1
|
Huynh TTK, Yang T, P S N, Yang Y, Ye J, Wang H. Construction of High-Performance Membranes for Vanadium Redox Flow Batteries: Challenges, Development, and Perspectives. NANO-MICRO LETTERS 2025; 17:260. [PMID: 40387968 PMCID: PMC12089618 DOI: 10.1007/s40820-025-01736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/15/2025] [Indexed: 05/20/2025]
Abstract
While being a promising candidate for large-scale energy storage, the current market penetration of vanadium redox flow batteries (VRFBs) is still limited by several challenges. As one of the key components in VRFBs, a membrane is employed to separate the catholyte and anolyte to prevent the vanadium ions from cross-mixing while allowing the proton conduction to maintain charge balance in the system during operation. To overcome the weakness of commercial membranes, various types of membranes, ranging from ion exchange membranes with diverse functional groups to non-ionic porous membranes, have been designed and reported to achieve higher ionic conductivity while maintaining low vanadium ion permeability, thus enhancing efficiency. In addition, besides overall efficiency, stability and cost-effectiveness of the membrane are also critical aspects that determine the practical applicability of the membranes and thus VRFBs. In this article, we have offered comprehensive insights into the mechanism of ion transportation in membranes of VRFBs that contribute to the challenges and issues of VRFB applications. We have further discussed optimal strategies for solving the trade-off between the membrane efficiency and its durability in VRFB applications. The development of state-of-the-art membranes through various material and structure engineering is demonstrated to reveal the relationship of properties-structure-performance.
Collapse
Affiliation(s)
- Tan Trung Kien Huynh
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Tong Yang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nayanthara P S
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Yang Yang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Su Y, Liu S, Zhu W, Huang K, Mu G, Jiang P, Liu J, Yang G, He Z, Wang J. Nature of Solvent/Nonsolvent Strategy in Achieving Superior Polybenzimidazole Membrane for Vanadium Redox Flow Battery. CHEMSUSCHEM 2025; 18:e202402513. [PMID: 39853970 DOI: 10.1002/cssc.202402513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes. The supreme-efficient PBI membrane derived by the DMSO/formamide formula according to the guideline displays a marvelous performance for VRFB, with the proton conductivity boosted by 4300 % (from 1.93 to 83.33 mS cm-1), and VRFB assembled with this membrane achieves an outstanding energy efficiency of 82.5 % under 200 mA cm-2. Moreover, this work profoundly unravels the structure, property and performance relationship of PBI membrane, which is of great value for the development of membranes.
Collapse
Affiliation(s)
- Yuke Su
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kui Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guangyuan Mu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Peng Jiang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Jianhui Liu
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Guang Yang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
3
|
Wu T, Sugiarto S, Yang R, Sathasivam T, Weerasinghe UA, Chee PL, Yap O, Nyström G, Kai D. From 3D to 4D printing of lignin towards green materials and sustainable manufacturing. MATERIALS HORIZONS 2025; 12:2789-2819. [PMID: 39895545 DOI: 10.1039/d4mh01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lignin is the second most abundant renewable and sustainable biomass resource. Developing advanced manufacturing to process lignin/lignocellulose into functional materials could reduce the consumption of petroleum-based materials. 3D printing provides a promising strategy to realize complex and customized geometries of lignin materials. The heterogeneity and complexity of lignin hinder its processing via additive manufacturing, but the recent advancement in lignin modification and polymerization provides new opportunities. Here, we summarize the recent state-of-the-art 3D printing of lignin materials, including the selection and formulation of lignin materials based on different printing techniques, the chemical modification of lignin for enhanced printability, and the related application fields. Additionally, we highlight the significant role of the 3D printing of lignocellulose biomass materials, such as wood powder and agricultural wastes. It was concluded that the most challenging part is to enhance the printability of lignin materials through modification and pretreatment of lignin while keeping the whole process green and sustainable. Beyond 3D printing, we further discuss the development of smart lignin materials and their potential for 4D printing. Ultimately, we discuss the current challenges and potential opportunities for the additive manufacturing of lignin materials. We believe this review can raise awareness among researchers about the potential of lignin materials as whole materials for constructing blocks and can promote the development of 3D/4D printing of lignin towards sustainability.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Ruochen Yang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Udyani Aloka Weerasinghe
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Odelia Yap
- School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, CH-8092, Zürich, Switzerland
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
4
|
Sadare O, Zoumpouli GA, Chew YMJ, Wenk J, Castro-Dominguez B, Mattia D. Lignin- and Cellulose-Derived Sustainable Nanofiltration Polyelectrolyte Membranes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:2060-2071. [PMID: 39950106 PMCID: PMC11816010 DOI: 10.1021/acssuschemeng.4c08611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Nanofiltration (NF) polymeric membranes are typically made from fossil fuel-derived feedstocks and toxic solvents, requiring a shift to more sustainable materials. This study pioneers the use of two biopolymers-cationic lignin and sodium carboxymethyl cellulose-as polycation and polyanion, respectively, to fabricate a polyelectrolyte membrane (PEM) via the layer-by-layer method with water as the sole solvent and on a poly(ether sulfone) (PES) support. At a transmembrane pressure of 2 bar, the pure water permeance was 6 LMHB (L/m2 h bar) for 5 bilayers with a 96% rejection for positively charged methylene blue and 93% for negatively charged reactive orange-16, with a mass balance above 90%, indicating minimal adsorption on the membrane surface. The molecular weight cutoff (MWCO) of the PEM ranged from 300 and 620 Da, corresponding to a loose NF membrane. Additionally, the PEM demonstrated excellent stability after 30 days in deionized water, attributed to strong electrostatic interactions between the polyelectrolyte layers. This study demonstrates that effective NF membranes can be produced using sustainable biopolymeric materials and benign solvents. The efficient rejection of small, charged molecules makes the PEM membrane promising for protein removal, wastewater treatment, biotechnology, and pharmaceutical applications.
Collapse
Affiliation(s)
- Olawumi Sadare
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Garyfalia A. Zoumpouli
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Y. M. John Chew
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Davide Mattia
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| |
Collapse
|
5
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
6
|
Dos Santos FB, McMichael PS, Whitbeck A, Jalaee A, Gyenge E, Foster EJ. Proton Exchange Membranes from Sulfonated Lignin Nanocomposites for Redox Flow Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309459. [PMID: 38519858 DOI: 10.1002/smll.202309459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Indexed: 03/25/2024]
Abstract
Redox flow batteries (RFBs) are increasingly being considered for a wide range of energy storage applications, and such devices rely on proton exchange membranes (PEMs) to function. PEMs are high-cost, petroleum-derived polymers that often possess limited durability, variable electrochemical performance, and are linked to discharge of perfluorinated compounds. Alternative PEMs that utilize biobased materials, including lignin and sulfonated lignin (SL), low-cost byproducts of the wood pulping process, have struggled to balance electrochemical performance with dimensional stability. Herein, SL nanoparticles are demonstrated for use as a nature-derived, ion-conducting PEM material. SL nanoparticles (NanoSLs) can be synthesized for increased surface area, uniformity, and miscibility compared with macrosized lignin, improving proton conductivity. After addition of polyvinyl alcohol (PVOH) as a structural backbone, membranes with the highest NanoSL concentration demonstrated an ion exchange capacity of 1.26 meq g-1, above that of the commercial PEM Nafion 112 (0.98 meq g-1), along with a conductivity of 80.4 mS cm-1 in situ, above that of many biocomposite PEMs, and a coulombic efficiency (CE), energy efficiency (EE) and voltage efficiency (VE) of 91%, 68% and 78%, respectively at 20 mA cm-2. These nanocomposite PEMs demonstrate the potential for valorization of forest biomass waste streams for high value clean energy applications.
Collapse
Affiliation(s)
- Fernanda Brito Dos Santos
- Department of Chemical and Biological Engineering, Advanced Materials Group, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Philip Spencer McMichael
- Department of Chemical and Biological Engineering, Advanced Materials Group, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Alex Whitbeck
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Adel Jalaee
- Department of Chemical and Biological Engineering, Advanced Materials Group, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elod Gyenge
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| | - E Johan Foster
- Department of Chemical and Biological Engineering, Advanced Materials Group, The University of British Columbia, 2360 E Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
7
|
Zheng M, Lu P, Li F, Li Y, Zhang Y, Yan H, Dong J. Preparation and properties of lignin-based composite membranes. ENVIRONMENTAL TECHNOLOGY 2024; 45:2228-2242. [PMID: 36647594 DOI: 10.1080/09593330.2023.2169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Composite membranes were prepared from lignin alkali (LA), polyvinyl alcohol (PVA), and cellulose nanofibrils (CNF) using a simple, low-cost, and environmentally friendly method. The deodorization performances and structures of these membranes were also characterized. The sample referred to as L3C3P5 prepared with a solution containing 35.7 wt% LA, 53.6 wt% PVA, and 10.7 wt% CNF showed the best deodorization properties, and the H2S adsorption time reached 36 min. The adsorption performance was further improved by adding nano-CuO to the membrane, and the H2S adsorption time of the doped membrane L3C3P5C4 reached 60 min. While the H2S adsorption performance improved, structural analysis revealed that the addition of nano-CuO reduced the crystallinity in the membrane, caused the membrane to crack, and led to a decrease in the mechanical properties. The surface oxygens in the L3C3P5C4 membrane were primarily C-O bonds and lattice oxygens in CuO. After the H2S adsorption reaction, the lattice oxygen disappeared, and CuS products appeared.
Collapse
Affiliation(s)
- Menglong Zheng
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Heilongjiang, People's Republic of China
| | - Peng Lu
- Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, People's Republic of China
| | - Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Heilongjiang, People's Republic of China
| | - Youjing Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Heilongjiang, People's Republic of China
| | - Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, People's Republic of China
| | - Hong Yan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Heilongjiang, People's Republic of China
| | - Jinghao Dong
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Heilongjiang, People's Republic of China
| |
Collapse
|
8
|
Yang H, Lin S, Qu Y, Wang G, Xiang S, Liu F, Wang C, Tang H, Wang D, Wang Z, Liu X, Zhang Y, Wu Y. An Ultra-Low Self-Discharge Aqueous|Organic Membraneless Battery with Minimized Br 2 Cross-Over. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307780. [PMID: 38168899 PMCID: PMC10870083 DOI: 10.1002/advs.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Batteries dissolving active materials in liquids possess safety and size advantages compared to solid-based batteries, yet the intrinsic liquid properties lead to material cross-over induced self-discharge both during cycling and idle when the electrolytes are in contact, thus highly efficient and cost-effective solutions to minimize cross-over are in high demand. An ultra-low self-discharge aqueous|organic membraneless battery using dichloromethane (CH2 Cl2 ) and tetrabutylammonium bromide (TBABr) added to a zinc bromide (ZnBr2 ) solution as the electrolyte is demonstrated. The polybromide is confined in the organic phase, and bromine (Br2 ) diffusion-induced self-discharge is minimized. At 90% state of charge (SOC), the membraneless ZnBr2 |TBABr (Z|T) battery shows an open circuit voltage (OCV) drop of only 42 mV after 120 days, 152 times longer than the ZnBr2 battery, and superior to 102 previous reports from all types of liquid active material batteries. The 120-day capacity retention of 95.5% is higher than commercial zinc-nickel (Zn-Ni) batteries and vanadium redox flow batteries (VRFB, electrolytes stored separately) and close to lithium-ion (Li-ion) batteries. Z|T achieves >500 cycles (2670 h, 0.5 m electrolyte, 250 folds of membraneless ZnBr2 battery) with ≈100% Coulombic efficiency (CE). The simple and cost-effective design of Z|T provides a conceptual inspiration to regulate material cross-over in liquid-based batteries to realize extended operation.
Collapse
Affiliation(s)
- Han Yang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shiyu Lin
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yunpeng Qu
- College of PhysicsGuizhou UniversityGuiyang550025China
| | - Guotao Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shuangfei Xiang
- School of Materials Science and Engineering and Institute of Smart Fiber MaterialsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chao Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Hao Tang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Di Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Zhoulu Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Xiang Liu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yi Zhang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yutong Wu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| |
Collapse
|
9
|
He X, Li L, Yan S, Fu H, Zhong F, Cao J, Ding M, Sun Q, Jia C. Advanced electrode enabled by lignin-derived carbon for high-performance vanadium redox flow battery. J Colloid Interface Sci 2024; 653:1455-1463. [PMID: 37804614 DOI: 10.1016/j.jcis.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Vanadium redox flow batteries (VRFBs) are promising energy storage systems with the potential to bridge the gap between intermittent renewable electricity generation and continuous supply of reliable electricity. The electrodes found in VRFB cells affect their energy efficiency (EE) and power density. It is important to fabricate electrodes with intriguing properties to enable VRFBs to have high performance. Herein, the abundant and cost-effective lignin is employed as the precursor to produce amorphous carbon particles after undergoing thermal decomposition treatment. The carbon particles cover the surface of carbon felt (CF). The resulting CF modified by lignin-derived carbon particles (Lignin-CF) with increased active sites and improved hydrophilicity displays superior electrochemical activity towards the VO2+/VO2+ pair than both the pristine CF and the heated bare CF. Remarkably, the VRFB consisting of Lignin-CF which acts as the positive electrode shows high performance in terms of the average EE (83.3 %) and average voltage efficiency (VE) (85.0 %) over 1000 cycles (long cycling life) for more than 16 days at 100 mA cm-2, and high power density of 1053.2 mW cm-2. It is noted that the EE and VE are comparable to the highest reported value of CF modified by carbon-based materials, aside having evidently longer cycling life. This study provides a feasible strategy for fabricating an affordable electrode for high-performance VRFBs.
Collapse
Affiliation(s)
- Xinyan He
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Liangyu Li
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Su Yan
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Hu Fu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Fangfang Zhong
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinchao Cao
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China.
| | - Qilong Sun
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
10
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Gholami A, Mazaheri Y, Riazi M, Kurniawan D, Arjmand M, Madkhali O, Aljabri MD, Rahman MM, Chiang WH. Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. CHEM REC 2024; 24:e202200266. [PMID: 36995072 DOI: 10.1002/tcr.202200266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Indexed: 03/31/2023]
Abstract
The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Yousef Mazaheri
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, 71946-84334, Iran
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - O Madkhali
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mahmood D Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry & Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| |
Collapse
|
11
|
Heo JW, An L, Kim MS, Youn DH, Kim YS. Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes. Int J Biol Macromol 2023; 253:127421. [PMID: 37838126 DOI: 10.1016/j.ijbiomac.2023.127421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
In this study, a novel zwitterion-substituted lignin (ZL) containing amino and sulfonic acid groups was synthesized, and ZL/Nafion composite membranes were fabricated as proton exchange membranes. Kraft lignin was modified using an aminosilane and 1,3-propanesultone via a continuous grafting reaction to provide zwitterionic moieties. Chemical structural analyses confirmed the successful introduction of the zwitterion moiety into lignin. In particular, the surface charge of ZL is positive in an acidic medium and negative in a basic medium, suggesting that ZL is a zwitterionic material. ZL was incorporated into a Nafion membrane to enhance its ion exchange capacity, thermal stability, and hydrophilicity. The proton conductivity of ZL/Nafion 0.5 %, 151.0 mS/cm, was 55.3 % higher than that of unmodified ML (methanol-soluble lignin)/Nafion 0.5 % (97.2 mS/cm), indicating that the zwitterion moiety of ZL enhances the proton transport ability. In addition, oxidative stability evaluation confirmed that ZL/Nafion 2 % was chemically more durable than pure Nafion. This confirmed that using lignin as a membrane additive yielded positive results in terms of chemical durability and oxidation stability in Nafion. Therefore, ZL is expected to be utilized as a multifunctional additive and exhibits the potential for fuel cell applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Liangliang An
- Faculty of Chemical and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
12
|
Zhai L, Chai S, Li T, Li H, He S, He H, Li X, Wu L, Jiang F, Li H. Self-Assembled Construction of Ion-Selective Nanobarriers in Electrolyte Membranes for Redox Flow Batteries. NANO LETTERS 2023; 23:10414-10422. [PMID: 37930644 DOI: 10.1021/acs.nanolett.3c03064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Ion-conducting membranes (ICMs) with high selectivity are important components in redox flow batteries. However it is still a challenge to break the trade-off between ion conductivity and ion selectivity, which can be resolved by the regulation of their nanostructures. Here, polyoxometalate (POM)-hybridized block copolymers (BCPs) are used as self-assembled additives to construct proton-selective nanobarriers in the ICM matrix to improve the microscopic structures and macroscopic properties of ICMs. Benefiting from the co-assembly behavior of BCPs and POMs and their cooperative noncovalent interactions with the polymer matrix, ∼50 nm ellipsoidal functional nanoassemblies with hydrophobic vanadium-shielding cores and hydrophilic proton-conducting shells are constructed in the sulfonated poly(ether ether ketone) matrix, which leads to an overall enhancement of proton conductivity, proton selectivity, and cell performance. These results present a self-assembly route to construct functional nanostructures for the modification of polymer electrolyte membranes toward emerging energy technologies.
Collapse
Affiliation(s)
- Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Tingting Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Haibin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Siqi He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Fengjing Jiang
- CIC energiGUNE, Alava Technology Park, Albert Einstein 48, 01510 Miñano, Álava, Spain
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
13
|
Zhang D, Huang K, Xia Y, Cao H, Dai L, Qu K, Xiao L, Fan Y, Xu Z. Two-Dimensional MFI-Type Zeolite Flow Battery Membranes. Angew Chem Int Ed Engl 2023; 62:e202310945. [PMID: 37670427 DOI: 10.1002/anie.202310945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
Vanadium flow battery (VFB) is one of the most reliable stationary electrochemical energy-storage technologies, and a membrane with high vanadium resistance and proton conductivity is essential for manufacturing high-performance VFBs. In this study, a two-dimensional (2D) MFI-type zeolite membrane was fabricated from zeolite nanosheet modules, which displayed excellent vanadium resistance (0.07 mmol L-1 h-1 ) and proton conductivity (0.16 S cm-1 ), yielding a coulombic efficiency of 93.9 %, a voltage efficiency of 87.6 %, and an energy efficiency of 82.3 % at 40 mA cm-2 . The self-discharge period of a VFB equipped with 2D MFI-type zeolite membrane increased up to 116.2 h, which was significantly longer than that of the commercial perfluorinated sulfonate membrane (45.9 h). Furthermore, the corresponding battery performance remained stable over 1000 cycles (>1500 h) at 80 mA cm-2 . These findings demonstrate that 2D MFI-type membranes are promising ion-conductive membranes applicable for stationary electrochemical energy-storage devices.
Collapse
Affiliation(s)
- Dezhu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
- Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123, China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
- Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123, China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Kai Qu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Lan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yiqun Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
- Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Chu J, Liu Q, Ji W, Li J, Ma X. Novel microporous sulfonated polyimide membranes with high energy efficiency under low ion exchange capacity for all vanadium flow battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Surface modification, counter-ion exchange effect on thermally annealed sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
17
|
Sharma P, Shahi VK. Fabricating a Partially Fluorinated Hybrid Cation-Exchange Membrane for Long Durable Performance of Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9171-9181. [PMID: 36763339 DOI: 10.1021/acsami.2c16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-term durability of vanadium redox flow batteries (VRFBs) depends on the stability and performance of the membrane separator. We have architected a hybrid membrane by uniform dispersion of MIL-101(Cr) (Cr-MOF) in a partially fluorinated polymer grafted with sulfonic acid groups (PHP@AMPSCr-MOF(1.0)). The single cell VRFB performance of the PHP@AMPSCr-MOF(1.0) membrane was studied in comparison with the Cr-MOF incorporated Nafion membrane (NafionCr-MOF(1.0)) and showed an excellent result with 97.5% Coulombic efficiency (CE) at 150 mA/cm2 without any significant deterioration in the charge-discharge process for 1500 cycles (over 650 h). Meanwhile, the CE value of the NafionCr-MOF membrane (94.5%) deteriorated after 800 cycles (about 360 h) under similar conditions. The high VRFB performance of the PHP@AMPSCr-MOF(1.0) membrane has been attributed to the synergized properties and good interactions between Cr-MOF and partially fluorinated polymer matrix responsible for the creation of hydrophilic proton-conducting channels to achieve high selectivity. Furthermore, the cost-effective polymer and thus membranes may open new windows for practical applications in other energy devices such as fuel cells, electrolysis, and water treatment.
Collapse
Affiliation(s)
- Prerana Sharma
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod K Shahi
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
He M, Guan M, Zhan R, Zhou K, Fu H, Wang X, Zhong F, Ding M, Jia C. Two-Dimensional Materials Applied in Membranes of Redox Flow Battery. Chem Asian J 2023; 18:e202201152. [PMID: 36534005 DOI: 10.1002/asia.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Redox flow batteries (RFBs) are one of the most promising techniques to store and convert green and renewable energy, benefiting from their advantages of high safety, flexible design and long lifespan. Membranes with fast and selective ions transport are required for the advances of RFBs. Remarkably, two-dimensional (2D) materials with high mechanical and chemical stability, strict size exclusion and abundantly modifiable functional groups, have attracted extensive attentions in the applications of energy fields. Herein, the improvements and perspectives of 2D materials working for ionic transportation and sieving in RFBs membranes are presented. The characteristics of various materials and their advantages and disadvantages in the applications of RFBs membranes particularly are focused. This review is expected to provide a guidance for the design of membranes based on 2D materials for RFBs.
Collapse
Affiliation(s)
- Murong He
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Minyuan Guan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Ruifeng Zhan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China.,Huzhou Electric Power Design Institute Company Ltd., Huzhou, 313000, P. R. China
| | - Kaiyun Zhou
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Hu Fu
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Xinan Wang
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Fangfang Zhong
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mei Ding
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Chuankun Jia
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| |
Collapse
|
19
|
Kozmai A, Porozhnyy M, Ruleva V, Gorobchenko A, Pismenskaya N, Nikonenko V. Is It Possible to Prepare a "Super" Anion-Exchange Membrane by a Polypyrrole-Based Modification? MEMBRANES 2023; 13:103. [PMID: 36676909 PMCID: PMC9865286 DOI: 10.3390/membranes13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.
Collapse
|
20
|
Sun W, Zhang N, Li Q, Li X, Chen S, Zong L, Baikeli Y, Lv E, Deng H, Zhang X, Baqiah H. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Renewable plant-derived lignin for electrochemical energy systems. Trends Biotechnol 2022; 40:1425-1438. [PMID: 35989111 DOI: 10.1016/j.tibtech.2022.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023]
Abstract
Lignin, as one of the most abundant natural polymers, has been proved to be a promising material for the construction of high-performance electrochemical energy systems, including electrodes, electrolytes, and separators, because of their low-cost and sustainable natures and unique structure with abundant functional group. In this review article, we outline some key contributions in this field such as fundamental principles and various electrochemical energy systems including rechargeable batteries, supercapacitors, solar cells, and fuel cells. At the same time, we also point out the significant scientific discussion and critical barriers for lignin-based materials for electrochemical energy systems and also provides feasible strategies for preparing new sustainable energy materials.
Collapse
|
22
|
Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractAs the world works to move away from traditional energy sources, effective efficient energy storage devices have become a key factor for success. The emergence of unconventional electrochemical energy storage devices, including hybrid batteries, hybrid redox flow cells and bacterial batteries, is part of the solution. These alternative electrochemical cell configurations provide materials and operating condition flexibility while offering high-energy conversion efficiency and modularity of design-to-design devices. The power of these diverse devices ranges from a few milliwatts to several megawatts. Manufacturing durable electronic and point-of-care devices is possible due to the development of all-solid-state batteries with efficient electrodes for long cycling and high energy density. New batteries made of earth-abundant metal ions are approaching the capacity of lithium-ion batteries. Costs are being reduced with the advent of flow batteries with engineered redox molecules for high energy density and membrane-free power generating electrochemical cells, which utilize liquid dynamics and interfaces (solid, liquid, and gaseous) for electrolyte separation. These batteries support electrode regeneration strategies for chemical and bio-batteries reducing battery energy costs. Other batteries have different benefits, e.g., carbon-neutral Li-CO2 batteries consume CO2 and generate power, offering dual-purpose energy storage and carbon sequestration. This work considers the recent technological advances of energy storage devices. Their transition from conventional to unconventional battery designs is examined to identify operational flexibilities, overall energy storage/conversion efficiency and application compatibility. Finally, a list of facilities for large-scale deployment of major electrochemical energy storage routes is provided.
Graphical abstract
Collapse
|
23
|
Zhai S, Jia X, Lu Z, Ai Y, Liu X, Lin J, He S, Wang Q, Chen L. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Al-Shaeli M, Al-Juboori RA, Al Aani S, Ladewig BP, Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156014. [PMID: 35584751 DOI: 10.1016/j.scitotenv.2022.156014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Saif Al Aani
- The State Company of Energy Production - Middle Region, Ministry of Electricity, Iraq
| | - Bradley P Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Nidal Hilal
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Insights into the Influence of Different Pre-Treatments on Physicochemical Properties of Nafion XL Membrane and Fuel Cell Performance. Polymers (Basel) 2022; 14:polym14163385. [PMID: 36015643 PMCID: PMC9414504 DOI: 10.3390/polym14163385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Perfluorosulfonic acid (PFSA) polymers such as Nafion are the most frequently used Proton Exchange Membrane (PEM) in PEM fuel cells. Nafion XL is one of the most recently developed membranes designed to enhance performance by employing a mechanically reinforced layer in the architecture and a chemical stabilizer. The influence of the water and acid pre-treatment process on the physicochemical properties of Nafion XL membrane and Membrane Electrode Assembly (MEA) was investigated. The obtained results indicate that the pre-treated membranes have higher water uptake and dimensional swelling ratios, i.e., higher hydrophilicity, while the untreated membrane demonstrated a higher ionic exchange capacity. Furthermore, the conductivity of the acid pre-treated Nafion XL membrane was ~ 9.7% higher compared to the untreated membrane. Additionally, the maximum power densities obtained at 80 °C using acid pre-treatment were ~ 0.8 and 0.93 W/cm2 for re-cast Nafion and Nafion XL, respectively. However, the maximum generated powers for untreated membranes at the same condition were 0.36 and 0.66 W/cm2 for re-cast Nafion and Nafion XL, respectively. The overall results indicated that the PEM’s pre-treatment process is essential to enhance performance.
Collapse
|
26
|
Sun W, Zhang N, Li Q, Luo X, Baqiah H, Cui W, Li Z, Deng H. Lignin-based nanofiltration membrane with high permeability, acid-alkali and chlorine resistances toward the removal of multivalent salts and dyes. CHEM LETT 2022. [DOI: 10.1246/cl.220292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenge Sun
- Chemical Engineering College, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Xin Luo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Hussein Baqiah
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Zhen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Huining Deng
- Chemical Engineering College, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
27
|
Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Selim A, Szijjártó GP, Románszki L, Tompos A. Development of WO 3-Nafion Based Membranes for Enabling Higher Water Retention at Low Humidity and Enhancing PEMFC Performance at Intermediate Temperature Operation. Polymers (Basel) 2022; 14:polym14122492. [PMID: 35746074 PMCID: PMC9227791 DOI: 10.3390/polym14122492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The proton exchange membrane (PEM) represents a pivotal material and a key challenge in developing fuel cell science and hydrogen technology. Nafion is the most promising polymer which will lead to its commercialisation. Hybrid membranes of nanosized tungsten oxide (WO3) and Nafion were fabricated, characterised, and tested in a single cell. The incorporation of 10 wt% WO3 resulted in 21% higher water uptake, 11.7% lower swelling ratio, almost doubling the hydration degree, and 13% higher mechanical stability of the hybrid membrane compared to the Nafion XL. Compared to commercial Nafion XL, the rNF-WO-10 hybrid membrane showed an 8.8% and 20% increase in current density of the cell at 0.4 V operating at 80 and 95 °C with 1.89 and 2.29 A/cm2, respectively. The maximum power density has increased by 9% (0.76 W/cm2) and 19.9% (0.922 W/cm2) when operating at the same temperatures compared to the commercial Nafion XL membrane. Generally, considering the particular structure of Nafion XL, our Nafion-based membrane with 10 wt% WO3 (rNF-WO-10) is a suitable PEM with a comparable performance at different operating conditions.
Collapse
Affiliation(s)
- Asmaa Selim
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
- National Research Centre, Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, 33 El Bohouth Street, Giza 12622, Egypt
- Correspondence:
| | - Gábor Pál Szijjártó
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| | - Loránd Románszki
- Research Centre for Natural Sciences, Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - András Tompos
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| |
Collapse
|
29
|
Sizov VE, Zefirov VV, Volkova YA, Gusak DI, Kharitonova EP, Ponomarev II, Gallyamov MO. Celgard/
PIM
‐1 proton conducting composite membrane with reduced vanadium permeability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victor E. Sizov
- Faculty of Physics M. V. Lomonosov Moscow State University Moscow Russia
| | - Vadim V. Zefirov
- Faculty of Physics M. V. Lomonosov Moscow State University Moscow Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Yulia A. Volkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Danil I. Gusak
- Faculty of Physics M. V. Lomonosov Moscow State University Moscow Russia
| | | | - Igor I. Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Marat O. Gallyamov
- Faculty of Physics M. V. Lomonosov Moscow State University Moscow Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
30
|
Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Yang Y, Li N, Lv T, Chen Z, Liu Y, Dong K, Cao S, Chen T. Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. NANOSCALE ADVANCES 2022; 4:1718-1726. [PMID: 36132163 PMCID: PMC9417349 DOI: 10.1039/d2na00097k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
A sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood film with excellent mechanical properties, ion conductivity and thermal stability is fabricated for high-performance lithium ion batteries. Using the modified natural wood film as a separator, the fabricated symmetric cell exhibits a more stable and lower plating/stripping voltage for Li than that of the cell with a commercialized polypropylene (PP) separator. The LiFePO4/Li half-cell with the modified wood film separator shows a small polarization voltage and high discharge capacity because of the multi-level nanostructure and abundant functional groups of the modified wood films. The results suggest that the modified wood films are a promising candidate for use as separators in lithium ion batteries. As desired, the LiFePO4/Li half-cells with the modified wood film separator deliver much higher discharge capacities and more stable Coulomb efficiency over two hundred charge/discharge cycles than the cell based on the PP separator. The present work systematically investigate the feasibility of abundant and cheap natural wood-derived materials for use as efficient separators instead of synthetic polymers for high-performance lithium ion batteries with long cycle life.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Ning Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
32
|
Zhai S, Lu Z, Ai Y, Liu X, Wang Q, Lin J, He S, Tian M, Chen L. Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Lou X, Lu B, He M, Yu Y, Zhu X, Peng F, Qin C, Ding M, Jia C. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|
35
|
An H, Zhang R, Li W, Li P, Qian H, Yang H. Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7845-7855. [PMID: 35104405 DOI: 10.1021/acsami.1c20627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An aminopropyl isobutyl polyhedral oligosilsesquioxane (NH2-POSS) surface-modified Nafion membrane has been designed by chemical grafting for vanadium redox flow batteries (VRFBs). NH2-POSS is a cage-like macromer consisting of an inorganic Si8O12 core surrounded by seven inert isobutyl groups and one active aminopropyl group. The sulfonic acid groups on the surface of Nafion can be activated by 1,1-carbonyldiimidazole for further modification with NH2-POSS. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) prove that NH2-POSS has been successfully grafted on the surface of a Nafion 115 membrane. Although the proton conductivity decreases slightly, the organic-inorganic hybrid membranes display enhanced ion selectivity and excellent dimensional stability with lower water uptake and swelling ratio than Nafion 115. Moreover, two-dimensional-grazing incidence X-ray diffraction (2D-GIXRD) reveals that the introduction of NH2-POSS forms a POSS layer on the surface of the membrane and narrows the space of Nafion clusters, which helps to block VO2+ permeation. A VRFB with the surface-modified Nafion membrane displays an outstanding performance with an average Coulombic efficiency (CE) of 98.7% and energy efficiency (EE) of 84.5% at a current density of 80 mA cm-2, superior to those of the Nafion 115 membrane (CE = 95.7%, EE = 81.7%). Furthermore, the cell holds a high capacity retention of 49.2% after 1000 charge-discharge cycles, in contrast to that of 41.9% for the cell with Nafion 115 after only 200 cycles. The results suggest that the surface-modified hybrid membrane is a promising strategy to overcome the vanadium ion crossover in VRFBs.
Collapse
Affiliation(s)
- Hongli An
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pan Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huidong Qian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
|
37
|
New crosslinked membranes based on cardo-poly(etherketone) and poly(ethylene imine) for the vanadium redox flow battery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Qu C, Zhang H, Wang C, Li X. Poly(arylene ether sulfone) Membrane Crosslinked with Bi‐Guanidinium for Vanadium Flow Battery Applications. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Qu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Hongzhang Zhang
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Changsheng Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Xianfeng Li
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
39
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Kamcev J. Reformulating the
permselectivity‐conductivity
tradeoff relation in
ion‐exchange
membranes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jovan Kamcev
- Department of Chemical Engineering, Macromolecular Science and Engineering University of Michigan, North Campus Research Complex Ann Arbor Michigan USA
| |
Collapse
|
41
|
Thiam BG, El Magri A, Vaudreuil S. An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211049317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vanadium redox flow batteries (VRFB) are among the most promising approaches to efficiently store renewable energies. In such battery type, Nafion is commonly used as membrane material but suffers from high vanadium crossover and cost. These drawbacks negatively influence the widespread commercial application of VRFBs. Alternative membrane materials with high performance and low cost are thus being developed to address these shortfalls. Among those, possible materials for the VRFB membrane is sulfonated polyether ether ketone (SPEEK), which recently attracted considerable attention due to its low cost, combined with mechanical and chemical stability, and ease of preparation. This review summarizes the research activities related to the development of SPEEK-based membranes for VRFB applications and gives an overview of the properties of PEEK and its sulfonated form. A critical analysis on the challenges of SPEEK-based membranes is also discussed.
Collapse
Affiliation(s)
- Baye Gueye Thiam
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Anouar El Magri
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Sébastien Vaudreuil
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| |
Collapse
|
42
|
Zhu L, Li Y, Zhao J, Liu J, Lei J, Wang L, Huang C. A novel green lignosulfonic acid/Nafion composite membrane with reduced cost and enhanced thermal stability. Chem Commun (Camb) 2021; 57:9288-9291. [PMID: 34519323 DOI: 10.1039/d1cc03000k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A green biopolymer, lignosulfonate acid (LSA), was first used as an additive in the Nafion membrane for fuel cell applications. The Nafion/LSA composite membrane displayed enhanced thermal stability and other satisfactory properties due to the stable aromatic groups and multiple active sites of LSA. More importantly, the cost-effectiveness and simple fabrication of such novel composite PEMs make their use in PEMFCs very attractive and economical.
Collapse
Affiliation(s)
- Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Yucheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.,MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
43
|
Wang Z, Zhang S, Liu Q, Chen Y, Weng Z, Jian X. Preparation and characterization of the side-chain quaternized poly(phthalazinone ether ketone)s with phenyl groups for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
45
|
Zhang Y, Yu L, Wang J, Li S, Gan H, Xue Z. Fabrication of polymer electrolyte via lithium salt-induced surface-initiated radical polymerization for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Feroze Gooty Saleha W, Nalajala N, Neergat M. Polyaryletherketone in energy conversion and storage devices – a highly tailorable material with versatile properties. POLYM INT 2021. [DOI: 10.1002/pi.6233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wasim Feroze Gooty Saleha
- Advanced Polymer Design & Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP) Central Institute of Petrochemical Engineering and Technology (CIPET) Bengaluru India
| | | | - Manoj Neergat
- Department of Energy Science and Engineering (DESE) Indian Institute of Technology Bombay (IITB) Mumbai India
| |
Collapse
|
47
|
Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, Guo Z. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Zhang D, Xin L, Xia Y, Dai L, Qu K, Huang K, Fan Y, Xu Z. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
50
|
Cheng Y, Dong H, Wu Y, Xiao K. Preparation of an Amidated Graphene Oxide/Sulfonated Poly Ether Ether Ketone (AGO/SPEEK) Modified Atmosphere Packaging for the Storage of Cherry Tomatoes. Foods 2021; 10:foods10030552. [PMID: 33800032 PMCID: PMC8001178 DOI: 10.3390/foods10030552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The shelf life of cherry tomatoes is short so that new and efficient preservation techniques or procedures are required to reduce postharvest losses. This study focused on the development of a sulfonated poly ether ether ketone (SPEEK) film incorporated with amidated graphene oxide (AGO), for the storage of cherry tomatoes in modified atmosphere packaging. The mechanical properties, gas permeability, and moisture permeability were subsequently tested. The evolution of attributes related to shelf life, such as gas composition, physicochemical properties, and sensory properties were also monitored during storage trials. AGO, as an inorganic filler, increases the thermal stability and mechanical properties of SPEEK-based films, while it reduces the water absorption, swelling rate, and moisture permeability. Importantly, all the AGO/SPEEK films exhibited enhanced gas permeability and selective permeability of CO2/O2 relative to the SPEEK film. Moreover, 0.9% (w/w) AGO/SPEEK film showed an enhanced permeability coefficient of CO2, corresponding to an increase of 50.7%. It could further improve the selective coefficient of CO2/O2 to 67.1%. The results of preservation at 8 °C revealed that: 0.9% (w/w) AGO/SPEEK film was significantly effective at maintaining the quality and extending the shelf life of cherry tomatoes from 15 to 30 days, thereby suggesting the potential for applying AGO-incorporated SPEEK films for food packaging materials.
Collapse
Affiliation(s)
- Yao Cheng
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Hao Dong
- School of Food Science and Technology, Zhongkai University of Agriculture and Engineering, 24, Dongsha Street, Fangzhi Rd., Haizhu District, Guangzhou 510225, China;
| | - Yuanyue Wu
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Kaijun Xiao
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
- Correspondence: ; Tel.: +86-020-87113848
| |
Collapse
|