1
|
Zhang B, Qian R, Jiang Y, Wang J, Wu Y. Building high-speed facilitated transport channels in Pebax membranes with montmorillonite for efficient CO 2/N 2 separation. ENVIRONMENTAL TECHNOLOGY 2025; 46:1842-1856. [PMID: 39306682 DOI: 10.1080/09593330.2024.2405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/12/2024] [Indexed: 04/07/2025]
Abstract
Development of high-performance mixed matrix membranes (MMMs) is of great significance for CO2 separation membrane technology, in order to improve the commercial competitiveness and practical applications. Montmorillonite (MMT) was developed as a dopant to fabricate Polyether block amide (Pebax1074)-based MMMs for strengthening the CO2/N2 separation. The morphology, chemical groups, microstructure, and thermal properties of MMMs were characterised by scanning electron microscope, FTIR spectroscopy, X-ray diffraction and thermal analysis, respectively. The effects of MMT contents, permeation pressure and permeation temperature on the gas separation performance of the Pebax/MMT MMMs were investigated. The results show that the uniformly dispersed dopants MMT in the membrane matrix significantly influence the thermal stability and the structural compactness of MMMs. Moreover, the CO2 permeability monotonously increases in spite of the CO2/N2 selectivity first increasing and then decreasing with the MMT content elevating from 0% to 10% in MMMs. The highest CO2/N2 selectivity could reach to 120.3, along with the CO2 permeability of 130.6 Barrer for the MMMs made by MMT content of 6%.
Collapse
Affiliation(s)
- Bing Zhang
- Liaoning Province Professional and Technical Innovation Centre for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Renying Qian
- Liaoning Province Professional and Technical Innovation Centre for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Yu Jiang
- Liaoning Province Professional and Technical Innovation Centre for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Jian Wang
- Liaoning Province Professional and Technical Innovation Centre for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| | - Yonghong Wu
- Liaoning Province Professional and Technical Innovation Centre for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, People's Republic of China
| |
Collapse
|
2
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
3
|
Divakar S, Naik NS, Balakrishna RG, Padaki M. Liquid- liquid (Cyclohexanone: Cyclohexanol) separation using augmented tight nanofiltration membrane: A sustainable approach. CHEMOSPHERE 2024; 355:141820. [PMID: 38561158 DOI: 10.1016/j.chemosphere.2024.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.
Collapse
Affiliation(s)
- Swathi Divakar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Nagaraj S Naik
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| |
Collapse
|
4
|
Barooah M, Kundu S, Kumar S, Katare A, Borgohain R, Uppaluri RVS, Kundu LM, Mandal B. New generation mixed matrix membrane for CO 2 separation: Transition from binary to quaternary mixed matrix membrane. CHEMOSPHERE 2024; 354:141653. [PMID: 38485000 DOI: 10.1016/j.chemosphere.2024.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Contemporary advances in material development associated with membrane gas separation refer to the cost-effective fabrication of high-performance, defect-free mixed matrix membranes (MMMs). For clean energy production, natural gas purification, and CO2 capture from flue gas systems, constituting a functional integration of polymer matrix and inorganic filler materials find huge applications. The broad domain of research and development of MMMs focused on the selection of appropriate materials, inexpensive membrane fabrication, and comparative study with other gas separation membranes for real-world applications. This study addressed a comprehensive review of the advanced MMMs wrapping various facets of membrane material selection; polymer and filler particle morphology and compatibility between the phases and the relevance of several fillers in the assembly of MMMs are analyzed. Further, the research on binary MMMs, their problems, and solutions to overcome these challenges have also been discussed. Finally, the future directions and scope of work on quaternary MMM are scrutinized in the article.
Collapse
Affiliation(s)
- Mridusmita Barooah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shubham Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Kamal Setiawan W, Chiang KY. Enhancement strategies of poly(ether-block-amide) copolymer membranes for CO 2 separation: A review. CHEMOSPHERE 2023; 338:139478. [PMID: 37451639 DOI: 10.1016/j.chemosphere.2023.139478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Poly(ether-block-amide) (Pebax) membranes have become the preferred CO2 separation membrane because of their excellent CO2 affinity and robust mechanical resistance. Nevertheless, their development must be considered to overcome the typical obstacles in polymeric membranes, including the perm-selectivity trade-off, plasticization, and physical aging. This article discusses the recent enhancement strategies as a guideline for designing and developing Pebax membranes. Five strategies were developed in the past few years to improve Pebax gas transport properties, including crosslinking, mobile carrier attachment, polymer blending, filler incorporation, and the hybrid technique. Among them, filler incorporation and the hybrid technique were most favorable for boosting CO2/N2 and CO2/CH4 separation performance with a trade-off-free profile. On the other hand, modified Pebax membranes must deal with two latent issues, mechanical strength loss, and perm-selectivity off-balance. Therefore, exploring novel materials with unique structures and surface properties will be promising for further research. In addition, seeking eco-friendly additives has become worthwhile for establishing Pebax membrane sustainable development for gas separation.
Collapse
Affiliation(s)
- Wahyu Kamal Setiawan
- Department of Agroindustrial Technology, Universitas Internasional Semen Indonesia, SIG Buiding Complex, Veteran Street, Gresik, East Java, 61122, Indonesia; Graduate Institute of Environmental Engineering, National Central University, No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan.
| |
Collapse
|
6
|
Pusphanathan K, Shukor H, Shoparwe NF, Makhtar MMZ, Zainuddin NI, Jullok N, Siddiqui MR, Alam M, Rafatullah M. Efficiency of Fabricated Adsorptive Polysulfone Mixed Matrix Membrane for Acetic Acid Separation. MEMBRANES 2023; 13:565. [PMID: 37367769 DOI: 10.3390/membranes13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, enhance acetic acid removal. This work demonstrates the incorporation of titanium dioxide (TiO2) and polyethylene glycol (PEG) as additives into polysulfone (PSf) polymer via the non-solvent-induced phase-inversion (NIPS) method to improve the performance of PSf MMMs performance. Eight PSf MMMs samples designated as M0 to M7, each with independent formulations, were prepared and investigated for their respective density, porosity, and degree of AA retention. Morphology analysis through scanning electron microscopy elucidated sample M7 (PSf/TiO2/PEG 6000) to have the highest density and porosity among all samples with concomitant highest AA retention at approximately 92.2%. The application of the concentration polarization method further supported this finding by the higher concentration of AA solute present on the surface of the membrane compared to that of AA feed for sample M7. Overall, this study successfully demonstrates the significance of TiO2 and PEG as high MW additives in improving PSf MMM performance.
Collapse
Affiliation(s)
- Kavita Pusphanathan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Hafiza Shukor
- Centre of Excellence for Biomass Utilization, Faculty of Chemical Engineering Technology, University Malaysia Perlis, Arau 02600, Malaysia
| | - Noor Fazliani Shoparwe
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | | | - Nora Jullok
- Centre of Excellence for Biomass Utilization, Faculty of Chemical Engineering Technology, University Malaysia Perlis, Arau 02600, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
7
|
Katare A, Borgohain R, Prasad B, Mandal B. A Strategical Improvement in the Performance of CO 2/N 2 Gas Permeation via Conjugation of L-Tyrosine onto Chitosan Membrane. MEMBRANES 2023; 13:membranes13050487. [PMID: 37233548 DOI: 10.3390/membranes13050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Rubbery polymeric membranes, containing amine carriers, have received much attention in CO2 separation because of their easy fabrication, low cost, and excellent separation performance. The present study focuses on the versatile aspects of covalent conjugation of L-tyrosine (Tyr) onto the high molecular weight chitosan (CS) accomplished by using carbodiimide as a coupling agent for CO2/N2 separation. The fabricated membrane was subjected to FTIR, XRD, TGA, AFM, FESEM, and moisture retention tests to examine the thermal and physicochemical properties. The defect-free dense layer of tyrosine-conjugated-chitosan, with active layer thickness within the range of ~600 nm, was cast and employed for mixed gas (CO2/N2) separation study in the temperature range of 25-115 °C in both dry and swollen conditions and compared to that of a neat CS membrane. An enhancement in the thermal stability and amorphousness was displayed by TGA and XRD spectra, respectively, for the prepared membranes. The fabricated membrane showed reasonably good CO2 permeance of around 103 GPU and CO2/N2 selectivity of 32 by maintaining a sweep/feed moisture flow rate of 0.05/0.03 mL/min, respectively, an operating temperature of 85 °C, and a feed pressure of 32 psi. The composite membrane demonstrated high permeance because of the chemical grafting compared to the bare chitosan. Additionally, the excellent moisture retention capacity of the fabricated membrane accelerates high CO2 uptake by amine carriers, owing to the reversible zwitterion reaction. All the features make this membrane a potential membrane material for CO2 capture.
Collapse
Affiliation(s)
- Aviti Katare
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rajashree Borgohain
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Babul Prasad
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210-1350, USA
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
A new ternary mixed-matrix membrane (PEBAX/PEG/MgO) to enhance CO2/CH4 and CO2/N2 separation efficiency. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-023-1391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
9
|
Ersoz TT, Ersoz M. Nanostructured Material and its Application in Membrane Separation
Technology. MICRO AND NANOSYSTEMS 2023; 15:16-27. [DOI: 10.2174/1876402914666220318121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 09/01/2023]
Abstract
Abstract:
Nanomaterials are classified with their at least one dimension in the range of 1-100 nm, which offers new innovative solutions for membrane development. These are included as nanosized adsorbents, nanomembranes, nanocomposites, photocatalysts, nanotubes, nanoclays, etc. Nanomaterials are promising, exceptional properties for one of the opportunity is to prevent the global water crisis with their extraordinary performance as their usage for membrane development, particularly for water treatment process. Nanomaterial based membranes that include nanoparticles, nanofibers, 2D layered materials, and their nanostructured composites which provide superior permeation characteristics besides their antifouling, antibacterial and photodegradation properties. They are enable for providing the extraordinary properties to be used as ultrafast and ultimately selective membranes for water purification. In this review, recently developed nanomaterial based membranes and their applications for water treatment process were summarized. The main attention is given to the nanomaterial based membrane structure design. The variety in terms of constituent structure and alterations provide nanomaterial based membranes which will be expected to be a perfect separation membrane in the future.
Collapse
Affiliation(s)
- Tugrul Talha Ersoz
- Nanotechnology and Advanced Materials, Institute of Sciences, Selcuk University, Kampus, 42130 Konya, Turkey
| | - Mustafa Ersoz
- Department of Chemistry, Faculty of Science, Selcuk University, Kampus, 42130 Konya, Turkey
| |
Collapse
|
10
|
The experimental/theoretical study over the effect of using the POP-NH2 nanostructures into the membrane selective layer on the CO2 permeability and selectivity. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
12
|
Ni J, Niu H, Lai S, Liu C, Zhou L, Wang L, Huang X. Synthesis of new copolyimides containing pyridine and morpholine groups for gas separation through molecular design and simulation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ni
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin China
| | - Hongchao Niu
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin China
| | | | - Chanjuan Liu
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin China
| | - Li Zhou
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin China
| | - Lichun Wang
- School of Textile and Clothing Nantong University Nantong China
| | - Xiaohua Huang
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin China
| |
Collapse
|
13
|
Wang D, Wang Q, Zheng W, Dai Y, Ruan X, Li X, He G. Regulating Cutoff Size of Metal–Organic Frameworks by In Situ Anchoring of Poly(ethylene glycol) to Boost CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongyue Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Qiuchen Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wenji Zheng
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Yan Dai
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| |
Collapse
|
14
|
Maleh MS, Kiani S, Raisi A. Study on the advantageous effect of nano-clay and polyurethane on structure and CO2 separation performance of polyethersulfone based ternary mixed matrix membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Ahmadi R, Sedighian R, Sanaeepur H, Ebadi Amooghin A, Lak S. Polyphenylsulfone/zinc ion‐exchanged zeolite Y nanofiltration mixed matrix membrane for water desalination. J Appl Polym Sci 2022. [DOI: 10.1002/app.52262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Reyhane Ahmadi
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Reyhane Sedighian
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Shima Lak
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| |
Collapse
|
16
|
Yan H, Liu H, Li Z, Yu D, Wei C, Gao Y, Yao H. Preparation of
Al
2
O
3
/
PDA
/Pebax membrane modified by (
C
3
NH
2
MIm
)(
PF
6
) for improving
CO
2
separation performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hailong Yan
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Hongjing Liu
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Zhuo Li
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Dan Yu
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Cunhua Wei
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang China
| | - Yingjia Gao
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| | - Hui Yao
- School of Petrochemical Engineering Shenyang University of Technology Liaoyang China
| |
Collapse
|
17
|
Lv X, Li X, Huang L, Ding S, Lv Y, Zhang J. Tailoring physical and chemical microenvironments by polyether-amine in blended membranes for efficient CO2 separation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0991-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Clarizia G, Bernardo P. A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether- block-amide) Copolymers as Membranes for CO 2 Separation. Polymers (Basel) 2021; 14:10. [PMID: 35012033 PMCID: PMC8747106 DOI: 10.3390/polym14010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
An inspiring challenge for membrane scientists is to exceed the current materials' performance while keeping the intrinsic processability of the polymers. Nanocomposites, as mixed-matrix membranes, represent a practicable response to this strongly felt need, since they combine the superior properties of inorganic fillers with the easy handling of the polymers. In the global strategy of containing the greenhouse effect by pursuing a model of sustainable growth, separations involving CO2 are some of the most pressing topics due to their implications in flue gas emission and natural gas upgrading. For this purpose, Pebax copolymers are being actively studied by virtue of a macromolecular structure that comprises specific groups that are capable of interacting with CO2, facilitating its transport with respect to other gas species. Interestingly, these copolymers show a high versatility in the incorporation of nanofillers, as proved by the large number of papers describing nanocomposite membranes based on Pebax for the separation of CO2. Since the field is advancing fast, this review will focus on the most recent progress (from the last 5 years), in order to provide the most up-to-date overview in this area. The most recent approaches for developing Pebax-based mixed-matrix membranes will be discussed, evidencing the most promising filler materials and analyzing the key-factors and the main aspects that are relevant in terms of achieving the best effectiveness of these multifaceted membranes for the development of innovative devices.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy;
| |
Collapse
|
19
|
Prasetya N, Himma NF, Sutrisna PD, Wenten IG. Recent advances in dual-filler mixed matrix membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Nurul Faiqotul Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jalan Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering , Universitas Surabaya , Jalan Raya Kalirungkut (Tenggilis) , Surabaya 60293 , Indonesia
| | - I Gede Wenten
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
| |
Collapse
|
20
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Lv X, Huang L, Ding S, Wang J, Li L, Liang C, Li X. Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Improved CO2 separation performance and interfacial affinity of composite membranes by incorporating amino acid-based deep eutectic solvents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Development of Breathable Pebax ®/PEG Films for Optimization of the Shelf-Life of Fresh Agri-Food Products. MEMBRANES 2021; 11:membranes11090692. [PMID: 34564509 PMCID: PMC8470709 DOI: 10.3390/membranes11090692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
In this work, thin transparent breathable films were prepared for food packaging applications. The films were obtained by the solvent casting method from both the binary blends Pebax® MH1657 copolymer/ hydroxyl-terminated polyethylene glycol (PEGOH) and Pebax® MH1657/polyethylene glycol dimethyl ether (PEGDME) as well as the ternary blend Pebax® MH1657/PEGOH/PEGDME with a 50/50 and 37.5/62.5 PEGOH/PEGDME weight ratio for additive amounts comprised between 0 and 50 wt.%. The microstructure of these materials was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) analyses. Regardless of the PEG’s nature, for a PEG amount inferior to 30 wt.%, the Pebax® and PEG phases were totally miscible. For higher amounts, a phase separation was obtained. In the presence of PEG, a decrease in crystallinity was obtained. The effects of the nature and amount of PEG on the thermo-mechanical, hydration, and gas (CO2, O2) transport properties were investigated. A study of the film’s stability in terms of composition over time was also performed. From this work, a wide range of films could be proposed with a stable composition over time and adjustable mechanical and gas transport properties for the prolongation of the shelf-life of highly breathable fresh products.
Collapse
|
24
|
Feng F, Liang CZ, Wu J, Weber M, Maletzko C, Zhang S, Chung TS. Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation. Polymers (Basel) 2021; 13:polym13162745. [PMID: 34451284 PMCID: PMC8401153 DOI: 10.3390/polym13162745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials and their chemical structure for gas separation has been systematically investigated. A PPSU homopolymer and three kinds of 3,3',5,5'-tetramethyl-4,4'-biphenol (TMBP)-based polyphenylsulfone (TMPPSf) copolymers were synthesized by controlling the TMBP content. As the TMPPSf content increases, the inter-molecular chain distance (or d-spacing value) increases. Data from positron annihilation life-time spectroscopy (PALS) indicate the copolymer with a higher TMPPSf content has a larger fractional free volume (FFV). The logarithm of their O2, N2, CO2, and CH4 permeability was found to increase linearly with an increase in TMPPSf content but decrease linearly with increasing 1/FFV. The enhanced permeability results from the increases in both sorption coefficient and gas diffusivity of copolymers. Interestingly, the gas permeability increases while the selectivity stays stable due to the presence of methyl groups in TMPPSf, which not only increases the free volume but also rigidifies the polymer chains. This study may provide a new strategy to break the trade-off law and increase the permeability of polymer materials largely.
Collapse
Affiliation(s)
- Fan Feng
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; (F.F.); (C.-Z.L.); (S.Z.)
| | - Can-Zeng Liang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; (F.F.); (C.-Z.L.); (S.Z.)
| | - Ji Wu
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore;
| | - Martin Weber
- Advanced Materials & Systems Research, BASF SE, 67056 Ludwigshafen, Germany;
| | | | - Sui Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; (F.F.); (C.-Z.L.); (S.Z.)
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; (F.F.); (C.-Z.L.); (S.Z.)
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore;
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
- Correspondence: ; Tel.: +65-6516-6645; Fax: +65-6779-1936
| |
Collapse
|
25
|
Kojabad ME, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: Molecular simulation and experimental study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Casadei R, Giacinti Baschetti M, Rerolle BG, Park HB, Giorgini L. Synthesis and characterization of a benzoyl modified Pebax materials for gas separation applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Wu Y, Zhao D, Chen S, Ren J, Hua K, Li H, Deng M. The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Pardo F, Gutiérrez-Hernández SV, Hermida-Merino C, Araújo JMM, Piñeiro MM, Pereiro AB, Zarca G, Urtiaga A. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:582. [PMID: 33652731 PMCID: PMC7996786 DOI: 10.3390/nano11030582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32= 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.
Collapse
Affiliation(s)
- Fernando Pardo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Sergio V. Gutiérrez-Hernández
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Carolina Hermida-Merino
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - João M. M. Araújo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Manuel M. Piñeiro
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - Ana B. Pereiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Gabriel Zarca
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| |
Collapse
|
29
|
Synthesis, Characterization, and CO 2/N 2 Separation Performance of POEM- g-PAcAm Comb Copolymer Membranes. Polymers (Basel) 2021; 13:polym13020177. [PMID: 33419151 PMCID: PMC7825499 DOI: 10.3390/polym13020177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Alcohol-soluble comb copolymers were synthesized from rubbery poly(oxyethylene methacrylate) (POEM) and glassy polyacrylamide (PAcAm) via economical and facile free-radical polymerization. The synthesis of comb copolymers was confirmed by Fourier-transform infrared and proton nuclear magnetic resonance spectroscopic studies. The bicontinuous microphase-separated morphology and amorphous structure of comb copolymers were confirmed by wide-angle X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. With increasing POEM content in the comb copolymer, both CO2 permeability and CO2/N2 selectivity gradually increased. A mechanically strong free-standing membrane was obtained at a POEM:PAcAm ratio of 70:30 wt%, in which the CO2 permeability and CO2/N2 selectivity reached 261.7 Barrer (1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1) and 44, respectively. These values are greater than those of commercially available Pebax and among the highest separation performances reported previously for alcohol-soluble, all-polymeric membranes without porous additives. The high performances were attributed to an effective CO2-philic pathway for the ethylene oxide group in the rubbery POEM segments and prevention of the N2 permeability by glassy PAcAm chains.
Collapse
|
30
|
Functionalized filler/synthesized 6FDA-Durene high performance mixed matrix membrane for CO2 separation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Pazani F, Aroujalian A. High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03467-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
33
|
Casadei R, Giacinti Baschetti M, Yoo MJ, Park HB, Giorgini L. Pebax ® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. MEMBRANES 2020; 10:membranes10080188. [PMID: 32824239 PMCID: PMC7464092 DOI: 10.3390/membranes10080188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25.
Collapse
Affiliation(s)
- Riccardo Casadei
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-20-9-0408
| | - Myung Jin Yoo
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| |
Collapse
|
34
|
Wang D, Song S, Zhang W, He Z, Wang Y, Zheng Y, Yao D, Pan Y, Yang Z, Meng Z, Li Y. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Ghazali AA, Rahman SA, Samah RA. Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review. GREEN PROCESSING AND SYNTHESIS 2020; 9:219-229. [DOI: 10.1515/gps-2020-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractMixed matrix membrane (MMM), formed by dispersing fillers in polymer matrix, has attracted researchers’ attention due to its outstanding performance compared to polymeric membrane. However, its widespread use is limited due to high cost of the commercial filler which leads to the studies on alternative low-cost fillers. Recent works have focused on utilizing agricultural wastes as potential fillers in fabricating MMM. A membrane with good permeability and selectivity was able to be prepared at low cost. The objective of this review article is to compile all the available information on the potential agricultural wastes as fillers in fabricating MMM for gas separation application. The gas permeation mechanisms through polymeric and MMM as well as the chemical and physical properties of the agricultural waste fillers were also reviewed. Additionally, the economic study and future direction of MMM development especially in gas separation field were discussed.
Collapse
Affiliation(s)
- Alia Aqilah Ghazali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sunarti Abd Rahman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Rozaimi Abu Samah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
37
|
Meshkat S, Kaliaguine S, Rodrigue D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116150] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Shahrezaei K, Abedini R, Lashkarbolooki M, Rahimpour A. A preferential CO2 separation using binary phases membrane consisting of Pebax®1657 and [Omim][PF6] ionic liquid. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0402-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Noroozi Z, Bakhtiari O. Preparation of amino functionalized titanium oxide nanotubes and their incorporation within Pebax/PEG blended matrix for CO2/CH4 separation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Ebadi Amooghin A, Lashani M, Moftakhari Sharifzadeh MM, Sanaeepur H. A novel analytical method for prediction of gas permeation properties in ternary mixed matrix membranes: Considering an adsorption zone around the particles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Zheng Y, Wu Y, Zhang B, Wang Z. Preparation and characterization of CO
2
‐selective Pebax/NaY mixed matrix membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingfei Zheng
- School of Petrochemical EngineeringShenyang University of Technology Liaoyang 111003 China
| | - Yonghong Wu
- School of Petrochemical EngineeringShenyang University of Technology Liaoyang 111003 China
| | - Bing Zhang
- School of Petrochemical EngineeringShenyang University of Technology Liaoyang 111003 China
| | - Zhi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical EngineeringTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
42
|
Aminosilane cross-linked poly ether-block-amide PEBAX 2533: Characterization and CO2 separation properties. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0323-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Li X, Hou J, Guo R, Wang Z, Zhang J. Constructing Unique Cross-Sectional Structured Mixed Matrix Membranes by Incorporating Ultrathin Microporous Nanosheets for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24618-24626. [PMID: 31257849 DOI: 10.1021/acsami.9b07815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrathin microporous nanosheets denoted as Zn-tetra-(4-carboxyphenyl)porphyrin (Zn-TCPP) were synthesized and incorporated into a Pebax MH 1657 (Pebax) polymer to fabricate mixed matrix membranes (MMMs) for efficient CO2 separation. The Zn-TCPP nanosheets with a microporous structure provide high-speed channels for fast CO2 transport and shorten the diffusion pathways, both contributing toward high CO2 permeability. Furthermore, scanning electron microscopy results indicate that the ultrathin Zn-TCPP nanosheets with an ultrahigh aspect ratio (>200) tend to arrange horizontally in the Pebax matrix. The obtained unique cross-sectional structure of the MMMs functions as a selective barrier, allowing repeated discrimination of gases due to the tortuous interlayer of horizontal nanosheets, thus improving the selectivity of the MMMs. In addition, the horizontally arranged microporous nanosheets were found to strongly interact with the membrane matrix and endowed the MMMs with excellent interfacial compatibility, which improved the CO2 permeability and eliminated unselective permeation pathways. Significantly, the optimized CO2 separation performance of the MMMs surpassed the 2008 Robeson's limit.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jinpeng Hou
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Zhongming Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jianshu Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| |
Collapse
|
44
|
|