1
|
Lawal DU, Abdulazeez I, Alsalhy QF, Usman J, Abba SI, Mansir IB, Sathyamurthy R, Kaleekkal NJ, Imteyaz B. Experimental Investigation of a Plate-Frame Water Gap Membrane Distillation System for Seawater Desalination. MEMBRANES 2023; 13:804. [PMID: 37755226 PMCID: PMC10536650 DOI: 10.3390/membranes13090804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
This study presented a detailed investigation into the performance of a plate-frame water gap membrane distillation (WGMD) system for the desalination of untreated real seawater. One approach to improving the performance of WGMD is through the proper selection of cooling plate material, which plays a vital role in enhancing the gap vapor condensation process. Hence, the influence of different cooling plate materials was examined and discussed. Furthermore, two different hydrophobic micro-porous polymeric membranes of similar mean pore sizes were utilized in the study. The influence of key operating parameters, including the feed water temperature and flow rate, was examined against the system vapor flux and gained output ratio (GOR). In addition, the used membranes were characterized by means of different techniques in terms of surface morphology, liquid entry pressure, water contact angle, pore size distribution, and porosity. Findings revealed that, at all conditions, the PTFE membrane exhibits superior vapor flux and energy efficiency (GOR), with 9.36% to 14.36% higher flux at a 0.6 to 1.2 L/min feed flow rate when compared to the PVDF membrane. The copper plate, which has the highest thermal conductivity, attained the highest vapor flux, while the acrylic plate, which has an extra-low thermal conductivity, recorded the lowest vapor flux. The increasing order of GOR values for different cooling plates is acrylic < HDPE < copper < aluminum < brass < stainless steel. Results also indicated that increasing the feed temperature increases the vapor flux almost exponentially to a maximum flux value of 30.36 kg/m2hr. The system GOR also improves in a decreasing pattern to a maximum value of 0.4049. Moreover, a long-term test showed that the PTFE membrane, which exhibits superior hydrophobicity, registered better salt rejection stability. The use of copper as a cooling plate material for better system performance is recommended, while cooling plate materials with very low thermal conductivities, such as a low thermally conducting polymer, are discouraged.
Collapse
Affiliation(s)
- Dahiru U Lawal
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Jamilu Usman
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membrane and Water Security (IRC-MWS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim B Mansir
- Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Centre for Energy Research and Training, Ahmadu Bello University, Zaria P.M.B. 1045, Nigeria
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology (NITC), Calicut 673601, Kerala, India
| | - Binash Imteyaz
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Li J, Zhang Z, Liu W, Liu Z. Enhancing Thermo-Osmotic Low-Grade Heat Recovery by Applying a Negative Pressure to the Feed. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200238. [PMID: 37020626 PMCID: PMC10069319 DOI: 10.1002/gch2.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Indexed: 06/19/2023]
Abstract
A newly developed technology, thermo-osmotic energy conversion (TOEC), is supposed to convert low-grade heat into power. However, the performance of existing TOEC experiments is deficient. This paper discusses the feasibility of strengthening TOEC by applying negative pressure to the feed liquid, which can reduce air pressure in the membrane pores and molecular diffusion resistance. Theoretical calculation shows that when the cooling and heating temperatures are 40 and 80 °C, respectively, and the transmembrane pressure difference is 5.0 MPa, the TOEC system with a negative pressure of 0.5 bar at the feed side can approach an efficiency of 3.01% and a power density of 16.85 W m-2, which increases by 20% and 27% compared with no negative pressure, respectively. Given the nonuniformity in the real system, computational fluid dynamics simulation is used to obtain the correction factor, which is then used to revise the theory prediction results for the first time. Moreover, a lab-scale experiment also proves that a negative pressure at the feed benefits the performance of the TOEC device. Overall, this research presents a feasible method to enhance a TOEC system, which may promote the development of a more-efficiently TOEC system for low-grade heat utilization.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Ji Li
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zikang Zhang
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wei Liu
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichun Liu
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
3
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
4
|
Performance analysis of tubular membrane distillation modules: An experimental and CFD analysis. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Francis L, Ahmed FE, Hilal N. Advances in Membrane Distillation Module Configurations. MEMBRANES 2022; 12:membranes12010081. [PMID: 35054607 PMCID: PMC8778876 DOI: 10.3390/membranes12010081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Membrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency. While membrane design has been the focus of many studies, development of appropriate system configurations for optimal energy efficiency for each application has received considerable attention, and is a critical aspect in advancing MD configurations. This review assesses advancements in modified and novel MD configurations design with emphasis on the effects of upscaling and pilot scale studies. Improved MD configurations discussed in this review are the material gap MD, conductive gap MD, permeate gap MD, vacuum-enhanced AGMD/DCMD, submerged MD, flashed-feed MD, dead-end MD, and vacuum-enhanced multi-effect MD. All of these modified MD configurations are designed either to reduce the heat loss by mitigating the temperature polarization or to improve the mass transfer and permeate flux. Vacuum-enhanced MD processes and MD process with non-contact feed solution show promise at the lab-scale and must be further investigated. Hollow fiber membrane-based pilot scale modules have not yet been sufficiently explored. In addition, comparison of various configurations is prevented by a lack of standardized testing conditions. We also reflect on recent pilot scale studies, ongoing hurdles in commercialization, and niche applications of the MD process.
Collapse
|
6
|
Alawad SM, Khalifa AE, Antar MA, Abido MA. Experimental Evaluation of a New Compact Design Multistage Water-Gap Membrane Distillation Desalination System. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05909-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Cong S, Miao Q, Guo F. Mass Transfer Analysis of Air-Cooled Membrane Distillation Configuration for Desalination. MEMBRANES 2021; 11:membranes11040281. [PMID: 33920309 PMCID: PMC8069192 DOI: 10.3390/membranes11040281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
It has been proposed that the air-cooled configuration for air gap membrane distillation is an effective way to simplify the system design and energy source requirement. This offers potential for the practical applications of membrane distillation on an industrial scale. In this work, membrane distillation tests were performed using a typical water-cooled membrane distillation (WCMD) configuration and an air-cooled membrane distillation (ACMD) configuration with various condensing plates and operating conditions. To increase the permeate flux of an ACMD system, the condensing plate in the permeate side should transfer heat to the atmosphere more effectively, such as using a more thermally conductive plate, adding fins, or introducing forced convection air flow. Importantly, a practical mass transfer model was proposed to describe the ACMD performance in terms of permeate flux. This model can be simplified by introducing specific correction values to the mass transfer coefficient of a WCMD process under the same conditions. The two factors relate to the capacity (B) and the efficiency (σ), which can be considered as the characteristic factors of a membrane distillation (MD) system. The experimental results are consistent with the theoretical estimations based on this model, which can be used to describe the performance of an MD process.
Collapse
|
8
|
Choudhury MR, Anwar N, Jassby D, Rahaman MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process - A review. Adv Colloid Interface Sci 2019; 269:370-399. [PMID: 31129338 DOI: 10.1016/j.cis.2019.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Fouling and wetting of membranes are significant concerns that can impede the widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. Energy consumption and economic aspects of MD for wastewater recovery is also discussed. Throughout the review, we engage in dialogues highlighting research needs for furthering the development of MD: the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies) and the application of MD in long-term pilot-scale studies using real wastewater.
Collapse
|
9
|
Mahmoudi F, Date A, Akbarzadeh A. Further investigation of simultaneous fresh water production and power generation concept by permeate gap membrane distillation system. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|