1
|
Zhou M, Cao J, Guo J, Wang Y, Lu Y, Zhu L, Hu L, Liu W, Li C. Mechanisms and mitigation control of clogging in constructed wetlands: Insight into the enhancement of the bioelectrochemical systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124809. [PMID: 40049013 DOI: 10.1016/j.jenvman.2025.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Constructed wetlands (CWs), a cost-effective and eco-friendly wastewater treatment technology, are extensively applied in various types of wastewater treatment. There is a series of strong impacts on CWs performance by the accumulation of clogging matters which attribute to physical, chemical, and biological processes after the long-term operation. This paper summarizes the mechanism of clogging formation, which can be classified into physical, chemical, and biological clogging. Moreover, it analyzes the typical measures for preventing and controlling clogging in CWs. The integration of bioelectrochemical systems (BES), including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) into CWs is proposed as a safe and efficient way to alleviate substrate clogging on-site, owing to the fact that BES can easily automate the control or adjustment of its internal electric field form. The mechanism of clogging control by CW-BES is comprehensively described and analyzed. With the help of BES, the clogging substances obtained optimized occurrence form, reduced hydrophobicity and advantageous spatial distribution. Besides, the microbial community achieved promoted structure, accelerated rates of electron transfer and more diverse metabolic pathway. Compared to traditional methods for evaluating the clogging of CWs, the MFC sensor offers the advantages of being fast, enabling in-site detection, and being non-destructive. Future research should be focused on the theoretical underpinnings for putting CW-BES into practical use. Additional, efforts should be made to ensure the stable, long-term operation of CWs.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jinyan Guo
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Li Hu
- College of Biology and Food Engineering, Huanghuai University, 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Wang J, Liu L, Yu T, Li Y, Gao C. Hyperoxidation active species produced by seawater electro membrane reactor assisted electrolytic cell system for simultaneous decyanation and carbon removal. WATER RESEARCH 2023; 242:120267. [PMID: 37390651 DOI: 10.1016/j.watres.2023.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Herein, a novel triple-layered heterojunction catalytic cathode membrane (PVDF/rGO/TFe/MnO2, TMOHccm) was reported and applied in seawater electro membrane reactor assisted electrolytic cell system (SEMR-EC), achieving increased properties for cyanide wastewater treatment. Hydrophilic TMOHccm exhibits higher electrochemical activity (qT* 1.11 C cm-2, qo* 0.03 C cm-2), indicating excellent electron transfer efficiency. Further analysis shows a one-electron redox cycle of exposed transition metal oxides (TMOs) on rGO support mediated oxygen reduction reaction (ORR) process, and calculated results of density functional theory (DFT) demonstrates positive Bader charge (72 |e|) of synthesized catalyst. The developed SEMR-EC was implemented in intermittent-stream operation for treating cyanide wastewater, the system achieved optimized decyanation and carbon removal performance (CN- 100%, TOC 88.49%). Hyperoxidation active species produced SEMR-EC including hydroxyl, sulfate, and reactive chlorine species (RCS) was confirmed. The proposed mechanistic explanation indicated multiple removal pathways relevant to cyanide, organic matter, and iron were elucidated, and the engineering applications prospects were highlighted by cost (5.61 $) and benefit (Ce 399.26 mW m-2 $-1, EFe 248.11 g kWh-1) analysis of the system.
Collapse
Affiliation(s)
- Jianhua Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tingting Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yihua Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
3
|
Zakaria N, Zaliman S, Leo C, Ahmad A, Ooi B, Poh PE. Electrochemical cleaning of superhydrophobic polyvinylidene fluoride/polymethyl methacrylate/carbon black membrane after membrane distillation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
5
|
Zhao S, Yun H, Khan A, Salama ES, Redina MM, Liu P, Li X. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. ENVIRONMENTAL RESEARCH 2022; 204:112089. [PMID: 34571032 DOI: 10.1016/j.envres.2021.112089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Lack of process control between the two stages of a combined microbial fuel cell-membrane bioreactor (MFC-MBR) system limits its application in wastewater treatment due to membrane fouling and high energy consumption. In this study, a two-stage MFC-MBR integrated system was established to investigate the impact of incorporating process control on petroleum refinery wastewater treatment. The results showed that chemical oxygen demand (COD) removal exhibits a linear relationship with the MFC voltage output (R2 = 0.9821); therefore, the MFC was used as a biosensor to control the combined system. The removal efficiencies of COD, ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 96.3%, 92.4%, and 86.6%, respectively, in the MFC-MBR biosensor, whereas those in the control system were 74.7%, 71.2%, and 64.7% respectively. Furthermore,using the biosensor control system yielded a 50% reduction in the transmembrane pressure (1.01 kPa day-1) and decreased membrane fouling in wastewater treatment. The maximum energy recovery of the biosensor system (0.00258 kWh m-3) was five times higher than that of the control system, as determined by calculating the mass balance of the system. Thus, this study indicates that using the MFC as a biosensor for process control in an MFC-MBR system can improve overall system performance.
Collapse
Affiliation(s)
- Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | | | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
6
|
|
7
|
Gao C, Wang H, Yu T, Li Y, Liu L. Self-sustained recovery of silver with stainless-steel based Cobalt/Molybdenum/Manganese polycrystalline catalytic electrode in bio-electroreduction microbial fuel cell (BEMFC). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127664. [PMID: 34837830 DOI: 10.1016/j.jhazmat.2021.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel bio-electroreduction microbial fuel cell (BEMFC) assisted by stainless-steel based Cobalt/Molybdenum/Manganese (Co/Mo/Mn-SS) polycrystalline catalytic electrode was used to achieve high recovery to silver. The exoelectrogens (Shewanella sp. etc.) using organic wastewater (the inflow was controlled at 1.2 L d-1) as nutrient matrix in the anode chamber generated electrons, while silver ions were simultaneously electroreduced and electrodeposited on the surface of the catalytic electrode as electron acceptors. Silver nanoplates could be observed directly. The products of electroreduction on the cathode were analyzed by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffractometer (XRD), and the results of electrochemical characterization confirmed the existence of silver in the products. In the operation, the silver ions were in-situ recovered and enriched from the initial concentration of 20-300 mg L-1 to almost complete recovery (8-18 h), with the maximum power density of 1008.2 mW m-2 and 5.5 A m-2 current density. The recovery efficiency of silver in the BEMFC using the Co/Mo/Mn-SS electrode was up to 9.60 kg m-2h-1, and the energy efficiency was 27.8 kg kWh-1. Under the continuous flow operation mode, the BEMFC still achieved 90.2% recovery efficiency of the silver.
Collapse
Affiliation(s)
- Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Hanwen Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Tingting Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yihua Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Anjum A, Ali Mazari S, Hashmi Z, Sattar Jatoi A, Abro R. A review of role of cathodes in the performance of microbial fuel cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
10
|
Chen Q, Liu L, Liu L, Zhang Y. A novel UV-assisted PEC-MFC system with CeO 2/TiO 2/ACF catalytic cathode for gas phase VOCs treatment. CHEMOSPHERE 2020; 255:126930. [PMID: 32402878 DOI: 10.1016/j.chemosphere.2020.126930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Emissions of volatile organic compounds (VOCs) air pollutants could worsen air quality and adversely affect human health, thus developing more efficient low-temperature VOCs removal techniques is desired. A novel continuous system integrating UV-assisted photo-electrochemical catalysis with microbial fuel cell (UV-assisted PEC-MFC) has been established for promoting removal of gaseous ethyl acetate or toluene and generating electricity simultaneously. In this system, CeO2/TiO2/ACF catalytic cathode is prepared and used for combination with bio-anode for accelerating cathodic reaction. This UV-assisted PEC-MFC system exhibits an excellent elimination capacity (EC) of ethyl acetate (∼0.39 g/m3, EC: ∼2.52 g/m3/h) or toluene (∼0.29 g/m3, EC: 1.89 g/m3/h) under close-circuit condition. Furthermore, an outstanding elimination capacity (EC: 28.04 g/m3/h) for high concentration toluene (∼4.10 g/m3) removal is obtained after toluene gas passes sequentially through the catalytic cathode then the bio-anode. This way of PEC degradation and biodegradation, avoids inhibition of exoelectrogens activity from toxicity of high concentration toluene. Simultaneously, the cell voltage of UV-assisted PEC-MFC system is stable at 0.11 V (vs. SCE) and 1.452×10-4 kWh is generated from treatment of toluene gas stream in 6 h duration time. The possible mechanism of VOCs removal in this novel system has been proposed and discussed. This study provides new technical basis for treating gaseous pollutants via integrating photo-electrochemical catalysis with electricity generating microbial fuel cell for energy conversion.
Collapse
Affiliation(s)
- Qiyuan Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Yizhen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Li X, Liu L, Liu T, Zhang D, An C, Yang F. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zhang Q, Liu L. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid. BIORESOURCE TECHNOLOGY 2020; 304:122992. [PMID: 32086032 DOI: 10.1016/j.biortech.2020.122992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
To meet the urgent demands for sustainable and efficient, environmental-friendly wastewater treatment, a Microbial fuel cell reactor system with MnO2/TiO2/g-C3N4 (manganese dioxide/ titanium dioxide/graphitic carbon nitride) @GAC (granular activated carbon) electrode was developed. It was both efficient and energy-saving in treating organic acid wastewater generated in Nylon production, with high-concentration COD and residual nitric acid. The MnO2/TiO2/g-C3N4 catalyst was deposited on GAC via in-situ growth and sol-gel method. The COD, NH4+-N and NO3--N was efficiently removed (respectively 98%, 99% and 99%). The COD removal capacity (17.77 kg COD m-3d-1) and the maximum power density (1176.47 mW m-3) was respectively 36.83% and 65.29% higher than the GAC cathode system. The anodic and cathodic microbial consortiums in MFC were analyzed and compared. The MnO2/TiO2/g-C3N4@GAC MFC system is technically feasible and cost-effective in treating industrial wastewater.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Lab of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lifen Liu
- MOE Key Lab of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Ocean Science & Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
13
|
Wang H, Wang H, Gao C, Liu L. Enhanced removal of copper by electroflocculation and electroreduction in a novel bioelectrochemical system assisted microelectrolysis. BIORESOURCE TECHNOLOGY 2020; 297:122507. [PMID: 31830718 DOI: 10.1016/j.biortech.2019.122507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The idea is immensely attractive if copper ions can be completely removed in wastewater. In this study, a novel bioelectrochemical system assisted microelectrolysis was developed for the enhanced removal of copper. One abandoned aluminium was used as anode and graphite/activated carbon as biological anode, and a bifunctional catalytic conductive membrane as cathode. Under the combined action of electroreduction and electroflocculation, copper ions directly pumped into the cathode chamber were efficiently treated, and organic matter was synchronously removed (Copper ions >99.9%, TOC >98.2%, COD >97.9%, NH4+-N >94.5% and TP >94.9%). The reactions of primary batteries and microelectrolysis in anode chamber significantly enhanced the self-production capacity of BES (maximum power density of 2250 mW m-3 at current density 10.65 mA m-2, maximum cell voltage of 1.4 V). The results confirmed the application potential of bioelectrochemical system assisted microelectrolysis for the removal of copper.
Collapse
Affiliation(s)
- Hanwen Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Fazli N, Mutamim NSA, Shem CY, Rahim SA. Bioelectrochemical cell (BeCC) integrated with Granular Activated Carbon (GAC) in treating spent caustic wastewater. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Wang J, Zhao S, Kakade A, Kulshreshtha S, Liu P, Li X. A Review on Microbial Electrocatalysis Systems Coupled with Membrane Bioreactor to Improve Wastewater Treatment. Microorganisms 2019; 7:microorganisms7100372. [PMID: 31547014 PMCID: PMC6843282 DOI: 10.3390/microorganisms7100372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.
Collapse
Affiliation(s)
- Jicun Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| | - Apurva Kakade
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Saurabh Kulshreshtha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
| | - Pu Liu
- Department of Developmental Biology, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, 222 South Tianshui Rd, Lanzhou 730000, China.
| |
Collapse
|
16
|
Neethu B, Bhowmick G, Ghangrekar M. A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochem Eng J 2019; 148:170-177. [DOI: 10.1016/j.bej.2019.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Qin L, Zhang Y, Xu Z, Zhang G. Advanced membrane bioreactors systems: New materials and hybrid process design. BIORESOURCE TECHNOLOGY 2018; 269:476-488. [PMID: 30139558 DOI: 10.1016/j.biortech.2018.08.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) is deemed as one of the most powerful technologies for efficient municipal and industrial wastewater treatment around the world. However, low microbial activity of activated sludge and serious membrane fouling still remain big challenges in worldwide application of MBR technology. Nowadays, more and more progresses on the research and development of advanced MBR with new materials and hybrid process are just on the way. In this paper, an overview on the perspective of high efficient strains applied into MBR for biological activity enhancement and fouling reduction is provided first. Secondly, as emerging fouling control strategy, design and fabrication of novel anti-fouling composited membranes are comprehensively highlighted. Meanwhile, hybrid MBR systems integrated with some novel dynamic membrane modules and/or with other technologies like advanced oxidation processes (AOPs) are introduced and compared. Finally, the challenges and opportunities of advanced MBRs combined with bioenergy production in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yufan Zhang
- College of Engineering, University of California, Berkeley, CA 94720, USA; Department of Mechanical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
18
|
Zhen W, Ning X, Wang M, Wu Y, Lu G. Enhancing hydrogen generation via fabricating peroxide decomposition layer over NiSe/MnO2-CdS catalyst. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Majidi MR, Shahbazi Farahani F, Hosseini M, Ahadzadeh I. Low-cost nanowired α-MnO 2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 2018; 125:38-45. [PMID: 30261369 DOI: 10.1016/j.bioelechem.2018.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
In this work, low cost α-MnO2 nanowires and α-MnO2 nanowires supported on carbon Vulcan (α-MnO2/C) have been synthesized via a simple and facile hydrothermal method for application in microbial fuel cells. The prepared samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). Electrocatalytic activities of the samples have been evaluated by means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in a neutral phosphate buffer solution. EIS was performed at different potentials to gain further insight into the kinetic properties of α-MnO2/C. Both catalysts were used in air cathode microbial fuel cells to achieve power densities of 180 and 111 mWm-2 for α-MnO2/C and pristine α-MnO2 nanowires, respectively. α-MnO2/C functions as a good and economical alternative for Pt free catalysts in practical MFC applications, as shown by the findings of stability test and voltage generation cycles in long-term operation of MFC.
Collapse
Affiliation(s)
- Mir Reza Majidi
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Fatemeh Shahbazi Farahani
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Mirghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Tabriz University, Tabriz, Iran
| | - Iraj Ahadzadeh
- Research Laboratory for Electrochemical Instrumentation and Energy Systems, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|