1
|
Pérez-Miana M, Luque-Alled JM, Mayoral Á, Martínez-Visus Í, Foster AB, Budd PM, Coronas J. Amphiphilic Zeolitic Imidazolate Framework for Improved CO 2 Separation in PIM-1 Mixed Matrix Membranes. Angew Chem Int Ed Engl 2025; 64:e202420879. [PMID: 40146075 DOI: 10.1002/anie.202420879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 03/28/2025]
Abstract
This study aims to enhance the compatibility between filler and polymer in mixed matrix membranes (MMMs), addressing an important challenge in membrane development. ZIF-94, known for its affinity to CO2, was partially modified with 2-undecylimidazolate (umIm) through the solvent-assisted ligand exchange (SALE) method to improve its compatibility with the prototypical polymer of intrinsic microporosity PIM-1. The modified ZIF-94 (ZIF-94-umIm) can be considered as an amphiphilic MOF with both hydrophilic and hydrophobic moieties, while maintaining a considerably high CO2 adsorption capacity (2.34 mmol g-1 at 90 kPa and 0 °C). Gas separation experiments were performed using mixed gas compositions of 15/85 CO2/N2 at 3 bar and 35 °C. The resulting MMM with a 5 wt.% loading exhibited an enhanced CO2 separation performance, with ca. 70% and 10% increases in CO2 permeability (8900 Barrer) and CO2/N2 selectivity (20.2), respectively, compared to pristine PIM-1 membranes. In addition, thin film nanocomposite membranes were prepared showing a 23.5 CO2/N2 selectivity at 2350 GPU of CO2. This modification strategy shows a great potential for improving the CO2 capture technologies, highlighting the potential of tailoring MOF fillers for advanced membrane materials in gas separation applications.
Collapse
Affiliation(s)
- Marta Pérez-Miana
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - José Miguel Luque-Alled
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - Álvaro Mayoral
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
| | - Íñigo Martínez-Visus
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - Andrew B Foster
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Joaquín Coronas
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| |
Collapse
|
2
|
Hasan MR, Coronas J. How Can the Filler-Polymer Interaction in Mixed Matrix Membranes Be Enhanced? Chempluschem 2024; 89:e202400456. [PMID: 39194134 PMCID: PMC11639639 DOI: 10.1002/cplu.202400456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Mixed matrix membranes (MMMs) constitute a type of molecular separation membranes in which a nanomaterial type filler is dispersed in a given polymer to enhance its selective permeation ability. The key issue in MMMs is the establishing of a proper filler-polymer interaction to avoid non-selective transport paths while increasing permeability but also to improve other membrane properties such as aging and plasticization. Along the pass years several strategies have been applied to enhance the physicochemical interaction between the fillers (e. g. silicas, zeolites, porous coordination polymers, carbonaceous materials, etc.) and the membrane polymers: increase of external surface area, priming, use of intrinsically more compatible fillers, in situ synthesis of filler, in situ polymerization, polymer side-chain modification and post-synthetic modification of filler.
Collapse
Affiliation(s)
- Md. Rafiul Hasan
- Department of Chemical EngineeringJashore University of Science and TechnologyJashore7408Bangladesh
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC-Universidad de ZaragozaZaragoza50018Spain
- Chemical and Environmental Engineering DepartmentUniversidad de ZaragozaZaragoza50018Spain
| |
Collapse
|
3
|
Jia Q, Lasseuguette E, Kaur H, Naden AB, Ferrari MC, Wright PA. Zinc triazolate oxalate CALF-20 with platelet morphology and its PEBAX-based mixed matrix membranes for CO 2/N 2 separation. Chem Commun (Camb) 2024; 60:11128-11131. [PMID: 39268921 DOI: 10.1039/d4cc03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
CALF-20, [Zn2(1,2,4-triazolate)2(oxalate)] shows remarkable performance in post-combustion carbon capture, even under humid conditions1 but its reported crystal morphology hinders its applicability in mixed matrix membranes (MMMs). Here, a route to its preparation as platelets a few tens of nm thick is reported. These were incorporated into a PEBAX MH1567 polymer matrix and the resultant MMMs display improvement in CO2 permeability and CO2/N2 selectivity.
Collapse
Affiliation(s)
- Qian Jia
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Elsa Lasseuguette
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Harpreet Kaur
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Paul A Wright
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| |
Collapse
|
4
|
Du X, Zhao S, Qu Y, Jia H, Xu S, Zhang M, Geng G. Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO 2/CH 4 Separation. Polymers (Basel) 2024; 16:393. [PMID: 38337282 DOI: 10.3390/polym16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 02/12/2024] Open
Abstract
Imidazole ionic liquids (ILs) have good affinity and good solubility for carbon dioxide (CO2). Such ionic liquids, combined with polyimide membrane materials, can solve the problem that, today, CO2 is difficult to separate and recover. In this study, the ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (IL1), 1-pentyl-3-methylimidazolium tetrafluoroborate (IL2), 1-octyl-3-methylimidazolium tetrafluoroborate (IL3), and 1-dodecylimidazolium tetrafluoroborate (IL4) with different contents were added to a polyimide matrix, and a series of polyimide membranes blended with ionic liquid were prepared using a high-speed mixer. The mechanical properties and gas separation permeability of the membranes were investigated. Among them, the selectivity of the PI/IL3 membrane for CO2/CH4 was 180.55, which was 2.5 times higher than the PI membrane, and its CO2 permeability was 16.25 Barrer, which exceeded the Robeson curve in 2008; the separation performance of the membrane was the best in this work.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shijun Zhao
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yanqing Qu
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hongge Jia
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuangping Xu
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Mingyu Zhang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Guoliang Geng
- College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
5
|
Jia Q, Lasseuguette E, Lozinska MM, Ferrari MC, Wright PA. Hybrid Benzimidazole-Dichloroimidazole Zeolitic Imidazolate Frameworks Based on ZIF-7 and Their Application in Mixed Matrix Membranes for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46615-46626. [PMID: 36194177 PMCID: PMC9585523 DOI: 10.1021/acsami.2c12908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 05/18/2023]
Abstract
Mixed-linker zeolitic imidazolate frameworks (ZIFs) with the sodalite (sod) topology type and based on ZIF-7 have been prepared by direct synthesis from the mixtures of benzimidazole (BzIm) and 4,5-dichloroimidazole (dcIm). Incorporation of dcIm into the ZIF-7 structure gives ZIF-7/COK-17 hybrids with rhombohedral symmetry that do not show the "open-to-closed form" structural transition upon solvent removal exhibited by ZIF-7. They show Type I isotherms for low molecular weight gases and high affinity for CO2 even at low partial pressures. Synthesis under mild conditions gives ZIF nanoparticles (250-400 nm) suitable for incorporation into mixed matrix membranes (MMMs): these were prepared with both glassy (Matrimid) and rubbery (PEBAX 1657) polymers. Permeation tests at 298 K and 1.2 bar reveal that the incorporation of Zn(BzIm0.55dcIm0.45)2 nanoparticles at up to ca. 12 wt % gives defect-free membranes with enhanced CO2 permeability in both polymer matrices, with retention of selectivity (Matrimid) or with an enhancement in selectivity that is most pronounced for the smaller nanoparticles (PEBAX). The membrane with the best performance exhibits a selectivity of ca. 200 for CO2/N2 (a 4-fold increase compared to the pure polymer) and a CO2 permeability of 64 Barrer. At the relatively low loadings investigated, the MMMs' performance obeys the Maxwell model, and the intrinsic property of diffusivity of the ZIFs can be extracted as a result.
Collapse
Affiliation(s)
- Qian Jia
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| | - Elsa Lasseuguette
- School
of Engineering, University of Edinburgh, Robert Stevenson Road, EdinburghEH9 3FB, United Kingdom
| | - Magdalena M. Lozinska
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| | - Maria-Chiara Ferrari
- School
of Engineering, University of Edinburgh, Robert Stevenson Road, EdinburghEH9 3FB, United Kingdom
| | - Paul A. Wright
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| |
Collapse
|
6
|
Soto C, Comesaña-Gandara B, Marcos Á, Cuadrado P, Palacio L, Lozano ÁE, Álvarez C, Prádanos P, Hernandez A. Thermally Rearranged Mixed Matrix Membranes from Copoly(o-hydroxyamide)s and Copoly(o-hydroxyamide-amide)s with a Porous Polymer Network as a Filler-A Comparison of Their Gas Separation Performances. MEMBRANES 2022; 12:998. [PMID: 36295757 PMCID: PMC9609112 DOI: 10.3390/membranes12100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Copoly(o-hydroxyamide)s (HPA) and copoly(o-hydroxyamide-amide)s (PAA) have been synthesized to be used as continuous phases in mixed matrix membranes (MMMs). These polymeric matrices were blended with different loads (15 and 30 wt.%) of a relatively highly microporous porous polymer network (PPN). SEM images of the manufactured MMMs exhibited good compatibility between the two phases for all the membranes studied, and their mechanical properties have been shown to be good enough even after thermal treatment. The WAX results show that the addition of PPN as a filler up to 30% does not substantially change the intersegmental distance and the polymer packing. It seems that, for all the membranes studied, the free volume that determines gas transport is in the high end of the possible range. This means that gas flow occurs mainly between the microvoids in the polymer matrix around the filler. In general, both HPA- and PAA-based MMMs exhibited a notable improvement in gas permeability, due to the presence of PPN, for all gases tested, with an almost constant selectivity. In summary, although the thermal stability of the PAA is limited by the thermal stability of the polyamide side chain, their mechanical properties were better. The permeability was higher for the PAA membranes before their thermal rearrangement, and these values increased after the addition of moderate amounts of PPN.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | | | - Ángel Marcos
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Purificación Cuadrado
- Department of Organic Chemistry, School of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Cristina Álvarez
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
7
|
Abstract
Biogas and biohydrogen, due to their renewable nature and zero carbon footprint, are considered two of the gaseous biofuels that will replace conventional fossil fuels. Biogas from anaerobic digestion must be purified and converted into high-quality biomethane prior to use as a vehicle fuel or injection into natural gas networks. Likewise, the enrichment of biohydrogen from dark fermentation requires the removal of CO2, which is the main pollutant of this new gaseous biofuel. Currently, the removal of CO2 from both biogas and biohydrogen is carried out by means of physical/chemical technologies, which exhibit high operating costs and corrosion problems. Biological technologies for CO2 removal from biogas, such as photosynthetic enrichment and hydrogenotrophic enrichment, are still in an experimental development phase. In this context, membrane separation has emerged as the only physical/chemical technology with the potential to improve the performance of CO2 separation from both biogas and biohydrogen, and to reduce investment and operating costs, as a result of the recent advances in the field of nanotechnology and materials science. This review will focus on the fundamentals, potential and limitations of CO2 and H2 membrane separation technologies. The latest advances on membrane materials for biogas and biohydrogen purification will be systematically reviewed.
Collapse
|
8
|
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. NATURE NANOTECHNOLOGY 2022; 17:911-923. [PMID: 35995854 DOI: 10.1038/s41565-022-01168-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this Review we survey the molecular sieving behaviour of metal-organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic-organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer-filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the 'drawbacks' of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF-polymer blends, as they require improved polymer-filler interactions, such as cross-linking or surface functionalization.
Collapse
Affiliation(s)
- A Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany.
| | - J Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Free Volume and Permeability of Mixed Matrix Membranes Made from a Terbutil-M-terphenyl Polyamide and a Porous Polymer Network. Polymers (Basel) 2022; 14:polym14153176. [PMID: 35956689 PMCID: PMC9371232 DOI: 10.3390/polym14153176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
A set of thermally rearranged mixed matrix membranes (TR-MMMs) was manufactured and tested for gas separation. These membranes were obtained through the thermal treatment of a precursor MMM with a microporous polymer network and an o-hydroxypolyamide,(HPA) created through a reaction of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (APAF) and 5′-terbutil-m-terfenilo-3,3″-dicarboxylic acid dichloride (tBTmCl). This HPA was blended with different percentages of a porous polymer network (PPN) filler, which produced gas separation MMMs with enhanced gas permeability but with decreased selectivity. The thermal treatment of these MMMs gave membranes with excellent gas separation properties that did not show the selectivity decreasing trend. It was observed that the use of the PPN load brought about a small decrease in the initial mass losses, which were lower for increasing PPN loads. Regarding the glass transition temperature, it was observed that the use of the filler translated to a slightly lower Tg value. When these MMMs and TR-MMMs were compared with the analogous materials created from the isomeric 5′-terbutil-m-terfenilo-4,4″-dicarboxylic acid dichloride (tBTpCl), the permeability was lower for that of tBTmCl, compared with the one from tBTpCl, although selectivity was quite similar. This fact could be attributed to a lower rigidity as roughly confirmed by the segmental length of the polymer chain as studied by WAXS. A model for FFV calculation was proposed and its predictions compared with those evaluated from density measurements assuming a matrix-filler interaction or ideal independence. It turns out that permeability as a function of FFV for TR-MMMs follows an interaction trend, while those not thermally treated follow the non-interaction trend until relatively high PPN loads were reached.
Collapse
|
10
|
Zheng W, Yu J, Hu Z, Ruan X, Li X, Dai Y, He G. 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Lasseuguette E, Fielder-Dunton L, Jian Q, Ferrari MC. The Effect of Solution Casting Temperature and Ultrasound Treatment on PEBAX MH-1657/ZIF-8 Mixed Matrix Membranes Morphology and Performance. MEMBRANES 2022; 12:membranes12060584. [PMID: 35736290 PMCID: PMC9228675 DOI: 10.3390/membranes12060584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
Approximately two-thirds of anthropogenic emissions causing global warming are from carbon dioxide. Carbon capture is essential, with membranes proving to be a low cost and energy-efficient solution to alternative technologies. In particular, mixed matrix membranes (MMMs) can have higher permeability and selectivity than pure polymer membranes. The fabrication conditions affect the formation of defects within the membranes. In this work, MMMs were created using a PEBAX MH-1657 polymer and a ZIF-8 filler. The effect of casting plate temperature, varying from −5 °C to 50 °C, and the effect of ultrasound treatment time (80–400 min) and method (filler solution only, filler and polymer combined solution only and filler solution followed by combined solution) were investigated, aiming to reduce defect formations hence improving the performance of the MMMs. SEM images and permeation tests using pure CO2 and N2 gas, replicating flue gas for carbon capture, were used to investigate and compare the membranes morphology and performance. The results indicated that the MMMs maintained their permeabilities and selectivities at all tested casting temperatures. However, the neat PEBAX membranes demonstrated increased phase separation of the polyamide and polyether oxide phases at higher temperatures, causing a reduction in permeability due to the higher crystallinity degree, confirmed by DSC experiment. The MMMs fabricated at low ultrasound times displayed a large amount of aggregation with large particle size causing channeling. At high ultrasound times, a well-dispersed filler with small filler diameters was observed, providing a high membrane performance. Overall, defect-free membranes were successfully fabricated, leading to improved performance, with the best membrane resulting from the longest ultrasound time reaching the Robeson bound upper limits.
Collapse
Affiliation(s)
- Elsa Lasseuguette
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK; (E.L.); (L.F.-D.)
| | - Louise Fielder-Dunton
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK; (E.L.); (L.F.-D.)
| | - Qian Jian
- EaSTCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK; (E.L.); (L.F.-D.)
- Correspondence:
| |
Collapse
|
12
|
PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhang Z, Cao X, Geng C, Sun Y, He Y, Qiao Z, Zhong C. Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Sunder N, Fong YY, Bustam MA, Suhaimi NH. Development of Amine-Functionalized Metal-Organic Frameworks Hollow Fiber Mixed Matrix Membranes for CO 2 and CH 4 Separation: A Review. Polymers (Basel) 2022; 14:1408. [PMID: 35406281 PMCID: PMC9002624 DOI: 10.3390/polym14071408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
CO2 separation from raw natural gas can be achieved through the use of the promising membrane-based technology. Polymeric membranes are a known method for separating CO2 but suffer from trade-offs between its permeability and selectivity. Therefore, through the use of mixed matrix membranes (MMMs) which utilizes inorganic or hybrid fillers such as metal-organic frameworks (MOFs) in polymeric matrix, the permeability and selectivity trade-off can be overcome and possibly surpass the Robeson Upper Bounds. In this study, various types of MOFs are explored in terms of its structure and properties such as thermal and chemical stability. Next, the use of amine and non-amine functionalized MOFs in MMMs development are compared in order to investigate the effects of amine functionalization on the membrane gas separation performance for flat sheet and hollow fiber configurations as reported in the literature. Moreover, the gas transport properties and various challenges faced by hollow fiber mixed matrix membranes (HFMMMs) are discussed. In addition, the utilization of amine functionalization MOF for mitigating the challenges faced is included. Finally, the future directions of amine-functionalized MOF HFMMMs are discussed for the fields of CO2 separation.
Collapse
Affiliation(s)
- Naveen Sunder
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| | - Yeong Yin Fong
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- CO2 Research Center (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Nadia Hartini Suhaimi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (N.S.); (M.A.B.); (N.H.S.)
| |
Collapse
|
15
|
Soto C, Torres-Cuevas ES, Palacio L, Prádanos P, Freeman BD, Lozano ÁE, Hernández A, Comesaña-Gándara B. Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network. MEMBRANES 2022; 12:200. [PMID: 35207122 PMCID: PMC8879291 DOI: 10.3390/membranes12020200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H2, N2, O2, CH4 and CO2 gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume. Thermal rearrangement entails an increase in the FFV. Both before and after thermal rearrangement, the free volume increases with the PPN content very similarly for both polymeric matrices. It is shown that there is a portion of free volume that is inaccessible to permeation (occluded volume), probably due to it being trapped within the filler. In fact, permeability and selectivity change below what could be expected according to densities, when the fraction of occluded volume increases. A higher filler load increases the percentage of inaccessible or trapped free volume, probably due to the increasing agglomeration of the filler. On the other hand, the phenomenon is slightly affected by thermal rearrangement. The fraction of trapped free volume seems to be lower for membranes in which the tBTpCl-APAF is used as a matrix than for those with a 6FCl-APAF matrix, possibly because tBTpCl-APAF could approach the PPN better. The application of an effective medium theory for permeability allowed us to extrapolate for a 100% filler, giving the same value for both thermally rearranged and non-rearranged MMMs. The pure filler could also be extrapolated by assuming the same tendency as in the Robeson's plots for MMMs with low filler content.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Department of Macromolecular Chemistry, Juan de la Cierva 3, E-28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | | |
Collapse
|
16
|
Wan J, Nian M, Yang C, Ge K, Liu J, Chen Z, Duan J, Jin W. Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Yang Z, Ao D, Guo X, Nie L, Qiao Z, Zhong C. Preparation and characterization of small-size amorphous MOF mixed matrix membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Shah Buddin M, Ahmad A. A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Wang Q, Dai Y, Ruan X, Zheng W, Yan X, Li X, He G. ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Carja ID, Tavares SR, Shekhah O, Ozcan A, Semino R, Kale VS, Eddaoudi M, Maurin G. Insights into the Enhancement of MOF/Polymer Adhesion in Mixed-Matrix Membranes via Polymer Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29041-29047. [PMID: 34105948 DOI: 10.1021/acsami.1c03859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MOF-based mixed-matrix membranes (MMMs) prepared using standard routes often exhibit poor adhesion between polymers and MOFs. Herein, we report an unprecedented systematic exploration on polymer functionalization as the key to achieving defect-free MMMs. As a case study, we explored computationally MMMs based on the combination of the prototypical UiO-66(Zr) MOF with polymer of intrinsic porosity-1 (PIM-1) functionalized with various groups including amidoxime, tetrazole, and N-((2-ethanolamino)ethyl)carboxamide. Distinctly, the amidoxime-derivative PIM-1/UiO-66(Zr) MMM was predicted to express the desired enhanced MOF/polymer interfacial interactions and thus subsequently prepared and evaluated experimentally. Prominently, high-resolution transmission electron microscopy confirmed optimal adhesion between the two components in contrast to the nanometer-sized voids/defects shown by the pristine PIM-1/UiO-66(Zr) MMM. Notably, single-gas permeation measurements further corroborated the need of optimal MOF/polymer adhesion in order to effectively enable the MOF to play a role in the gas transport of the resulting MMM.
Collapse
Affiliation(s)
- Ionela-Daniela Carja
- Functional Materials, Design, Discovery & Development (FMD3), Advanced Membrane & Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Osama Shekhah
- Functional Materials, Design, Discovery & Development (FMD3), Advanced Membrane & Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aydin Ozcan
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Rocio Semino
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Vinayak S Kale
- Functional Materials, Design, Discovery & Development (FMD3), Advanced Membrane & Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery & Development (FMD3), Advanced Membrane & Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guillaume Maurin
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
22
|
Cao XT, Vo TK, An TNM, Nguyen TD, Kabtamu DM, Kumar S. Enhanced Dye Adsorption of Mixed‐Matrix Membrane by Covalent Incorporation of Metal‐Organic Framework with Poly(styrene‐
alt
‐maleic anhydride). ChemistrySelect 2021. [DOI: 10.1002/slct.202100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuan Thang Cao
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - The Ky Vo
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - Trinh Duy Nguyen
- NTT Institute of Hi-Technology Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Daniel Manaye Kabtamu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Subodh Kumar
- Regional Centre of Advanced Technologies and Materials Faculty of Science Palacký University Olomouc 779 00 Czech Republic
| |
Collapse
|
23
|
Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100091] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Soto C, Torres-Cuevas ES, González-Ortega A, Palacio L, Lozano ÁE, Freeman BD, Prádanos P, Hernández A. Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers (Basel) 2021; 13:polym13060931. [PMID: 33803520 PMCID: PMC8003052 DOI: 10.3390/polym13060931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′′-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed matrix membranes (MMMs) loaded with 20% (w/w) of two porous polymer networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs, and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized, and their gas separation properties evaluated for H2, N2, O2, CH4, and CO2. Both TR process and the addition of PPN increased permeability with minor decreases in selectivity for all gases tested. Excellent results were obtained, in terms of the permeability versus selectivity compromise, for H2/CH4 and H2/N2 separations with membranes approaching the 2008 Robeson’s trade-off line. The best gas separation properties were obtained when PPN-2 was used. Finally, gas permeation was characterized in terms of chain intersegmental distance and fraction of free volume of the membrane along with the kinetic diameters of the permeated gases. The intersegmental distance increased after TR and/or the addition of PPN-2. Permeability followed an exponential dependence with free volume and a quadratic function of the kinetic diameter of the gas.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Alfonso González-Ortega
- Department of Organic Chemistry, School of Sciences, Faculty of Sceince, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain;
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| |
Collapse
|
25
|
Novel mixed matrix membranes based on polyethersulfone and MIL-96 (Al) for CO2 gas separation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01562-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO 2/CH 4 Separation. NANOMATERIALS 2021; 11:nano11030668. [PMID: 33800502 PMCID: PMC7999237 DOI: 10.3390/nano11030668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1–4 wt.% GO and 5–15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO2 permeability (PCO2) of 147 Barrer and CO2/CH4 selectivity (αCO2/CH4) of 47.5. At the optimum GO loading (1 wt.%), the PCO2 and αCO2/CH4 were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its PCO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16–55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.
Collapse
|
27
|
Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117582] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
29
|
Soto C, Aguilar Lugo C, Rodríguez S, Palacio L, Lozano Á, Prádanos P, Hernandez A. Enhancement of CO2/CH4 permselectivity via thermal rearrangement of mixed matrix membranes made from an o-hydroxy polyamide with an optimal load of a porous polymer network. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Effect of Nafion and APTEOS functionalization on mixed gas separation of PEBA-FAU membranes: Experimental study and MD and GCMC simulations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Muthukumaraswamy Rangaraj V, Wahab MA, Reddy KSK, Kakosimos G, Abdalla O, Favvas EP, Reinalda D, Geuzebroek F, Abdala A, Karanikolos GN. Metal Organic Framework - Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front Chem 2020; 8:534. [PMID: 32719772 PMCID: PMC7350925 DOI: 10.3389/fchem.2020.00534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
Collapse
Affiliation(s)
| | - Mohammad A. Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - K. Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - George Kakosimos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Omnya Abdalla
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research “Demokritos”, Attica, Greece
| | - Donald Reinalda
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Frank Geuzebroek
- ADNOC Gas Processing, Department of Research and Engineering R&D, Abu Dhabi, United Arab Emirates
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
32
|
Suhaimi NH, Yeong YF, Jusoh N, Chew TL, Bustam MA, Suleman S. Separation of CO2 from CH4 using mixed matrix membranes incorporated with amine functionalized MIL-125 (Ti) nanofiller. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Enhanced selectivity of O2/N2 gases in co-casted mixed matrix membranes filled with BaFe12O19 nanoparticles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Shi Y, Liang B, Lin RB, Zhang C, Chen B. Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Hu CC, Cheng PH, Chou SC, Lai CL, Huang SH, Tsai HA, Hung WS, Lee KR. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Madhav D, Malankowska M, Coronas J. Synthesis of nanoparticles of zeolitic imidazolate framework ZIF-94 using inorganic deprotonators. NEW J CHEM 2020. [DOI: 10.1039/d0nj04402d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel synthesis process of ZIF-94 (also known as SIM-1) is developed for particle size tuning, using either NaOH or NH4OH as a deprotonator.
Collapse
Affiliation(s)
- Dharmjeet Madhav
- Instituto de Nanociencia y Materiales de Aragón (INMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
- Spain
- Chemical and Environmental Engineering Department
| | - Magdalena Malankowska
- Instituto de Nanociencia y Materiales de Aragón (INMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
- Spain
- Chemical and Environmental Engineering Department
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA)
- Universidad de Zaragoza-CSIC
- 50018 Zaragoza
- Spain
- Chemical and Environmental Engineering Department
| |
Collapse
|
38
|
Suhaimi NH, Yeong YF, Ch’ng CWM, Jusoh N. Tailoring CO 2/CH 4 Separation Performance of Mixed Matrix Membranes by Using ZIF-8 Particles Functionalized with Different Amine Groups. Polymers (Basel) 2019; 11:polym11122042. [PMID: 31835373 PMCID: PMC6960569 DOI: 10.3390/polym11122042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023] Open
Abstract
CO2 separation from CH4 by using mixed matrix membranes has received great attention due to its higher separation performance compared to neat polymeric membrane. However, Robeson’s trade-off between permeability and selectivity still remains a major challenge for mixed matrix membrane in CO2/CH4 separation. In this work, we report the preparation, characterization and CO2/CH4 gas separation properties of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 particles functionalized with different types of amine groups. The purpose of introducing amino-functional groups into the filler is to improve the interaction between the filler and polymer, thus enhancing the CO2 /CH4 separation properties. ZIF-8 were functionalized with three differents amino-functional group including 3-(Trimethoxysilyl)propylamine (APTMS), N-[3-(Dimethoxymethylsilyl)propyl ethylenediamine (AAPTMS) and N1-(3-Trimethoxysilylpropyl) diethylenetriamine (AEPTMS). The structural and morphology properties of the resultant membranes were characterized by using different analytical tools. Subsequently, the permeability of CO2 and CH4 gases over the resultant membranes were measured. The results showed that the membrane containing 0.5 wt% AAPTMS-functionalized ZIF-8 in 6FDA- durene polymer matrix displayed highest CO2 permeability of 825 Barrer and CO2/CH4 ideal selectivity of 26.2, which successfully lies on Robeson upper bound limit.
Collapse
Affiliation(s)
- Nadia Hartini Suhaimi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: ; Tel.: +60-5-368-7564
| | - Christine Wei Mann Ch’ng
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Norwahyu Jusoh
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.H.S.); (C.W.M.C.); (N.J.)
- Centre for Contaminant Control & Utilization (CenCoU), Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
39
|
Thür R, Van Velthoven N, Lemmens V, Bastin M, Smolders S, De Vos D, Vankelecom IFJ. Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44792-44801. [PMID: 31687797 DOI: 10.1021/acsami.9b19774] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modulator-mediated functionalization (MoFu) is introduced as a new and versatile platform tool to improve the separation performance of metal-organic framework (MOF)-based membranes, exemplified here by the creation of mixed-matrix membranes (MMMs) with enhanced CO2 separation efficiency. The unique structure of MOF-808 allows incorporation of CO2-philic modulators in the MOF framework during a one-pot synthesis procedure in water, thus creating a straightforward way to functionalize both MOF and corresponding MMM. As a proof of concept, a series of fluorinated carboxylic acids [trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)] and nonfluorinated alkyl carboxylic acids (acetic acid (AA), propionic acid (PA), and butyric acid (BA)) were used as a modulator during MOF-808 synthesis. Two of the best MMMs prepared with 30 wt % MOF-TFA (100% increase in CO2/CH4 separation factor, 350% increase in CO2 permeability) and 10 wt % MOF-PFPA (140% increase in CO2/CH4 separation factor, 100% increase in CO2 permeability) scored very close to or even crossed the 2008 and 2018 upper bound limits for CO2/CH4. Because of its facile functionalization (and its subsequent excellent performance), MOF-808 is proposed as an alternative for widely used UiO-66, which is, from a functionalization point-of-view and despite its widespread use, a rather limited MOF.
Collapse
Affiliation(s)
- Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Maarten Bastin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Simon Smolders
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Ivo F J Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| |
Collapse
|
40
|
Evaluation of the Properties, Gas Permeability, and Selectivity of Mixed Matrix Membrane Based on Polysulfone Polymer Matrix Incorporated with KIT-6 Silica. Polymers (Basel) 2019; 11:polym11111732. [PMID: 31652828 PMCID: PMC6918142 DOI: 10.3390/polym11111732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
Mixed matrix membranes (MMMs) separation is a promising technology for gas permeation and separation involving carbon dioxide (CO2). However, finding a suitable type of filler for the formation of defect-free MMMs with enhancement in gas permeability remains a challenge. Current study focuses on synthesis of KIT-6 silica and followed by the incorporation of KIT-6 silica as filler into polysulfone (PSF) polymer matrix to fabricate MMMs, with filler loadings of 0–8 wt %. The effect of KIT-6 incorporation on the properties of the fabricated MMMs was evaluated via different characterization techniques. The MMMs were investigated for gas permeability and selectivity with pressure difference of 5 bar at 25 °C. KIT-6 with typical rock-like morphology was synthesized. Incorporation of 2 wt % of KIT-6 into PSF matrix produced MMMs with no void. When KIT-6 loadings in the MMMs were increased from 0 to 2 wt %, the CO2 permeability increased by ~48%, whereas the ideal CO2/CH4 selectivity remained almost constant. However, when the KIT-6 loading in PSF polymer matrix was more than 2 wt %, the formation of voids in the MMMs increased the CO2 permeability but sacrificed the ideal CO2/CH4 selectivity. In current study, KIT-6 was found to be potential filler for PSF matrix under controlled KIT-6 loading for gas permeation.
Collapse
|
41
|
|
42
|
Mixed-matrix membranes based on 6FDA-ODA polyimide and silicalite-1 with homogeneous spatial distribution of particles. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Daglar H, Keskin S. High‐Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological EngineeringKoc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological EngineeringKoc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey
| |
Collapse
|
44
|
Tavares SR, Ramsahye NA, Adil K, Eddaoudi M, Maurin G, Semino R. Computationally Assisted Assessment of the Metal‐Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sergio Rodrigues Tavares
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Naseem Ahmed Ramsahye
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Karim Adil
- Functional Materials DesignDiscovery & Development Research Group (FMD3)Advanced Membranes & Porous Materials CenterKing Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials DesignDiscovery & Development Research Group (FMD3)Advanced Membranes & Porous Materials CenterKing Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
45
|
Vergadou N, Theodorou DN. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. MEMBRANES 2019; 9:E98. [PMID: 31398889 PMCID: PMC6723301 DOI: 10.3390/membranes9080098] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed.
Collapse
Affiliation(s)
- Niki Vergadou
- Molecular Thermodynamics and Modelling of Materials Laboratory, Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Aghia Paraskevi Attikis, GR-15310 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
46
|
Wu D, Yi C, Doherty CM, Lin L, Xie Z. A Crown Ether-Containing Copolyimide Membrane with Improved Free Volume for CO2 Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongyun Wu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Cara M. Doherty
- CSIRO Manufacturing, Private Bag
10, Clayton South, Victoria 3169, Australia
| | - Liping Lin
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag
10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
47
|
Riasat Harami H, Riazi Fini F, Rezakazemi M, Shirazian S. Sorption in mixed matrix membranes: Experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Katayama Y, Bentz KC, Cohen SM. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13029-13037. [PMID: 30855936 DOI: 10.1021/acsami.9b02539] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalized UiO-66 metal-organic frameworks (MOF) particles were covalently grafted with hydride-terminated poly(dimethylsiloxane) (PDMS) via postsynthetic modification. These PDMS-coated MOF particles (termed here "corona-MOF") were used in the preparation of mixed-matrix membranes (MMMs). Defect-free MMMs with weight loadings of 50% were achieved with corona-MOF particles, attributed to the improved dispersibility of the corona-MOF particles and covalent linkages between the corona-MOF particles and the polymer matrix. The PDMS MMMs showed distinct separation features in single gas permeation tests, displaying much higher CO2 gas permeation with no decrease in selectivity when compared to MMMs prepared with unmodified UiO-66 particles. Single gas separation tests with CO2, N2, and propane were performed to probe the separation mechanism of the corona-MOF MMMs, demonstrating that these MMMs avoid nonideal "sieve-in-a-cage" and "plugged sieves" scenarios. Additionally, due to covalent bond formation between both the MOF and the polymer matrix in corona-MOF MMMs, particle aggregation is negligible during film curing, allowing for the formation of flexible, self-standing MMMs of <1 μm in thickness. Low quantities of polymer covalently attached to the MOF surface (<5 wt %) are sufficient to fabricate thin, defect-free, high MOF-loading MMMs.
Collapse
Affiliation(s)
- Yuji Katayama
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
- Asahi Kasei Corporation , 2-1 Samejima , Fuji , Shizuoka 416-8501 , Japan
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| |
Collapse
|
49
|
Sabetghadam A, Liu X, Gottmer S, Chu L, Gascon J, Kapteijn F. Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactive™ for CO2 capture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Lee JH, Lim JY, Park MS, Kim JH. Improvement in the CO2 Permeation Properties of High-Molecular-Weight Poly(ethylene oxide): Use of Amine-Branched Poly(amidoamine) Dendrimer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Hun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung Yup Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Su Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|