1
|
Mukherjee D, Saha A, Moni S, Volkmer D, Das MC. Anhydrous Solid-State Proton Conduction in Crystalline MOFs, COFs, HOFs, and POMs. J Am Chem Soc 2025; 147:5515-5553. [PMID: 39929703 DOI: 10.1021/jacs.4c14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Strategic design of solid-state proton-conducting electrolytes for application in anhydrous proton-exchange membrane fuel cells (PEMFCs) has gained burgeoning interest due to a spectrum of advantageous features, including higher CO tolerance and ease in the water management systems. Toward this direction, crystalline materials like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and polyoxometalates (POMs) are emerging PEM materials, offering strategic structural engineering through crystallography, thus enabling ultrahigh anhydrous proton conductivity up to 10-2-10-1 S/cm. This Perspective highlights significant progress achieved thus far with such crystalline platforms in the domain of anhydrous proton conduction across a wide temperature window (sub-zero to above 100 °C). Based on their structural backgrounds, these platforms are categorized into four classes (viz. MOFs, COFs, HOFs, and POMs) with a detailed evolutionary timeline since their emergence early in 2009. Insightful discussions with a key focus on the strategies undertaken to attain anhydrous proton conductivity along with implementation in fuel cell technology through membrane electrode assembly are presented. A section on "Critical Analysis and Future Prospects" provides decisive key viewpoints on those overlooked issues with future endorsement (e.g., performance assessment with CO tolerance analysis and fuel cell test stand) for further development while comparing them with other anhydrous platforms from both academic and industrial perspectives.
Collapse
Affiliation(s)
- Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Subhodeep Moni
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
2
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
3
|
Mahalingam A, Pushparaj H. Synthesis, Characterization, and Fabrication of Nickel Metal-Organic Framework-Incorporated Polymer Electrolyte Membranes for Fuel-Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31145-31157. [PMID: 38842949 DOI: 10.1021/acsami.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm2 with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.
Collapse
|
4
|
Hong YL, Xu Z, Du J, Shi ZQ, Zuo YH, Hu HL, Li G. Prominent Intrinsic Proton Conduction in Two Robust Zr/Hf Metal-Organic Frameworks Assembled by Bithiophene Dicarboxylate. Inorg Chem 2024; 63:10786-10797. [PMID: 38772008 DOI: 10.1021/acs.inorgchem.4c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Yi-Hao Zuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
5
|
Zhang HJ, Shang XB, Wang XR, Zhang CX, Wang QL. Anchoring of Fe-MIL-101-NH 2 to the Polymer Membrane Matrix through the Hinsberg Reaction to Promote Conductivity of SPEEK Membranes. J Phys Chem B 2024; 128:3499-3507. [PMID: 38546038 DOI: 10.1021/acs.jpcb.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
SCPEEK@MOF proton exchange membranes, where SCPEEK is sulfinyl chloride polyether ether ketone and MOF is a metal-organic framework, were prepared by doping Fe-MIL-101-NH2 into polymers. The amino group in the MOF and the -SOCl2 group in thionyl chloride polyether ether ketone cross-link to form a covalent bond through the Hinsberg reaction, and the prepared composite membrane has stronger stability than other electrostatic interactions and simple physical doping composite membranes. The formation of covalent bonds improves the water absorption of the composite membrane, which makes it easy for water molecules to form hydrogen bonds. Moreover, SPEEK as a proton conductive polymer and the synergy of MOFs improve the proton conductivity of composite membranes. The composite membranes were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The swelling rate, water absorption, mechanical stability, ion exchange capacity, and proton conductivity of the pure sulfonated polyether ether ketone (SPEEK) membrane were compared with those of the mechanically doped SPEEK/MOF membrane and the composite membrane SCPEEK@MOF doped with different ratios of Fe-MIL-101-NH2, and all of the SCPEEK@MOF showed superior performance. When the Fe-MIL-101-NH2 loading rate of the composite membrane is 2%, the proton conductivity of the composite membrane can reach 0.202 S cm-1 at 363 K and a 98% relative humidity, which is much higher than that of the SPEEK/MOF membrane obtained by simple physical doping under the same conditions.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xue-Bin Shang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xu-Ran Wang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Hong YL, Zuo SW, Du HY, Shi ZQ, Hu H, Li G. Four Lanthanide(III) Metal-Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13745-13755. [PMID: 38446712 DOI: 10.1021/acsami.3c18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuai-Wu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hao-Yu Du
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
7
|
Asgari H, Ghavipanjeh F, Sabour MR, Emadzadeh D. Fabrication of pore-filling cation-exchange membrane from waste polystyrene and Spunbond Meltblown Spunbond (SMS) non-woven polypropylene fabric as the substrate. Sci Rep 2024; 14:6399. [PMID: 38493214 PMCID: PMC10944457 DOI: 10.1038/s41598-024-56961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Commercial ion-exchange membranes are typically thick, possessing limited mechanical strength, and have relatively high fabrication costs. In this study, we utilize a three-layer polypropylene fabric known as Spunbond Meltblown Spunbond (SMS) as the substrate. This choice ensures that the resulting membrane exhibits high strength and low thickness. SMS substrates with various area densities, including 14.5, 15, 17, 20, 25, and 30 g/m2, were coated with different concentrations of waste polystyrene solution (ranging from 5 × 104 to 9 × 104 mg/l) before undergoing sulfonation using concentrated sulfuric acid. The physicochemical and mechanical properties of the membrane were characterized and compared with those of commercial Neosepta CMX and Nafion-117 cation-exchange membranes. Remarkably, the fabricated membrane exhibited good performance compared to commercial ones. The cation-exchange capacity (2.76 meq/g) and tensile strength (37.15 MPa) were higher, and the electrical resistance (3.603Ω) and the thickness (130 μm) were lower than the commercial membranes.
Collapse
Affiliation(s)
- Hadi Asgari
- Department of Civil Engineering, K.N.Toosi University of Technology, P.O. Box 1969764499, Tehran, Iran
| | - Farideh Ghavipanjeh
- Energy Department, Materials and Energy Research Center, P.O. Box 3177983634, Karaj, Iran.
| | - Mohammad Reza Sabour
- Department of Civil Engineering, K.N.Toosi University of Technology, P.O. Box 1969764499, Tehran, Iran
| | - Daryoush Emadzadeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
8
|
Khosravani M, Dehghani Ghanatghestani M, Moeinpour F, Parvaresh H. New sulfonated covalent organic framework for highly effective As(III) removal from water. Heliyon 2024; 10:e25423. [PMID: 38352749 PMCID: PMC10862688 DOI: 10.1016/j.heliyon.2024.e25423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The goal of taking out As(III) from water is to reduce the detriment that poisonous metals can do to people and nature. A substance that can absorb As(III), TFPOTDB-SO3H, was made by combining 2,5-diaminobenzenesulfonic acid and 2,4,6-tris-(4-formylphenoxy)-1,3,5-triazine in a reaction that joins molecules together. This substance can adsorb As(III) very well and has excellent qualities like being easy to use again, separate substances, and filter out liquids. At pH = 8 and at room temperature, TFPOTDB-SO3H adsorbed a lot of As(III). It achieved a removal rate of 97.1 % within 10 min and could adsorb up to 344.8 mg/g. A research was conducted to investigate the effect of co-existing anions on the elimination of arsenic. The findings indicated that the presence of anions had a minimal adverse impact, reducing As(III) uptake by approximately 1-7 %. The kinetics of the uptake process were found to be controlled by the quasi-second order kinetic model, while the Langmuir isotherm model validated that the mechanism for As(III) removal was monolayer chemisorption. According to the thermodynamic analysis, the adsorption process was endothermic and occurred spontaneously. Moreover, even after 4 successive adsorption-desorption cycles, the adsorbent preserved a substantial uptake productivity of 88.86 % for As(III). The results collectively indicate that TFPOTDB-SO3H holds considerable promise for the efficient adsorption and elimination of As(III) ions from wastewater.
Collapse
Affiliation(s)
- Mohammad Khosravani
- Department of Environment, Faculty of Natural Resources, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Mohsen Dehghani Ghanatghestani
- Department of Environment, Faculty of Natural Resources, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, 7915893144, Iran
| | - Hossein Parvaresh
- Department of Environment, Faculty of Natural Resources, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
9
|
Guo Y, Wei J, Ying Y, Liu Y, Zhou W, Yu Q. Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11166-11187. [PMID: 37533296 DOI: 10.1021/acs.langmuir.3c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.
Collapse
Affiliation(s)
- Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junsheng Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yu Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
10
|
Wang L, Wang Y, Li Z, Li T, Zhang R, Li J, Liu B, Lv Z, Cai W, Sun S, Hu W, Lu Y, Zhu G. PAF-6 Doped with Phosphoric Acid through Alkaline Nitrogen Atoms Boosting High-Temperature Proton-Exchange Membranes for High Performance of Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303535. [PMID: 37358077 DOI: 10.1002/adma.202303535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Indexed: 06/27/2023]
Abstract
High-temperature proton-exchange-membrane fuel cells (HT-PEMFCs) can offer improved energy efficiency and tolerance to fuel/air impurities. The high expense of the high-temperature proton-exchange membranes (HT-PEMs) and their low durability at high temperature still impede their further practical applications. In this work, a phosphoric acid (PA)-doped porous aromatic framework (PAF-6-PA) is incorporated into poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (OPBI) to fabricate novel PAF-6-PA/OPBI composite HT-PEMs through solution-casting. The alkaline nitrogen structure in PAF-6 can be protonated with PA to provide proton hopping sites, and its porous structure can enhance the PA retention in the membranes, thus creating fast pathways for proton transfer. The hydrogen bond interaction between the rigid PAF-6 and OPBI can also enhance the mechanical properties and chemical stability of the composite membranes. Consequently, PAF-6-PA/OPBI exhibits an optimal proton conductivity of 0.089 S cm-1 at 200 °C, and peak power density of 437.7 mW cm-2 (Pt: 0.3 mg cm-2 ), which is significantly higher than that of the OPBI. The PAF-6-PA/OPBI provides a novel strategy for the practical application of PBI-based HT-PEMs.
Collapse
Affiliation(s)
- Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yuliang Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Tianyang Li
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Ruyu Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Jing Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Baijun Liu
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Zhongyuan Lv
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Weiwei Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Shuhui Sun
- National Institute of Scientific Research (INRS) Center Energy Material and Telecommunications, Varennes, Quebec, J3×1P7, Canada
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
11
|
Xing YY, Wang J, Zhang CX, Wang QL. High Proton Conductivity of the UiO-66-NH 2-SPES Composite Membrane Prepared by Covalent Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368410 DOI: 10.1021/acsami.3c06630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A sulfonated poly(ethersulfone) (SPES)-metal-organic framework (MOF) film with excellent proton conductivity was synthesized by anchoring UiO-66-NH2 to the main chain of the aromatic polymer through the Hinsberg reaction. The chemical bond was formed between the amino group in MOFs and the -SO2Cl group in chlorosulfonated poly(ethersulfones) to conduct protons in the proton channel of the membrane, making the membrane have excellent proton conductivity. UiO-66-NH2 is successfully prepared as a result of the consistency of the experimental and simulated powder X-ray diffraction (PXRD) patterns of MOFs. The existence of absorption peaks of characteristic functional groups in Fourier transform infrared (FTIR) spectra proved the successful preparation of SPES, PES-SO2Cl, and a composite film. The results of the AC impedance test indicate that the composite film with a 3% mass fraction has the best proton conductivity of 0.215 S·cm-1, which is 6.2 times higher than that of the blended film without a chemical bond at 98% RH and 353 K. To our knowledge, there are rarely any reports on the preparation of a composite membrane by directly linking MOFs and the membrane matrix with chemical bonds. This work provides a good way to synthesize the highly conductive proton exchange film.
Collapse
Affiliation(s)
- Yuan-Yuan Xing
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiao Wang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nan Kai University, Tianjin 300071, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nan Kai University, Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Bodkhe RG, Shrivastava RL, Soni VK, Chadge RB. A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Wang B, Zeng Y, Ou J, Xiong M, Qiu R. Different strengthening effects of amino and nitro groups on the bisphenol A adsorption of an aluminum metal-organic framework in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65712-65727. [PMID: 37093372 DOI: 10.1007/s11356-023-26725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
In recent years, metal-organic frameworks (MOFs) have been employed in numerous applications for adsorption. Researchers synthesize new MOFs by various methods, including the introduction of functional groups. In this study, three different aluminum-based MOFs (with non-functionalized, amino-functionalized, nitro-functionalized) were produced by hydrothermal synthesis and used for investigating typical endocrine disrupting chemicals (EDCs), namely for bisphenol A (BPA) adsorption. We used several methods to characterize the MOFs and conducted batch adsorption experiments to investigate their adsorption properties, and explore the influence of different functional groups on adsorption materials. The specific surface area of Al-MOF-NH2 is 6 times larger than that of Al-MOF according to the N2 adsorption and desorption isotherms of the material, that is, the BET of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 109.68, 644.03, and 146.60 m2/g. Note that although the same synthesis method is used, pore size is greatly changed because of the different functional groups. Al-MOF and Al-MOF-NO2 have more mesopores, and Al-MOF-NH2 is mainly microporous. The BPA adsorption capacities of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 46.43, 227.78, and 155.84 mg/L. The outcomes can also be explained by the improved adsorption performance from the addition of amino functional groups. In this research, the adsorption isotherms and adsorption kinetics of the three Al-MOFs for BPA were also investigated to explain the different adsorption properties of various functional groups. The results show that the amino-functionalized materials have remarkable characterization morphologies, uniform particle distributions, appropriate particle sizes, excellent specific surface areas, and superior adsorption effects.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China.
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Sichuan, 610500, People's Republic of China.
| | - Yao Zeng
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jinghan Ou
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Mingyang Xiong
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ruisi Qiu
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| |
Collapse
|
14
|
Zhang W, Liu M, Gu X, Shi Y, Deng Z, Cai N. Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers. Chem Rev 2023. [PMID: 36749705 DOI: 10.1021/acs.chemrev.2c00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).
Collapse
Affiliation(s)
- Weizhe Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Menghua Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Xin Gu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yixiang Shi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Ningsheng Cai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
15
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
16
|
Rehman MHU, Lufrano E, Simari C. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. Polymers (Basel) 2023; 15:502. [PMID: 36771803 PMCID: PMC9921102 DOI: 10.3390/polym15030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This is a comparative study to clarify the effect of the introduction of layered double hydroxide (LDH) into various polymer matrices. One perfluorosulfonic acid polymer, i.e., Nafion, and two polyaromatic polymers such as sulfonated polyether ether ketone (sPEEK) and sulfonated polysulfone (sPSU), were used for the preparation of nanocomposite membranes at 3 wt.% of LDH loading. Thereafter, the PEMs were characterized by X-ray diffraction (XRD) and dynamic mechanical analysis (DMA) for their microstructural and thermomechanical features, whereas water dynamics and proton conductivity were investigated by nuclear magnetic resonance (PFG and T1) and EIS spectroscopies, respectively. Depending on the hosting matrix, the LDHs can simply provide additional hydrophilic sites or act as physical crosslinkers. In the latter case, an impressive enhancement of both dimensional stability and electrochemical performance was observed. While pristine sPSU exhibited the lowest proton conductivity, the sPSU/LDH nanocomposite was able to compete with Nafion, yielding a conductivity of 122 mS cm-1 at 120 °C and 90% RH with an activation energy of only 8.7 kJ mol-1. The outcome must be ascribed to the mutual and beneficial interaction of the LDH nanoplatelets with the functional groups of sPSU, therefore the choice of the appropriate filler is pivotal for the preparation of highly-performing composites.
Collapse
Affiliation(s)
| | - Ernestino Lufrano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
17
|
Li P, Guo H, Sun P, Zhang L, Zhi X, Li Z. N-substitute polyphosphazenes cross-linked hydroxyl-terminated SPEEK high temperature proton exchange membrane to achieve high proton conductivity over low relative humidity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Maiti TK, Singh J, Dixit P, Majhi J, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
19
|
|
20
|
Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic frameworks (MOFs) are arguably a class of highly tuneable polymer-based materials with wide applicability. The arrangement of chemical components and the bonds they form through specific chemical bond associations are critical determining factors in their functionality. In particular, crystalline porous materials continue to inspire their development and advancement towards sustainable and renewable materials for clean energy conversion and storage. An important area of development is the application of MOFs in proton-exchange membrane fuel cells (PEMFCs) and are attractive for efficient low-temperature energy conversion. The practical implementation of fuel cells, however, is faced by performance challenges. To address some of the technical issues, a more critical consideration of key problems is now driving a conceptualised approach to advance the application of PEMFCs. Central to this idea is the emerging field MOF-based systems, which are currently being adopted and proving to be a more efficient and durable means of creating electrodes and electrolytes for proton−exchange membrane fuel cells. This review proposes to discuss some of the key advancements in the modification of PEMs and electrodes, which primarily use functionally important MOFs. Further, we propose to correlate MOF-based PEMFC design and the deeper correlation with performance by comparing proton conductivities and catalytic activities for selected works.
Collapse
|
22
|
Shi L, Gao Y, Ying Z, Xu A, Cheng Y. Charge-induced proton penetration across two-dimensional clay materials. NANOSCALE 2022; 14:6518-6525. [PMID: 35420610 DOI: 10.1039/d2nr00262k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional clay materials possess superior thermal and chemical stability, and the intrinsic tubular channels in their atomic structure provide possible routes for proton penetration. Therefore, they are expected to overcome the lack of materials that can conduct protons between 100-500 °C. In this work, we investigated the detailed proton penetration mechanism across 2D clay nanosheets with different isomorphic substitutions and counterions using extensive ab initio molecular dynamics and metadynamics simulations. We found that the presence of negative surface charges can dramatically reduce the proton penetration energy barrier to about one-third that of the neutral case, making it a feasible choice for the design of next-generation high-temperature proton exchange membranes. By tuning the isomorphic substitutions, the proton conductivity of single-layer clay materials can be altered.
Collapse
Affiliation(s)
- Le Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yushuan Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhixuan Ying
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ao Xu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
23
|
Evaluation of defect induced surface heterogeneity in Metal-Organic Framework materials with alkali dopants employing adsorption isotherm modelling. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Karunanithi D, Pegu P, Balaguru S, Gangasalam A, Singaram V. Proton conducting membrane based on multifunctional interconnected copolymer containing 4,4′‐diaminodiphenylmethane‐aminoethyl piperazine with sulfonated polyethersulfone membrane for fuel cell application. J Appl Polym Sci 2022. [DOI: 10.1002/app.51819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Deepa Karunanithi
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamilnadu India
| | - Purabi Pegu
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamilnadu India
| | - Sasikumar Balaguru
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamilnadu India
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamilnadu India
| | - Vengatesan Singaram
- Electro‐Inorganic Chemicals Division CSIR – Central Electrochemical Research Institute Karaikudi Tamilnadu India
| |
Collapse
|
25
|
Li X, Zhang Z, Xie Z, Guo X, Yang T, Li Z, Tu M, Rao H. High Performance and Self-Humidifying of Novel Cross-Linked and Nanocomposite Proton Exchange Membranes Based on Sulfonated Polysulfone. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:841. [PMID: 35269328 PMCID: PMC8912755 DOI: 10.3390/nano12050841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
Abstract
The introduction of inorganic additive or nanoparticles into fluorine-free proton exchange membranes (PEMs) can improve proton conductivity and have considerable effects on the performance of polymer electrolyte membrane fuel cells. Based on the sol-gel method and in situ polycondensation, novel cross-linked PEM and nanocomposite PEMs based on a sulfonated polysulfone (SPSU) matrix were prepared by introducing graphene oxide (GO) polymeric brushes and incorporating Pt-TiO2 nanoparticles into an SPSU matrix, respectively. The results showed that the incorporation of Pt-TiO2 nanoparticles could obviously enhance self-humidifying and thermal stability. In addition, GO polymer brushes fixed on polymeric PEM by forming a cross-linked network structure could not only solve the leakage of inorganic additives during use and compatibility problem with organic polymers, but also significantly improve proton conductivity and reduce methanol permeability of the nanocomposite PEM. Proton conductivity, water uptake and methanol permeability of the nanocomposite PEM can be up to 6.93 mS cm-1, 46.58% and be as low as 1.4157 × 10-6 cm2 s-1, respectively, which represent increases of about 70%, about 22% and a decrease of about 40%, respectively, compared with that of primary SPSU. Therefore, the synergic action of the covalent cross-linking, GO polymer brush and nanoparticles can significantly and simultaneously improve the overall performance of the composite PEM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huaxin Rao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (X.L.); (Z.Z.); (Z.X.); (X.G.); (T.Y.); (Z.L.); (M.T.)
| |
Collapse
|
26
|
Rao Z, Lan M, Wang Z, Wan H, Li G, Zhu J, Tang B, Liu H. Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal−organic framework. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wang X, Wang Q, Zhao M, Zhang L, Ji X, Sun H, Sun Y, Ma Z, Xue J, Gao X. Fabrication of a Cation-Exchange Membrane via the Blending of SPES/N-Phthaloyl Chitosan/MIL-101(Fe) Using Response Surface Methodology for Desalination. MEMBRANES 2022; 12:144. [PMID: 35207066 PMCID: PMC8880603 DOI: 10.3390/membranes12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
In the present work, a novel mixed matrix cation exchange membrane composed of sulfonated polyether sulfone (SPES), N-phthaloyl chitosan (NPHCs) and MIL-101(Fe) was synthesized using response surface methodology (RSM). The electrochemical and physical properties of the membrane, such as ion exchange capacity, water content, morphology, contact angle, fixed ion concentration and thermal stability were investigated. The RSM based on the Box-Behnken design (BBD) model was employed to simulate and evaluate the influence of preparation conditions on the properties of CEMs. The regression model was validated via the analysis of variance (ANOVA) which exhibited a high reliability and accuracy of the results. Moreover, the experimental data have a good fit and high reproducibility with the predicted results according to the regression analysis. The embedding of MIL-101(Fe) nanoparticles contributed to the improvement of ion selective separation by forming hydrogen bonds with the polymer network in the membrane. The optimum synthesis parameters such as degree of sulfonation (DS), the content of SPES and NPHCs and the content of MIL-101(Fe) were acquired to be 30%, 85:15 and 2%, respectively, and the corresponding desalination rate of the CEMs improved to 136% while the energy consumption reduced to 90%. These results revealed that the RSM was a promising strategy for optimizing the preparation factors of CEMs and other similar multi-response optimization studies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Mengjuan Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Lu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Xiaosheng Ji
- Sanya Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Yongchao Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
| |
Collapse
|
28
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
29
|
Peng J, Wang P, Yin B, Fu X, Wang L, Luo J, Peng X. Constructing stable continuous proton transport channels by in-situ preparation of covalent triazine-based frameworks in phosphoric acid-doped polybenzimidazole for high-temperature proton exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
32
|
Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119288] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Zhang Z, Ren J, Xu J, Meng L, Zhao P, Wang H, Wang Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Zhang D, Xin L, Xia Y, Dai L, Qu K, Huang K, Fan Y, Xu Z. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Peng Q, Li Y, Qiu M, Shi B, He X, Fan C, Mao X, Wu H, Jiang Z. Enhancing Proton Conductivity of Sulfonated Poly(ether ether ketone)-Based Membranes by Incorporating Phosphotungstic-Acid-Coupled Graphene Oxide. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Quan Peng
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yan Li
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
36
|
Yuan D, Qin Y, Li S, Du S, Xu Y, Weng Q, Chen P, Chen X, An Z. Enhanced performance of proton-conducting poly(arylene ether sulfone)s via multiple alkylsulfonated side-chains and block copolymer structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Synthesis and characterization of piperazine containing polyaspartimides blended polysulfone membranes for fuel cell applications. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Chen J, Wang L, Wang L. Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal-Organic Framework (UIO-66). ACS APPLIED MATERIALS & INTERFACES 2020; 12:41350-41358. [PMID: 32804468 DOI: 10.1021/acsami.0c10527] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphoric acid (PA)-doped polybenzimidazoles generally require high PA doping levels to achieve high conductivity as high-temperature proton exchange membranes. However, high PA doping levels result in a significant decrease in the mechanical properties of and PA leaching from the membranes. Herein, a Zr-based metal-organic framework material (UIO-66) was introduced into poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (OPBI) membranes. The composite membranes exhibited long-range continuous proton transport channels when the mass ratio of UIO-66 to OPBI was ≥30 wt %. The long-range continuous proton transport channels endowed the composite membranes with high proton conductivity at low PA doping levels. When the doping of UIO-66 in the OPBI membrane reached 40 wt %, the membrane exhibited the highest proton conductivity (0.092 S cm-1, at 160 °C) at a low PA uptake (73.25%), while the conductivity of the pristine OPBI membrane was 0.050 S cm-1 with a high PA uptake (217.43%). Additionally, in the oxyhydrogen fuel cell test, 40%UIO-66@OPBI membranes exhibited excellent fuel cell performance with a peak power density of 583 mW cm-2 at 160 °C, which is 50% higher than that of the pristine OPBI membrane (374 mW cm-2). A single cell based on 40%UIO-66@OPBI also demonstrated good durability and could remain at about 600 mV after 500 h of operation under a constant load of 200 mA cm-2.
Collapse
Affiliation(s)
- Jiale Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
40
|
Li G, Kujawski W, Rynkowska E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The high-temperature proton exchange membrane fuel cell (HT-PEMFC) offers several advantages, such as high proton conductivity, high CO tolerance, good chemical/thermal stability, good mechanical properties, and low cost. The proton exchange membrane (PEM) is the critical component of HT-PEMFC. This work discusses the methods of current PEMs development for HT-PEMFC including modifications of Nafion® membranes and the advancement in composite PEMs based on non-fluorinated polymers. The modified Nafion®-based membranes can be used at temperatures up to 140 °C. Nevertheless, the application of Nafion®-based membranes is limited by their humidification with water molecules acting as proton carriers and, thus, by the operation conditions of membranes under a relative humidity below 20%. To obtain PEMs applied at higher temperatures under non-humidified conditions, phosphoric acid (PA) or ionic liquids (ILs) are used as proton carriers in PEMs based on non-fluorinated polymers. The research discussed in this work provides the approaches to improving the physicochemical properties and performance fuel cell of PEMs. The effects of polymer blending, crosslinking, and the incorporation of inorganic particles on the membrane properties and fuel cell performance have been scrutinized. The incorporation of inorganic particles modified with ILs might be an effective approach to designing high-performance PEMs for HT-PEMFC.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
- National Research Nuclear University MEPhI , 31, Kashira Hwy , Moscow 115409, Russia
| | - Edyta Rynkowska
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| |
Collapse
|
41
|
Liu Q, Li Z, Wang D, Li Z, Peng X, Liu C, Zheng P. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Front Chem 2020; 8:694. [PMID: 32850683 PMCID: PMC7432281 DOI: 10.3389/fchem.2020.00694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFCs) have received considerable interest due to their low operating temperature and high energy conversion rate. However, their practical implement suffers from significant performance challenge. In particular, proton exchange membrane (PEM) as the core component of PEMFCs, have shown a strong correlation between its properties (e.g., proton conductivity, dimensional stability) and the performance of fuel cells. Metal-organic frameworks (MOFs) as porous inorganic-organic hybrid materials have attracted extensive attention in gas storage, gas separation and reaction catalysis. Recently, the MOFs-modified PEMs have shown outstanding performance, which have great merit in commercial application. This manuscript presents an overview of the recent progress in the modification of PEMs with MOFs, with a special focus on the modification mechanism of MOFs on the properties of composite membranes. The characteristics of different types of MOFs in modified application were summarized.
Collapse
Affiliation(s)
- Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
42
|
Wang Y, Chen P, Weng Q, Chen X, An Z. Quinoxaline-based semi-interpenetrating polymer network of sulfonated poly(arylene ether)s and sulfonated polyimides as proton exchange membranes. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03320-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Gayathri R, Prabhu MR. Protonated state and synergistic role of Nd 3+ doped barium cerate perovskite for the enhancement of ionic pathways in novel sulfonated polyethersulfone for H 2/O 2 fuel cells. SOFT MATTER 2020; 16:4220-4233. [PMID: 32296794 DOI: 10.1039/d0sm00427h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, there has been a need for novel advancement of sustainable non-fluorinated polymer electrolyte membranes for proton exchange membrane fuel cell (PEMFC) applications. The set forth strategy aims to ameliorate proton conduction of sulfonated polyethersulfone (SPES) polymer membranes with a distinct mixture of barium cerate (BCO) and neodymium-doped barium cerate (BCNO) perovskites developing cationic composite membranes (CCMs) prepared through a technique of solvent casting. The CCMs were subjected to analysis of their mechanical, structural, chemical compositional, thermal, morphological, oxidative, physicochemical, electrochemical and fuel cell polarization performance respectively. Acceptor doping of the trivalent neodymium group at the B site of BCO increases the number of oxygen vacancies and improves ionic conduction. The CCM of neodymium-doped barium cerate demonstrates a higher proton conductivity of 42.2 mS cm-1 with a lower activation energy of 6.80 kJ mol-1 at 80 °C. The maximum current density and power density with the OCV of 0.93 V for the neodymium-doped barium cerate membrane are 397 mA cm-2 and 117 mW cm-2, which is 1.8 times greater than that of the pure SPES membrane. On the basis of polarization performance, the SPES membrane with neodymium-doped barium cerate has great potential in highly-efficient PEMFC applications.
Collapse
Affiliation(s)
- R Gayathri
- Department of Physics, Alagappa University, Karaikudi, India.
| | - M Ramesh Prabhu
- Department of Physics, Alagappa University, Karaikudi, India.
| |
Collapse
|
44
|
S. RRR, W. R, M. K, Y. WW, J. P. Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications. Polymers (Basel) 2020; 12:E1061. [PMID: 32384660 PMCID: PMC7285229 DOI: 10.3390/polym12051061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/24/2022] Open
Abstract
Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell's membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane's durability to ensure that it canmaintain itsperformance under the actual fuel cell's operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.
Collapse
Affiliation(s)
- Raja Rafidah R. S.
- School of Engineering, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Rashmi W.
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Khalid M.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| | - Wong W. Y.
- Fuel Cell Institute, UniversitiKebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Priyanka J.
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
45
|
|
46
|
Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Polymers (Basel) 2020; 12:polym12030515. [PMID: 32120782 PMCID: PMC7182959 DOI: 10.3390/polym12030515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
Highly phosphoric-acid (PA)-doped polybenzimidazole (PBI) membranes exhibit good proton conductivity at high temperatures; however, they suffer from reduced mechanical properties and loss of PA molecules due to the plasticity of PA and the weak interactions between PA and benzimidazoles, especially with the absorption of water. In this work, a series of PBIs with hyperbranched cross-linkers decorated with imidazolium groups (ImOPBI-x, where x is the weight ratio of the hyperbranched cross-linker) as high-temperature proton exchange membranes are designed and synthesized for the first time. We observe how the hyperbranched cross-linkers can endow the membranes with improved oxidative stability and acceptable mechanical performance, and imidazolium groups with strong basicity can stabilize the PA molecules by delocalization and hydrogen bond formation to endow the membranes with an enhanced proton conductivity and a decreased loss of PA molecules. We measured a high proton conductivity of the ImOPBI-x membranes, ranging from 0.058 to 0.089 S cm−1 at 160 °C. In addition, all the ImOPBI-x membranes displayed good mechanical and oxidative properties. At 160 °C, a fuel cell based on the ImOPBI-5 membrane showed a power density of 638 mW cm−2 and good durability under a hydrogen/oxygen atmosphere, indicating its promising use in anhydrous proton exchange membrane applications.
Collapse
|
47
|
Wang S, He F, Weng Q, Yuan D, Chen P, Chen X, An Z. Synthesis and characterization of a novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes. RSC Adv 2020; 10:24772-24783. [PMID: 35517481 PMCID: PMC9055182 DOI: 10.1039/d0ra02987d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymers (S-SPAES(x/y)) was prepared from 4,4′-biphenol, 4,4′-difluorodiphenyl sulfone, and a new difluoro aromatic monomer 1-(2,6-difluorophenyl)-2-(3,5-dimethoxyphenyl)-1,2-ethanedione (DFDMED) via co-polycondensation, demethylation, and further nucleophilic substitution of 1,4-butane sultone. Meanwhile, quinoxaline-based crosslinked copolymers (CS-SPAES(x/y)) were obtained via cyclo-condensation between S-SPAES(x/y) and 3,3′-diaminobenzidine. Both the crosslinkable and crosslinked copolymer membranes exhibit good mechanical properties and high anisotropic membrane swelling. Crosslinkable S-SPAES(1/2) with an ion exchange capacity (IEC) of 2.01 mequiv. g−1 displays a relatively high proton conductivity of 180 mS cm−1 and acceptable single-cell performance, which is attributed to its good microphase separation resulting from the side-chain sulfonated copolymer structures. Compared with S-SPAES(1/1) (IEC of 1.68 mequiv. g−1), crosslinked CS-SPAES(1/2) with a comparable IEC exhibits a larger conductivity of 157 mS cm−1, and significantly higher oxidative stability and lower membrane swelling, suggesting a distinct performance improvement due to the quinoxaline-based crosslinking. A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.![]()
Collapse
Affiliation(s)
- Shouping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Fugang He
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Qiang Weng
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Diao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| |
Collapse
|
48
|
Xie XX, Yang YC, Dou BH, Li ZF, Li G. Proton conductive carboxylate-based metal–organic frameworks. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213100] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Zhou CC, Yan H, Liu HT, Li RY, Lu J, Wang SN, Li YW. Proton conductivity studies on five isostructural MOFs with different acidity induced by metal cations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04179c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five isostructural MOFs display very different proton conductivities despite the same proton transfer pathway. This difference is caused by the different coordination ability between the metal cations and the ligand.
Collapse
Affiliation(s)
- Chuan-Cong Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Rong-Yun Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| |
Collapse
|
50
|
Sun X, Song JH, Ren HQ, Liu XY, Qu XW, Feng Y, Jiang ZQ, Ding HL. Phosphoric acid-loaded covalent triazine framework for enhanced the proton conductivity of the proton exchange membrane. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|