Lu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yexin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade‐off lines. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200110] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Huang M, Wang Z, Jin J. Two‐Dimensional Microporous Material‐based Mixed Matrix Membranes for Gas Separation. Chem Asian J 2020; 15:2303-2315. [DOI: 10.1002/asia.202000053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Menghui Huang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhenggong Wang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jian Jin
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
34
|
Şahin F, Topuz B, Kalıpçılar H. ZIF filled PDMS mixed matrix membranes for separation of solvent vapors from nitrogen. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Xu Y, Lin H. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci 2020; 560:273-283. [DOI: 10.1016/j.jcis.2019.10.078] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/27/2022]
|
36
|
Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus KS, Katayama Y, Cohen SM. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem Rev 2020; 120:8267-8302. [PMID: 31895556 DOI: 10.1021/acs.chemrev.9b00575] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-organic frameworks (MOFs) are inherently crystalline, brittle porous solids. Conversely, polymers are flexible, malleable, and processable solids that are used for a broad range of commonly used technologies. The stark differences between the nature of MOFs and polymers has motivated efforts to hybridize crystalline MOFs and flexible polymers to produce composites that retain the desired properties of these disparate materials. Importantly, studies have shown that MOFs can be used to influence polymer structure, and polymers can be used to modulate MOF growth and characteristics. In this Review, we highlight the development and recent advances in the synthesis of MOF-polymer mixed-matrix membranes (MMMs) and applications of these MMMs in gas and liquid separations and purifications, including aqueous applications such as dye removal, toxic heavy metal sequestration, and desalination. Other elegant ways of synthesizing MOF-polymer hybrid materials, such as grafting polymers to and from MOFs, polymerization of polymers within MOFs, using polymers to template MOFs, and the bottom-up synthesis of polyMOFs and polyMOPs are also discussed. This review highlights recent papers in the advancement of MOF-polymer hybrid materials, as well as seminal reports that significantly advanced the field.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Joseph M Palomba
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle S Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuji Katayama
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States.,Asahi Kasei Corporation, 2-1 Samejima, Fuji-city, Shizuoka 416-8501, Japan
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
37
|
Wang Z, Si Z, Cai D, Li G, Li S, Qin P, Tan T. Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Yang G, Guo H, Kang Z, Zhao L, Feng S, Jiao F, Mintova S. Green Hydrogen Separation from Nitrogen by Mixed-Matrix Membranes Consisting of Nanosized Sodalite Crystals. CHEMSUSCHEM 2019; 12:4529-4537. [PMID: 30556648 DOI: 10.1002/cssc.201802577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Nanosized sodalite (Nano-SOD) crystals were used as active filler to prepare mixed-matrix membranes (MMMs) for promoting the H2 /N2 gas-separation performance. The Nano-SOD crystals with extremely small crystallites (40-50 nm) were synthesized from a colloidal suspension free of organic structural directing agent and uniformly dispersed in the polyetherimide (PEI) matrix. The Nano-SOD filler with a suitable aperture size (2.8 Å) allowed only H2 molecules to pass through and rejected the N2 , thus improving the selectivity of the membranes. The high dispersion of Nano-SOD crystals in the polymer matrix and the interactions between the inorganic and organic phases greatly improved the membrane separation performance and minimized interfacial holes. The MMMs showed a high H2 permeability (≈7155.1 Barrer at 25 °C under atmospheric pressure) and an ideal H2 /N2 selectivity factor of approximately 16.9 in a single gas test. Moreover, in a gas mixture (H2 /N2 , 25-100 °C), the selectivity factor increased significantly to approximately 30.9. The high stability of the MMMs, which consist of highly dispersed Nano-SOD crystals in a PEI matrix for H2 /N2 separation (6 weeks continuous test), makes them an important material for ammonia synthesis applications that require and also release a large amount of H2 .
Collapse
Affiliation(s)
- Ge Yang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, P.R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, P.R. China
| | - Zixi Kang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Lei Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, P.R. China
| | - Shou Feng
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Feng Jiao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, P.R. China
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao, 266555, P.R. China
- Laboratoire Catalyse et Spectrochimie (LCS), ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Marechal Juin, 14050, Caen, France
| |
Collapse
|
39
|
Ghanem AS, Ba‐Shammakh M, Usman M, Khan MF, Dafallah H, Habib MAM, Al‐Maythalony BA. High gas permselectivity in ZIF‐302/polyimide self‐consistent mixed‐matrix membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.48513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Akram S. Ghanem
- Department of Chemical EngineeringKing Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Mohamed Ba‐Shammakh
- Department of Chemical EngineeringKing Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Muhammad Usman
- Center for Research Excellence in Nanotechnology (CENT), KFUPM Dhahran 31261 Saudi Arabia
| | - M. Faizan Khan
- King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon Capture and Sequestration (KACST‐TIC on CCS) at KFUPM Dhahran 31261 Saudi Arabia
| | - Hatim Dafallah
- Center for Engineering Research, KFUPM Dhahran 31261 Saudi Arabia
| | - Mohamed A. M. Habib
- King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon Capture and Sequestration (KACST‐TIC on CCS) at KFUPM Dhahran 31261 Saudi Arabia
| | - Bassem A. Al‐Maythalony
- King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon Capture and Sequestration (KACST‐TIC on CCS) at KFUPM Dhahran 31261 Saudi Arabia
| |
Collapse
|
40
|
|
41
|
Xiang F, Popczun EJ, Hopkinson DP. Layer-by-layer assembly of metal-organic framework nanosheets with polymer. NANOTECHNOLOGY 2019; 30:345602. [PMID: 30991373 DOI: 10.1088/1361-6528/ab19f4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-organic framework (MOF) nanosheets are attracting more and more attention due to their tunable porous structure and two-dimensional shape. Adding MOF nanosheets into polymers can lead to improved properties, but the level of enhancement is usually thwarted by the difficulties in exfoliating and aligning these nanosheets within the polymer matrix. In order to establish a strategy for making polymer/MOF nanosheets composites with improved exfoliation and alignment, we combined MOF nanosheets and polymer using layer-by-layer (LbL) assembly for the first time. MOF nanosheets (ZIF67-L, leaf-like zeolitic imidazolate framework nanosheets) used in this study were functionalized with positively charged polyethylenimine, which could replace the original surface ligands and impart a positive charge on the nanosheet surface. These positively charged MOF nanosheets were then combined with negatively charged poly(acrylic acid) through ionic-bonding-assisted LbL assembly, generating a polymer composite with fully exfoliated and highly aligned MOF nanosheets.
Collapse
Affiliation(s)
- Fangming Xiang
- US Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, United States of America
| | | | | |
Collapse
|
42
|
Ma L, Svec F, Lv Y, Tan T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chem Asian J 2019; 14:3502-3514. [DOI: 10.1002/asia.201900843] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Ma
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Frantisek Svec
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Yongqin Lv
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| |
Collapse
|
43
|
Mao H, Zhen HG, Ahmad A, Li SH, Liang Y, Ding JF, Wu Y, Li LZ, Zhao ZP. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Kim JS, Moon SJ, Wang HH, Kim S, Lee YM. Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Brunetti A, Tocci E, Cersosimo M, Kim JS, Lee WH, Seong JG, Lee YM, Drioli E, Barbieri G. Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
|
47
|
Chen YC, Huang CH, Liu YL. Polymerization of Meldrum's Acid and Diisocyanate: An Effective Approach for Preparation of Reactive Polyamides and Polyurethanes. ACS OMEGA 2019; 4:7884-7890. [PMID: 31459875 PMCID: PMC6648850 DOI: 10.1021/acsomega.9b00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Meldrum's acid (MA) is utilized as a monomer to polymerize with diisocyanates to result in polyamides, containing MA moieties at polymer chains. This reaction is also employed to prepare isocyanate-terminated polyamide segments which are utilized as a precursor for preparation of MA-containing polyurethanes. Based on the thermolysis reaction of MA groups, followed by ketene dimerization reaction, the reactive polyamides and polyurethanes show self-cross-linkable features. The cross-linked polyurethanes exhibit good film formability, thermal stability, and mechanical properties. A new MA-based polymerization method and a novel synthesis route for preparation of reactive polyamides and polyurethanes are demonstrated.
Collapse
|
48
|
Abdi S, Nasiri M. Enhanced Hydrophilicity and Water Flux of Poly(ether sulfone) Membranes in the Presence of Aluminum Fumarate Metal-Organic Framework Nanoparticles: Preparation and Characterization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15060-15070. [PMID: 30943002 DOI: 10.1021/acsami.9b01848] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study is to examine the effect of the addition of aluminum fumarate (AlFu) nanoparticles on the properties of poly(ether sulfone) (PES) membranes, where the AlFu nanoparticles were synthesized as the nanofillers with the metal-organic framework and their structure was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FESEM) analyses. Subsequently, PES/AlFu mixed-matrix membranes (MMMs) were fabricated in different weight percentages of nanofiller through the phase inversion method and the membrane characterization was accomplished by FTIR, XRD, FESEM, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and elemental mapping analyses. The effect of the addition of nanoparticles on the membrane properties was investigated by measuring the membrane hydrophilicity, pure water flux, solute rejection, and fouling resistance using a dead-end cell under constant pressure and bovine serum albumin as a foulant. The molecular weight cutoff (MWCO) of MMMs was measured by the rejection of poly(ethylene glycol) in various molecular weights, and the membrane surface roughness, porosity, and mean pore radius were calculated. The results showed that AlFu nanoparticles increased the hydrophilicity and porosity of the neat PES membranes and consequently increased the water permeability such that MMM including 0.75 wt % of AlFu possessed the maximum porosity (62.2%), mean pore radius (10.2 nm), and MWCO (154 kDa). Furthermore, this membrane exhibits a superlative flux recovery and minimal total resistance in the antifouling properties examinations.
Collapse
Affiliation(s)
- Sara Abdi
- Faculty of Chemical, Petroleum, and Gas Engineering , Semnan University , Semnan 35195-363 , Iran
| | - Masoud Nasiri
- Faculty of Chemical, Petroleum, and Gas Engineering , Semnan University , Semnan 35195-363 , Iran
| |
Collapse
|
49
|
Lee J, Kim JS, Kim JF, Jo HJ, Park H, Seong JG, Lee YM. Densification-induced hollow fiber membranes using crosslinked thermally rearranged (XTR) polymer for CO2 capture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Yang C, Zhang W, Wang J, Li S, Liu X, Dou L, Yue T, Sun J, Wang J. Nanostructured morphology control and phase transition of zeolitic imidazolate frameworks as an ultra-high performance adsorbent for water purification. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00851a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By adjusting the methanol/water ratio to control the phases and morphologies, ZIFs showed enhanced performance for heavy metal adsorption.
Collapse
Affiliation(s)
- Chengyuan Yang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Wentao Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jing Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Sihang Li
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xinnan Liu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Leina Dou
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Tianli Yue
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining 810008
- China
| | - Jianlong Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|