1
|
Abdelrahman AM, Tabar SA, Cicekalan B, Basa S, Ucas G, Guven H, Ozgun H, Ozturk I, Koyuncu I, van Lier JB, Volcke EIP, Ersahin ME. Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors. BIORESOURCE TECHNOLOGY 2025; 417:131822. [PMID: 39551395 DOI: 10.1016/j.biortech.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.
Collapse
Affiliation(s)
- Amr Mustafa Abdelrahman
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Saba Aghdam Tabar
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Busra Cicekalan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Safak Basa
- ISKI, Istanbul Water and Sewerage Administration, Istanbul, Turkey
| | - Gulin Ucas
- ISKI, Istanbul Water and Sewerage Administration, Istanbul, Turkey
| | - Huseyin Guven
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Izzet Ozturk
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jules B van Lier
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, Delft, the Netherlands
| | - Eveline I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
2
|
Yücesoy Z, Sahinkaya E, Calli B. Innovative high-performance and energy-positive Co-treatment of organic kitchen waste and domestic wastewater using a fluidized bed ceramic membrane bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122578. [PMID: 39332298 DOI: 10.1016/j.jenvman.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
The aim of the study was to efficiently treat organic kitchen waste (FW) and domestic wastewater (DWW) together in an anaerobic fluidized bed bioreactor equipped with a ceramic membrane (AnFCMBR) through a sustainable approach considering energy recovery. The system operated continuously for 519 days at room temperature, and different filtration fluxes (1.7 and 5 L/m2/h), hydraulic retention times (HRTs) (22 h and 7 h), and organic loading rate (OLRs) (0.46, 1.52, 3.42, 6.08 kg/m3.d) were tested. The amount of organic matter in DWW may be insufficient for feasible gas production, but this challenge can be resolved through the addition of food waste. Influent chemical oxygen demand (COD) of 500 ± 143 mg/L gradually increased to 2000 ± 196 mg/L by increasing the portion of FW. The COD removal ranged from 92 to 98% throughout the study, with the membrane and the cake layer contributing 5-8% to the performance. Average supernatant SMP and EPS concentrations increased from 5 ± 1 to 45 ± 5 mg COD/L and from 54 ± 7 to 254 ± 26 mg COD/g VSS, respectively, when the highest amount of FW was added to the synthetic wastewater. This significant increase in SMP and EPS concentrations due to the addition of FW negatively impacted the filtration performance. SRF and CST values also increased with rising OLR, especially with the supplementation of synthetic wastewater with FW. After FW started to be mixed with DWW, the methane production increased approximately 5.5 times. With the use of AnFCMBR for the co-treatment of FW and DWW, it is possible to achieve energy-positive treatment with high-quality effluent that can be reused for various applications, such as irrigation. The methane produced provided 12 times more energy than was needed to operate the bioreactor. This is the first study evaluating the co-treatment of FW and DWW in AnFCMBR under varying operational parameters.
Collapse
Affiliation(s)
- Zeynep Yücesoy
- Department of Environmental Engineering, Marmara University, Maltepe, 34854, Istanbul, Turkey; Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Chemistry, Bitlis Eren University, Rahva, 13100, Bitlis, Turkey.
| | - Erkan Sahinkaya
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Baris Calli
- Department of Environmental Engineering, Marmara University, Maltepe, 34854, Istanbul, Turkey
| |
Collapse
|
3
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Wang K, Ye Q, Shen Y, Wang Y, Hong Q, Zhang C, Liu M, Wang H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. MEMBRANES 2023; 13:194. [PMID: 36837697 PMCID: PMC9960794 DOI: 10.3390/membranes13020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including norank_f__JG30-KF-CM45 and Plasticicumulans. Less relative abundance of Aeromonas after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.
Collapse
Affiliation(s)
- Kanming Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoqiao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yajing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenlong Zhang
- Ningbo Communications Planning Institute Co., Ltd., Ningbo 315100, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Lee M, Yoo K, Kim H, Song KG, Kim D, Tiedje JM, Lee PH, Park J. Metatranscriptional characterization of metabolic dynamics in anaerobic membrane bioreactor producing methane from low-strength wastewater. BIORESOURCE TECHNOLOGY 2023; 370:128532. [PMID: 36574886 DOI: 10.1016/j.biortech.2022.128532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) with media is an emerging carbon-neutral biotechnology for low-strength wastewater (LSWW) treatment and methane recovery. Understanding metabolic dynamics among methanogens and syntrophic bacteria is important in optimizing the design and operation of AnMBR. However, little is known about it, especially in media-attached microbial communities. This study explored metabolic dynamics to compare media-attached and suspended conditions. Accordingly, metagenomes and metatranscriptomes from AnMBRs with polymeric media and fed with different influent concentrations (350 and 700 mg-COD/L) were analyzed. Metabolic dynamics were profoundly influenced by the different growth habitats and influent conditions, although the applied influent concentrations are within the range of typical LSWW. Metabolic dynamics prediction results suggest that media-attached-growth habitats may have provided a more favorable microenvironment for methanogens to grow and produce methane, especially under low influent conditions. These findings provide significant implications for optimizing floating media design and operation of AnMBR-producing methane from LSWW.
Collapse
Affiliation(s)
- Minjoo Lee
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, Republic of Korea
| | - Hyemin Kim
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Guen Song
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dajung Kim
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Feng S, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Zhang X, Bui XT, Varjani S, Hoang BN. Wastewater-derived biohydrogen: Critical analysis of related enzymatic processes at the research and large scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158112. [PMID: 35985587 DOI: 10.1016/j.scitotenv.2022.158112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Organic-rich wastewater is a feasible feedstock for biohydrogen production. Numerous review on the performance of microorganisms and the diversity of their communities during a biohydrogen process were published. However, there is still no in-depth overview of enzymes for biohydrogen production from wastewater and their scale-up applications. This review aims at providing an insightful exploration of critical discussion in terms of: (i) the roles and applications of enzymes in wastewater-based biohydrogen fermentation; (ii) systematical introduction to the enzymatic processes of photo fermentation and dark fermentation; (iii) parameters that affect enzymatic performances and measures for enzyme activity/ability enhancement; (iv) biohydrogen production bioreactors; as well as (v) enzymatic biohydrogen production systems and their larger scales application. Furthermore, to assess the best applications of enzymes in biohydrogen production from wastewater, existing problems and feasible future studies on the development of low-cost enzyme production methods and immobilized enzymes, the construction of multiple enzyme cooperation systems, the study of biohydrogen production mechanisms, more effective bioreactor exploration, larger scales enzymatic biohydrogen production, and the enhancement of enzyme activity or ability are also addressed.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh city 70000, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Bich Ngoc Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
8
|
Shahid MK, Choi Y. CO 2 as an Alternative to Traditional Antiscalants in Pressure-Driven Membrane Processes: An Experimental Study of Lab-Scale Operation and Cleaning Strategies. MEMBRANES 2022; 12:membranes12100918. [PMID: 36295676 PMCID: PMC9610738 DOI: 10.3390/membranes12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/26/2023]
Abstract
Scaling, or inorganic fouling, is a major factor limiting the performance of membrane-based water treatment processes in long-term operation. Over the past few decades, extensive studies have been conducted to control the scale growth found in membrane processes and to develop sustainable and greener processes. This study details the role of CO2 in scale inhibition in membrane processes. The core concept of CO2 utilization is to reduce the influent pH and to minimize the risk of scale formation from magnesium or calcium salts. Three reverse osmosis (RO) units were operated with a control (U1), CO2 (U2), and a commercial antiscalant, MDC-220 (U3). The performances of all the units were compared in terms of change in transmembrane pressure (TMP). The overall efficiency trend was found as U1 > U3 > U2. The membrane surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for the morphological and elemental compositions, respectively. The surface analysis signified a significant increase in surface smoothness after scale deposition. The noticeable reduction in surface roughness can be described as a result of ionic deposition in the valley region. A sludge-like scale layer was found on the surface of the control membrane (U1) which could not be removed, even after an hour of chemical cleaning. After 20−30 min of cleaning, the U2 membrane was successfully restored to its original state. In brief, this study highlights the sustainable membrane process developed via CO2 utilization for scale inhibition, and the appropriate cleaning approaches.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon 34134, Korea
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Sivaprakash B, Rajamohan N, Reshmi A, Annadurai A, Varjani S. Applications of submerged and staged membrane systems for pollutant removal from effluents and mechanism studies - a review. CHEMOSPHERE 2022; 301:134747. [PMID: 35490749 DOI: 10.1016/j.chemosphere.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Membrane based filtration is one of the promising technologies for rehabilitation of wastewater streams for reuse and recycle. Many advancements have emerged with the use of novel materials and innovative integrated technologies. The present investigation focuses on the treatment methods based on submerged and stages systems of membranes for water purification. Ceramic, polymeric and mixed matrix type of membranes fabricated for specific type of effluents, their modification methods for accelerating the rejection efficiency, permeability, durability, stability and antifouling properties are detailed in this review. Graphene oxide is the most considered membrane material for adsorption purposes as it exhibits larger surface area, abundant functional groups contain oxygen and has good supply of ligands which is responsible in metal adsorption as it enhances electrostatic interaction by bonding metal ions with graphene oxide nanosheets. Energy derivation in terms of biogas production was also reported in some integrated methods. In many cases, embedded nanomaterial matrices yielded maximum efficiencies in both the submerged and staged operations. However, submerged type of membranes are reported more than the staged type due to simpler configuration with relatively lesser equipment, operational and maintenance issues. In treatment of a low strength wastewater, aluminum oxide based membrane in fluidized bed assembly was reported to yield promising results with reduced power requirement.
Collapse
Affiliation(s)
- Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Abitha Annadurai
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
10
|
Dong Y, Wu H, Yang F, Gray S. Cost and efficiency perspectives of ceramic membranes for water treatment. WATER RESEARCH 2022; 220:118629. [PMID: 35609431 DOI: 10.1016/j.watres.2022.118629] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
More robust ceramic membranes with tailorable structures and functions are increasingly employed for water treatment, particularly in some harsh applications for their ultra-long service lifespan due to their high mechanical, structural, chemical and thermal stability and anti-fouling properties. Decreasing cost and enhancing efficiency are two key but quite challenging application-oriented issues for broader and larger-scale engineering application of current ceramic membranes, and are required to make ceramic membranes a highly efficient and economic water treatment technique. In this review, we critically discuss these two significant concerns of both cost and efficiency for water treatment ceramic membranes, focusing on an overview of various advanced strategies and mechanism insights. A brief up-to-date discussion is first introduced about recent developments of ceramic membranes covering the major advances of novel membranes and applications. Then some promising strategies for decreasing the cost of ceramic membranes are discussed, including membrane material cost and processing cost. To fully address the issue of moderate efficiency with single separation function, valuable and considerable insights are provided into recent major progress and mechanism understandings in application with other unit processes, such as advanced oxidation and electrochemistry techniques, to significantly enhance treatment efficiency. Subsequently, a review of recent ceramic membrane applications emphasizing harsh operating environments is presented, such as oil-water separation, saline water, refractory organic and emerging contaminant wastewater treatment. Finally, engineering application, conclusions, and future perspectives of ceramic membrane for water treatment applications are critically discussed offering new insight based on understanding the issues of cost and efficiency.
Collapse
Affiliation(s)
- Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hui Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Stephen Gray
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| |
Collapse
|
11
|
Waheed H, Mehmood CT, Li Y, Yang Y, Xiao Y. Genetic insights unraveling quorum quenching potential of indigenous isolates from an anaerobic membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152349. [PMID: 34914989 DOI: 10.1016/j.scitotenv.2021.152349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Despite a few reports of quorum quenching (QQ) in anaerobic membrane bioreactors (AnMBRs), the sensing, regulation and degradation mechanism for quorum sensing (QS) signals by indigenous QQ isolates have been barely studied. This study employed isolation and screening of indigenous QQ strains from anaerobic sludge for acyl-homoserine lactones (AHLs) degradation and membrane biofouling control. High-quality whole genome sequences of Micrococcus luteus anQ-m1, Bacillus pacificus anQ-h4, and Lysinibacillus capsici anQ-h6 were obtained, with a genome size of 2.5, 5.6, and 4.7 Mbp, respectively. Amidase-encoding amiE was the only QQ gene in anQ-m1, while anQ-h6 carries both amiE and lactonase-encoding aiiB genes. Genes responsible for QS autoinducer synthesis were not identified in anQ-m1 and anQ-h6, suggesting low potential of biofilm promotion via QS. Despite a peptidic QS system responsible for biofilm formation, anQ-h4 bears the most comprehensive QQ system, including amiE-amidase, aiiA-lactonase, CYP102A5-cytochrome oxidoreductase, and lsrK-autoinducer-2 kinase. This study elucidates QS and QQ mechanisms of potential anaerobes and provides fundamentals for designing QQ consortia to effectively control biofouling in AnMBRs.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Ch Tahir Mehmood
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China; Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yongyu Yang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
12
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Chen C, Sun M, Chang J, Liu Z, Zhu X, Xiao K, Song G, Wang H, Liu G, Huang X. Unravelling temperature-dependent fouling mechanism in a pilot-scale anaerobic membrane bioreactor via statistical modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Tomczak W, Grubecki I, Gryta M. The Use of NaOH Solutions for Fouling Control in a Membrane Bioreactor: A Feasibility Study. MEMBRANES 2021; 11:887. [PMID: 34832116 PMCID: PMC8625605 DOI: 10.3390/membranes11110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, the microbial production of 1,3-propanediol (1,3-PD) is recognized as preferable to the chemical synthesis. However, finding a technological approach allowing the production of 1,3-PD in the membrane bioreactor (MBR) is a great challenge. In the present study, a ceramic ultrafiltration (UF) membrane (8 kDa) for treatment of 1,3-PD broths was used. It has been demonstrated that the membrane used provides the stable permeate flux that is necessary to ensure the stability of the fermentation process in MBR technology. It was noticed that the broth pH has a significant impact on both the final 1,3-PD concentration and permeate flux. Moreover, the feasibility of using NaOH for fouling control in the MBR was evaluated. It has been shown that 1% NaOH solution is effective in restoring the initial membrane performance. To the best of our knowledge, this study is the first to shed light onto the possibility of reducing the amount of the alkaline solutions generated during the MBR operation. Indeed, it has been found that 1% NaOH solution can be successfully used several times for both membrane cleaning and to stabilize the broth pH. Finally, based on the results obtained, the technological conceptions of the MBR technology were designed.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Ireneusz Grubecki
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
16
|
New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: Physicochemical and biological characterization of cake and gel layers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Saulat H, Khan MM, Aslam M, Chawla M, Rafiq S, Zafar F, Khan MM, Bokhari A, Jamil F, Bhutto AW, Bazmi AA. Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34051-34073. [PMID: 33119799 DOI: 10.1007/s11356-020-10869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Energy is an essential parameter for the economic growth and sustainable development of any country. Due to the rapid increase in energy demand, depletion of fossil fuels and environmental concerns, many developing and developed countries are moving towards alternative renewable resources such as solar energy, wind energy and biomass. Wind energy as a renewable energy source is gaining a lot of significant attention. Wind energy is a sustainable solution to produce energy having potential benefits such as clean source, reduced toxic gases emission and environmental friendly protocol for operation. Pakistan is among the top countries facing the worst energy crisis due to different political and financial issues. Pakistan is blessed with a huge potential of wind energy having all the basic requirements such as windy regions and good wind speed for harnessing energy. Pakistan can utilize the potential of wind energy to reduce the problem of energy outrage in the country and also take steps towards green economy from conventional fuel economy. This critical review highlights the current status, potential and the steps taken in the past and present to overcome the energy shortage in Pakistan by employing wind energy. Outlook on wind speed data, deployment of wind energy, environmental effect of wind energy and its barriers in the adoption are discussed with recommendations and suggestions to utilize this clean energy in an effective way. Graphical abstract.
Collapse
Affiliation(s)
- Hammad Saulat
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Masood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Muhammad Chawla
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Lahore, Pakistan
| | - Faisal Zafar
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Sebou-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muhammad Mahmood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Aqeel Ahmed Bazmi
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
- Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
18
|
Pietrelli L, Ferro S, Reverberi AP, Vocciante M. Removal of polyethylene glycols from wastewater: A comparison of different approaches. CHEMOSPHERE 2021; 273:129725. [PMID: 33529796 DOI: 10.1016/j.chemosphere.2021.129725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 05/16/2023]
Abstract
Physicochemical methods such as adsorption on activated carbon, oxidation with either ozone or Fenton reagent, and chemical precipitation (coagulation), were assessed for the removal of polyethylene glycol (PEG) from wastewater. This contaminant is rarely investigated due to its low toxicity, although its presence limits the use of large water resources. The experimental tests showed that adsorption on activated carbon is well approximated by a Langmuir isotherm, and influenced by contact time, PEG molecular weight, pH, temperature, and initial PEG concentration. Ozonation allowed fragmenting the polymeric chains but was unable to remove completely the PEG, while about 85% of the total organic carbon (TOC) was removed by Fenton oxidation reaction by using a ratio between H2O2 and FeII close to 4. Coagulation did not produce results worthy of note, most likely because the uncharged PEG molecule does not interact with the iron hydroxide flocs. However, when performed after the Fenton oxidation (i.e., by simply raising the pH to values > 8), it allowed a further reduction of the residual TOC, up to 96% of the total, in the best case. Based on the resources used by each process studied and in consideration of the effectiveness of each of them, a semi-quantitative comparison on the sustainability of the different approaches is proposed.
Collapse
Affiliation(s)
- Loris Pietrelli
- Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, 00100, Roma, Italy.
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, SA, 5031, Australia.
| | - Andrea P Reverberi
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| | - Marco Vocciante
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy.
| |
Collapse
|
19
|
BouNehme Sawaya C, Harb M. Considering the Prospect of Utilizing Anaerobic Membrane Biofouling Layers Advantageously for the Removal of Emerging Contaminants. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.642280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane biofilm formation has traditionally been perceived as a wholly negative occurrence in membrane filtration-based wastewater treatment systems due to its resultant effect on transmembrane pressure and energy expenditure. This is the case for both membrane bioreactor (MBR) systems, generally, and anaerobic membrane bioreactors (AnMBRs), specifically. Insight gained through recent research, however, has revealed a potentially positive aspect to biofouling in AnMBR systems—namely, the improved removal of certain emerging contaminants (both microbial and chemical) from wastewater that would not otherwise be retained by the microfiltration/ultrafiltration membranes that are commonly used. Although the exact reasons behind this are not yet understood, the biofilm-specific anaerobic microbial communities that develop on membrane surfaces may play a key role in the phenomenon. Mechanisms of biofouling development in AnMBRs have recently been proven distinctly different from those that govern fouling in aerobic MBR systems. Based on these differences, it may be possible to devise operational strategies that promote the development of anaerobic biofilms on membranes while also minimizing transmembrane pressure increases. If achievable, this would serve as a sustainable basis for reducing the release of emerging contaminants such as organic micropollutants (OMPs) and antibiotic resistance genes (ARGs) with treated wastewater effluents.
Collapse
|
20
|
Chen C, Sun M, Liu Z, Zhang J, Xiao K, Zhang X, Song G, Chang J, Liu G, Wang H, Huang X. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. WATER RESEARCH 2021; 189:116552. [PMID: 33166921 DOI: 10.1016/j.watres.2020.116552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5-15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5-35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingzhuang Sun
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiao Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xian Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangqing Song
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiang Chang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Guoliang Liu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Hao Wang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xia Huang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
22
|
Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, Banu J R, Park JH, Kumar G. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110909. [PMID: 32721343 DOI: 10.1016/j.jenvman.2020.110909] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/25/2023]
Abstract
This review summarizes the recent development and studies of anaerobic membrane bioreactor (AnMBR) to control fouling issues. AnMBR is an emerging waste water treatment technology mainly because of its low sludge residual, high volumetric organic removal rate, complete liquid-solid separation, better effluent quality, efficient resource recovery and the small footprint. This paper surveys the fundamental aspects of AnMBRs, including its applications, membrane configurations, and recent progress for enhanced reactor performance. Furthermore, the membrane fouling, a major restriction in the practical application of AnMBR, its mechanism and antifouling strategies like membrane cleaning, quorum quenching, ultrasonic treatment, membrane modifications, and antifouling agents are briefly discussed. Based on the review, the key issues that require urgent attention to facilitate large scale and integrated application of AnMBR technology are identified and future research perspectives relating to the prevalent issues are proposed.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Kashif
- Department of Senior Health Care, Eulji University, Daejeon, Republic of Korea
| | - Prangya Ranjan Rout
- Department of Environmental Engineering, Inha University, Incheon, Republic of Korea
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Younggyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Rajesh Banu J
- Department of Civil Engineering, Anna University, Tamilnadu, India
| | - Jeong Hoon Park
- Department of Civil Engineering, Anam Campus, Korea University, Seoul, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway.
| |
Collapse
|
23
|
Jamil F, Aslam M, Al-Muhtaseb AH, Bokhari A, Rafiq S, Khan Z, Inayat A, Ahmed A, Hossain S, Khurram MS, Abu Bakar MS. Greener and sustainable production of bioethylene from bioethanol: current status, opportunities and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The economic value of bioethylene produced from bioethanol dehydration is remarkable due to its extensive usage in the petrochemical industry. Bioethylene is produced through several routes, such as steam cracking of hydrocarbons from fossil fuel and dehydration of bioethanol, which can be produced through fermentation processes using renewable substrates such as glucose and starch. The rise in oil prices, environmental issues due to toxic emissions caused by the combustion of fossil fuel and depletion of fossil fuel resources have led a demand for an alternative pathway to produce green ethylene. One of the abundant alternative renewable sources for bioethanol production is biomass. Bioethanol produced from biomass is alleged to be a competitive alternative to bioethylene production as it is environmentally friendly and economical. In recent years, many studies have investigated catalysts and new reaction engineering pathways to enhance the bioethylene yield and to lower reaction temperature to drive the technology toward economic feasibility and practicality. This paper critically reviews bioethylene production from bioethanol in the presence of different catalysts, reaction conditions and reactor technologies to achieve a higher yield and selectivity of ethylene. Techno-economic and environmental assessments are performed to further development and commercialization. Finally, key issues and perspectives that require utmost attention to facilitate global penetration of technology are highlighted.
Collapse
Affiliation(s)
- Farrukh Jamil
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Ala’a H. Al-Muhtaseb
- Department of Petroleum and Chemical Engineering , College of Engineering, Sultan Qaboos University , Muscat , Oman
| | - Awais Bokhari
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Material Engineering , University of Engineering and Technology , Lahore – New Campus , Pakistan
| | - Zakir Khan
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering , University of Sharjah , 27272 Sharjah , United Arab Emirates
| | - Ashfaq Ahmed
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
- School of Environmental Engineering , University of Seoul , Seoul, 02504 , Republic of Korea
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering , Jashore University of Science and Technology , Jashore-7408 , Bangladesh
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Muhammad S. Abu Bakar
- Faculty of Integrated Technologies , Universiti Brunei Darussalam , Jalan Tungku Link , BE1410, Gadong , Brunei Darussalam
| |
Collapse
|
24
|
Kim M, Lam TY, Tan GYA, Lee PH, Kim J. Use of polymeric scouring agent as fluidized media in anaerobic fluidized bed membrane bioreactor for wastewater treatment: System performance and microbial community. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Crone BC, Sorial GA, Pressman JG, Ryu H, Keely SP, Brinkman N, Bennett-Stamper C, Garland JL. Design and evaluation of degassed anaerobic membrane biofilm reactors for improved methane recovery. BIORESOURCE TECHNOLOGY REPORTS 2020; 10:100407. [PMID: 33015594 PMCID: PMC7529100 DOI: 10.1016/j.biteb.2020.100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anaerobic treatment of domestic wastewater (DWW) produces dissolved methane that needs to be recovered for use as an energy product. Membrane-based recovery systems have been reported in the literature but are often limited by fouling. The objective of this study was to develop a methane producing biofilm on the shell side surface a membrane to allow for immediate recovery of methane as it was produced, negating mass transfer resistance caused by fouling. Between 89 and 96% of total methane produced was recovered via in-situ degassing without the need for fouling control or cleaning throughout 72 weeks of operation. High methane recovery efficiencies led to predictions of net positive energy yield in one reactor and a 32-61% reduction in energy demand in the others compared to the control. This research demonstrates the feasibility and usefulness of combining attached growth anaerobic wastewater treatment processes with hollow fiber membrane methane recovery systems for improved operation.
Collapse
Affiliation(s)
- Brian C Crone
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - George A Sorial
- Department of Chemical and Environmental Engineering, University of Cincinnati, United States of America
| | - Jonathan G Pressman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Nichole Brinkman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Christina Bennett-Stamper
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Jay L Garland
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| |
Collapse
|
26
|
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: A review. WATER RESEARCH 2020; 175:115674. [PMID: 32200336 DOI: 10.1016/j.watres.2020.115674] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 05/26/2023]
Abstract
Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. In recent decades, ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to their advantageous properties over conventional polymeric membrane. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, and long life time, which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. This paper mainly reviews the progress in the research and development of ceramic membranes, with key focus on porous ceramic membranes and nanomaterial-functionalized ceramic membranes for nanofiltration or catalysis. The current state of the available ceramic membranes in industry and academia, and their potential advantages, limitations and applications are reviewed. The last section of the review focuses on ceramic membrane fouling and the efforts towards ceramic membrane fouling mitigation. The advances in ceramic membrane technologies have rarely been widely reviewed before, therefore, this review could be served as a guide for the new entrants to the field, as well to the established researchers.
Collapse
Affiliation(s)
- Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Gienau T, Ehrmanntraut A, Kraume M, Rosenberger S. Influence of Ozone Treatment on Ultrafiltration Performance and Nutrient Flow in a Membrane Based Nutrient Recovery Process from Anaerobic Digestate. MEMBRANES 2020; 10:membranes10040064. [PMID: 32260462 PMCID: PMC7231412 DOI: 10.3390/membranes10040064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
: Membrane filtration of biological suspensions is frequently limited by fouling. This mechanism is well understood for ultrafiltration of activated sludge in membrane bioreactors. A rather young application of ultrafiltration is the recovery of nutrients from anaerobic digestates, e.g., from agricultural biogas plants. A process chain of solid/liquid separation, ultrafiltration, and reverse osmoses separates the digestate into different products: an organic N-P-fertilizer (solid digestate), a recirculate (UF retentate), a liquid N-K-fertilizer (RO retentate) and water. Despite the preceding particle removal, high crossflow velocities are required in the ultrafiltration step to overcome fouling. This leads to high operation costs of the ultrafiltration step and often limits the economical application of the complete process chain. In this study, under-stoichiometric ozone treatment of the ultrafiltration feed stream is investigated. Ozone treatment reduced the biopolymer concentration and apparent viscosity of different digestate centrates. Permeabilities of centrate treated with ozone were higher than without ozone treatment. In a laboratory test rig and in a pilot plant operated at the site of two full scale biogas plants, ultrafiltration flux could be improved by 50%-80% by ozonation. Nutrient concentrations in the fertilizer products were not affected by ozone treatment.
Collapse
Affiliation(s)
- Tobias Gienau
- BASF Polyurethanes GmbH, Elastogranstraße 60, 49448 Lemforde, Germany;
| | - Artjom Ehrmanntraut
- Faculty of Engineering and Computer Sciences, Osnabrück University of Applied Sciences, Albrechtstraße 30, 49076 Osnabruck, Germany;
| | - Matthias Kraume
- Chemical & Process Engineering, Technische Universität Berlin, Str. des 17. Juni 135, FH 6-1, 10623 Berlin, Germany;
| | - Sandra Rosenberger
- Faculty of Engineering and Computer Sciences, Osnabrück University of Applied Sciences, Albrechtstraße 30, 49076 Osnabruck, Germany;
- Correspondence: ; Tel.: +49-541-969-2957
| |
Collapse
|
28
|
Wang J, Cahyadi A, Wu B, Pee W, Fane AG, Chew JW. The roles of particles in enhancing membrane filtration: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117570] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Liu Z, Zhu X, Liang P, Zhang X, Kimura K, Huang X. Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Laiq Ur Rehman M, Iqbal A, Chang CC, Li W, Ju M. Anaerobic digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1253-1271. [PMID: 31529649 DOI: 10.1002/wer.1219] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Worldwide waste generation has become a topic of interest since the accumulation of this waste has prompted environmental hazards. Among which, anaerobic digestion provides green and efficient alternate solution for removal of toxic waste and energy production. Therefore, this review emphasizes on the recent data published in 2018 on topics related to anaerobic process, enhancement of biogas production, and fermentation efficiency. Furthermore, more focus was made on the factors influencing anaerobic digestion and the effect of trace elements as ionic salts as well as nanoparticles on overall biogas production, respectively. PRACTITIONER POINTS: Anaerobic digestion provide green and efficient alternate solution to deal with. This review focused on the conditions related to anaerobic process to improve biogas production and fermentation efficiency. The trace elements were focused on how to influence biogas production during anaerobic digestion.
Collapse
Affiliation(s)
- Mian Laiq Ur Rehman
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Chein-Chi Chang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Weizun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- National and Local Joint Engineering Research Center for the Use of Biomass Resources, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Maaz M, Yasin M, Aslam M, Kumar G, Atabani AE, Idrees M, Anjum F, Jamil F, Ahmad R, Khan AL, Lesage G, Heran M, Kim J. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. BIORESOURCE TECHNOLOGY 2019; 283:358-372. [PMID: 30928198 DOI: 10.1016/j.biortech.2019.03.061] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Water shortage, public health and environmental protection are key motives to treat wastewater. The widespread adoption of wastewater as a resource depends upon development of an energy-efficient technology. Anaerobic membrane bioreactor (AnMBR) technology has gained increasing popularity due to their ability to offset the disadvantages of conventional treatment technologies. However there are several hurdles, yet to climb over, for wider spread and scale-up of the technology. This paper reviews fundamental aspects of anaerobic digestion of wastewater, and identifies the challenges and opportunities to the further development of AnMBRs. Membrane fouling and its implications are discussed, and strategies to control membrane fouling are proposed. Novel AnMBR configurations are discussed as an integrated approach to overcome technology limitations. Energy demand and recovery in AnMBRs is analyzed. Finally key issues that require urgent attention to facilitate global penetration of AnMBR technology are highlighted.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - A E Atabani
- Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Mubbsher Idrees
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Fatima Anjum
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Rizwan Ahmad
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan; Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | | | - Marc Heran
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| |
Collapse
|
32
|
Metatranscriptomic evidence for classical and RuBisCO-mediated CO 2 reduction to methane facilitated by direct interspecies electron transfer in a methanogenic system. Sci Rep 2019; 9:4116. [PMID: 30858464 PMCID: PMC6411985 DOI: 10.1038/s41598-019-40830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
In a staged anaerobic fluidized-bed ceramic membrane bioreactor, metagenomic and metatranscriptomic analyses were performed to decipher the microbial interactions on the granular activated carbon. Metagenome bins, representing the predominating microbes in the bioreactor: syntrophic propionate-oxidizing bacteria (SPOB), acetoclastic Methanothrix concilii, and exoelectrogenic Geobacter lovleyi, were successfully recovered for the reconstruction and analysis of metabolic pathways involved in the transformation of fatty acids to methane. In particular, SPOB degraded propionate into acetate, which was further converted into methane and CO2 by M. concilii via the acetoclastic methanogenesis. Concurrently, G. lovleyi oxidized acetate into CO2, releasing electrons into the extracellular environment. By accepting these electrons through direct interspecies electron transfer (DIET), M. concilii was capable of performing CO2 reduction for further methane formation. Most notably, an alternative RuBisCO-mediated CO2 reduction (the reductive hexulose-phosphate (RHP) pathway) is transcriptionally-active in M. concilii. This RHP pathway enables M. concilii dominance and energy gain by carbon fixation and methanogenesis, respectively via a methyl-H4MPT intermediate, constituting the third methanogenesis route. The complete acetate reduction (2 mole methane formation/1 mole acetate consumption), coupling of acetoclastic methanogenesis and two CO2 reduction pathways, are thermodynamically favorable even under very low substrate condition (down to to 10-5 M level). Such tight interactions via both mediated and direct interspecies electron transfer (MIET and DIET), induced by the conductive GAC promote the overall efficiency of bioenergy processes.
Collapse
|
33
|
Aslam M, Ahmad R, Yasin M, Khan AL, Shahid MK, Hossain S, Khan Z, Jamil F, Rafiq S, Bilad MR, Kim J, Kumar G. Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 269:452-464. [PMID: 30145004 DOI: 10.1016/j.biortech.2018.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Rizwan Ahmad
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Department of Environmental Engineering, Inha University, Namgu, 100 Inha-ro, Incheon, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Kashif Shahid
- Department of Environmental & Chemical Convergence Engineering, Daegu University, Daegudae-ro 201, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Shakhawat Hossain
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 143-747, Republic of Korea
| | - Zakir Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Sikander Rafiq
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Namgu, 100 Inha-ro, Incheon, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
34
|
Cheng D, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Zhou J, Ni B. Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues. BIORESOURCE TECHNOLOGY 2018; 267:714-724. [PMID: 30082132 DOI: 10.1016/j.biortech.2018.07.133] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic wastewater has become a major concern due to the toxicity and recalcitrance of antibiotics. Anaerobic membrane bioreactors (AnMBRs) are considered alternative technology for treating antibiotic wastewater because of their advantages over the conventional anaerobic processes and aerobic MBRs. However, membrane fouling remains the most challenging issue in the AnMBRs' operation and this limits their application. This review critically discusses: (i) antibiotics removal and antibiotic resistance genes (ARGs) in different types of AnMBRs and the impact of antibiotics on membrane fouling and (ii) the integrated AnMBRs systems for fouling control and removal of antibiotics. The presence of antibiotics in AnMBRs could aggravate membrane fouling by influencing fouling-related factors (i.e., sludge particle size, extracellular polymeric substances (EPS), soluble microbial products (SMP), and fouling-related microbial communities). Conclusively, integrated AnMBR systems can be a practical technology for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Junliang Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Bingjie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
35
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Gienau T, Kraume M, Rosenberger S. Biopolymer interactions of anaerobic sludge and their influence on membrane performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Ahmad R, Aslam M, Park E, Chang S, Kwon D, Kim J. Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment. CHEMOSPHERE 2018; 206:784-792. [PMID: 29800883 DOI: 10.1016/j.chemosphere.2018.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Submerged ceramic membrane reactor treating industrial wastewater was combined with granular activated carbon (GAC) particles to control membrane fouling and organic removal efficiency. The GAC particles were suspended along the membrane surface under bulk recirculation only through the reactor without any gas sparging. Membrane support coated with Al2O3 layer (CPM) and uncoated one (UPM) was compared at constant flux mode of filtration. The membrane support consisted of 80% of pyrophyllite and 20% of alumina. Under up-flow velocity of 0.031 m s-1 through bulk recirculation only without GAC particles, the fouling rates were observed as 0.011 and 0.013 bar h-1 for the CPM and UPM, respectively. With suspension of GAC particles, fouling mitigation was enhanced considerably and this effect was more pronounced with CPM than UPM under the same upflow velocity (90 vs. 57%). In addition, the GAC suspension increased critical flux by 46% higher with CPM than that observed without the carbon particles. The organic removal efficiency of the UPM was lower than that of CPM while the fouling rate was much greater probably due to pore blocking caused by organic dye compounds. For the both membranes, suspension of GAC particles along the membrane surface increased organic removal efficiency higher than 90%. The organic removal efficiency was enhanced by increasing permeate flux, but it became lower as upflow velocity was higher.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Muhammad Aslam
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea; Department of Chemical Engineering, COMSATS University, Lahore, Pakistan
| | - Eunyoung Park
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Soomin Chang
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Deaun Kwon
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea.
| |
Collapse
|
38
|
Stazi V, Tomei MC. Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:78-91. [PMID: 29660730 DOI: 10.1016/j.scitotenv.2018.04.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Recent concerns over public health, environmental protection, and resource recovery have induced to look at domestic wastewater more as a resource than as a waste. Anaerobic treatment, owing to attractive advantages of energy saving, biogas recovery and lower sludge production, has been suggested as an alternative technology to the traditional practice of aerobic wastewater treatment, which is energy intensive, produces high excess of sludge, and fails to recover the potential resources available in wastewater. Sewage treatment by high-rate anaerobic processes has been widely reported over the last decades as an attractive method for providing a good quality effluent. Among the available high-rate anaerobic technologies, membrane bioreactors feature many advantages over aerobic treatment and conventional anaerobic systems, since high treatment efficiency, high quality effluent, pathogens retention and recycling of nutrients, were generally achieved. The objective of this paper is to review the currently available knowledge on anaerobic domestic wastewater treatment for the mostly applied high-rate systems and membrane bioreactors, presenting benefits and drawbacks, and focusing on the most promising emerging technologies, which need more investigation for their scale-up.
Collapse
Affiliation(s)
- Valentina Stazi
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015 Rome, Italy
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015 Rome, Italy.
| |
Collapse
|