1
|
Zhang J, Li K, Xie M, Han Q, Feng L, Qu D, Zhang L, Wang K. A new insight into the low membrane fouling tendency of liquid-liquid hollow fiber membrane contactor capturing ammonia from human urine. WATER RESEARCH 2023; 233:119795. [PMID: 36871380 DOI: 10.1016/j.watres.2023.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
To unravel the low membrane fouling tendency and underlying membrane fouling mechanism of liquid-liquid hollow fiber membrane contactor (LL-HFMC) capturing ammonia from human urine, the ammonia flux decline trend, membrane fouling propensity, foulant-membrane thermodynamic interaction energy and microscale force analysis at different feed urine pH were comprehensively investigated. The 21-d continuous experiments showed that the ammonia flux decline trend and membrane fouling propensity significantly strengthened with the decrease of feed urine pH. The calculated foulant-membrane thermodynamic interaction energy decreased with the decreasing feed urine pH and agreed with the ammonia flux decline trend and membrane fouling propensity. The microscale force analysis showed that the absence of hydrodynamic water permeate drag force resulted in the foulant located at long distance from the membrane were difficult to approach the membrane surface, thus considerably alleviating membrane fouling. Additionally, the vital thermodynamic attractive force near the membrane surface increased with the decrease of feed urine pH, which made the membrane fouling further relieved at high pH condition. Therefore, the absence of water permeate drag force and operating at high pH condition minimized the membrane fouling during the LL-HFMC ammonia capture process. The obtained results provide a new insight into the low membrane tendency mechanism of LL-HFMC.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Ke Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| |
Collapse
|
2
|
Jiménez-Robles R, Martínez-Soria V, Izquierdo M. Fouling characterisation in PVDF membrane contactors for dissolved methane recovery from anaerobic effluents: effect of surface organofluorosilanisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29164-29179. [PMID: 36409410 PMCID: PMC9995407 DOI: 10.1007/s11356-022-24019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
Characterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH4 recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions. Both organic and inorganic fouling were observed, and the main foulants were proteins, polysaccharides, and different calcium and phosphate salts. Also, a significant amount of live cells was detected on the fouling cake (especially on the non-modified PVDF). Although the fouling cake composition was quite heterogeneous, a stratification was observed, with the inorganic fouling mainly in the bulk centre of the cake and the organic fouling mainly located in the lower and upper surfaces of the cake. The mPVDF suffered a more severe fouling, likely owing to a stronger hydrophobic-hydrophobic interaction with the foulants. Irreversible fouling remained on both membranes after the extraction, although a higher irreversible fouling was detected in the mPVDF; however, a complete polysaccharide removal was observed. Regarding the operation performance, PVDF showed a lower stability and suffered a severe degradation, resulting in a lower thickness and perforations. Finally, the decrease in the methane recovery performance of both membranes was associated with the fouling depositions.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Centeno Mora E, Souza CLD, Neves TDA, Chernicharo CDL. Characterisation and perspectives of energetic use of dissolved gas recovered from anaerobic effluent with membrane contactor. BIORESOURCE TECHNOLOGY 2023; 367:128223. [PMID: 36368489 DOI: 10.1016/j.biortech.2022.128223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biogas is a source of renewable energy, and its production and use has been validated in anaerobic-based sewage treatment plants (STPs). However, in these systems, a large amount of methane is lost as dissolved methane (D-CH4) in the liquid effluent. In this study, the characteristics and potential energetic uses of the gas recovered during the desorption of D-CH4 from anaerobic effluents with hollow fibre membrane contactors were investigated. A pilot-scale experiment was performed using sewage and two types of membrane contactors. The recovered gas contained considerable amounts of CH4, CO2, H2S, N2, and O2; therefore, a gas upgrade is required prior to its use as a biofuel. The recovery process should be energetically self-sustainable, and induce a considerable decrease in the STP carbon footprint. Recovering D-CH4 with membrane contactors could increase the energetic potential of anaerobic-based STPs up to 50 % and allow for more sustainable systems.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Civil Engineering School, University of Costa Rica, San José, Costa Rica; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | - Thiago de Alencar Neves
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
4
|
Centeno Mora E, de Lemos Chernicharo CA. Simultaneous removal of dissolved sulphide and dissolved methane from anaerobic effluents with hollow fibre membrane contactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90549-90566. [PMID: 35871195 DOI: 10.1007/s11356-022-22074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- School of Civil Engineering, University of Costa Rica (UCR), San José, Costa Rica.
| | | |
Collapse
|
5
|
Visnyei M, Bakonyi P, Bélafi-Bakó K, Nemestóthy N. Integration of gas-liquid membrane contactors into anaerobic digestion as a promising route to reduce uncontrolled greenhouse gas (CH 4/CO 2) emissions. BIORESOURCE TECHNOLOGY 2022; 364:128072. [PMID: 36229009 DOI: 10.1016/j.biortech.2022.128072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.
Collapse
Affiliation(s)
- Merve Visnyei
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Péter Bakonyi
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.
| | - Nándor Nemestóthy
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| |
Collapse
|
6
|
Velasco P, Jegatheesan V, Othman M. Effect of long-term operations on the performance of hollow fiber membrane contactor (HFMC) in recovering dissolved methane from anaerobic effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156601. [PMID: 35714744 DOI: 10.1016/j.scitotenv.2022.156601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Various studies provide information about the high potential of using hollow fiber membrane contactors (HFMCs) for the recovery of dissolved methane from anaerobically treated wastewater effluent and the effects of different operating conditions on their performance. However, majority of those studies evaluated HFMCs at bench scale under favorable conditions, i.e. clean water as feed under short-term operations. This study evaluated the performance of porous HFMC and dense HFMC (in terms of dissolved methane removal efficiency and methane desorption flux) subjected to anaerobic feed during long-term operation of one month. The study will provide better understanding of the performance of HFMCs with conditions expected at large-scale wastewater treatment systems. From the results, the decrease in the performance of HFMCs and the increase in the mass transfer resistance per week under varying feed flux were determined. These relationships were utilized in a numerical model to incorporate the effect of long-term operation to evaluate the performance of upscaled HFMCs. The fit of the model with the experimental data with one month of operation was evaluated and the relative errors were 11.9 % and 15.3 % for porous HFMC and dense HFMC, respectively. Moreover, results showed that dense HFMC will provide better performance than porous HFMC if it were to be operated longer than two weeks before cleaning. The net energy for porous HFMC and dense HFMC were optimized to be 0.07 and 0.02 kWh·d-1, respectively. Although these results are specific to the operations and conditions used for the HFMCs in this study, the methodology established for incorporating the effect of long-term operation will be highly relevant in evaluating the performance of HFMCs in large-scale wastewater treatment applications. This will contribute to the improved recovery of dissolved methane to reduce the greenhouse gas emissions in the atmosphere and to provide additional source of clean and sustainable energy.
Collapse
Affiliation(s)
- Perlie Velasco
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna 4031, Philippines.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia
| | - Maazuza Othman
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
7
|
Centeno Mora E, Chernicharo CADL. Modelling and optimization of transverse flow hollow fibre membrane contactors for the recovery of dissolved methane from anaerobic effluents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Jiménez-Robles R, Moreno-Torralbo BM, Badia JD, Martínez-Soria V, Izquierdo M. Flat PVDF Membrane with Enhanced Hydrophobicity through Alkali Activation and Organofluorosilanisation for Dissolved Methane Recovery. MEMBRANES 2022; 12:membranes12040426. [PMID: 35448396 PMCID: PMC9027404 DOI: 10.3390/membranes12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
A three-step surface modification consisting of activation with NaOH, functionalisation with a silica precursor and organofluorosilane mixture (FSiT), and curing was applied to a poly(vinylidene fluoride) (PVDF) membrane for the recovery of dissolved methane (D-CH4) from aqueous streams. Based on the results of a statistical experimental design, the main variables affecting the water contact angle (WCA) were the NaOH concentration and the FSiT ratio and concentration used. The maximum WCA of the modified PVDF (mPVDFmax) was >140° at a NaOH concentration of 5%, an FSiT ratio of 0.55 and an FSiT concentration of 7.2%. The presence of clusters and a lower surface porosity of mPVDF was detected by FESEM analysis. In long-term stability tests with deionised water at 21 L h−1, the WCA of the mPVDF decreased rapidly to around 105°, similar to that of pristine nmPVDF. In contrast, the WCA of the mPVDF was always higher than that of nmPVDF in long-term operation with an anaerobic effluent at 3.5 L h−1 and showed greater mechanical stability, since water breakthrough was detected only with the nmPVDF membrane. D-CH4 degassing tests showed that the increase in hydrophobicity induced by the modification procedure increased the D-CH4 removal efficiency but seemed to promote fouling.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Beatriz María Moreno-Torralbo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Jose David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
- Correspondence: ; Tel.: +34-963-543-737; Fax: +34-963-544-898
| |
Collapse
|
9
|
Velasco P, Jegatheesan V, Othman M. Modeling of hollow fiber membrane contactors (HFMCs) for the recovery of dissolved methane from anaerobic effluents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Yang H, Li Z, Chen Y, Zhou Z. Role of microparticles in membrane fouling from acidogenesis to methanogenesis phases in an anaerobic baffled reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150663. [PMID: 34597561 DOI: 10.1016/j.scitotenv.2021.150663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microparticles (0.45-10 μm) have been recognized as key foulants in anaerobic membrane bioreactors (AnMBRs). However, their characteristics and fouling behaviors are often understood in single-stage and completely mixed reactors, failing to elucidate the occurrence of microparticles in the multi-stage anaerobic bioprocess. Here, a lab-scale anaerobic baffled reactor with four compartments (C1-C4) was employed to explore the composition and fouling potential of microparticles in different compartments. Photometric analysis showed that the microparticles had an increasing percentage in the total organics of the top supernatant but a decreasing concentration from C1 to C4. Long-term filtration and dead-end filtration tests revealed that the top supernatant in C1 had much higher fouling potential than those in C2-C4. The supernatant microparticles significantly accumulated in the cake layers for each compartment (68-95% of the total organics), particularly the fraction of 1-5 μm, and the fouling rate was positively correlated with the biomass accumulation rate. Based on reactor performance and 16S rRNA gene sequences, a significant bio-phase separation occurred between C1 (acidogenesis) and C2-C4 (methanogenesis). And hydrolytic and fermentative bacteria in the family Veillonellaceae, Streptococcaceae, and Enterobacteriaceae were dominant in the supernatant microparticles, particularly in C1, which had a positive correlation with the fouling rate and biomass accumulation rate. These above results all revealed that the microparticles in the acidogenesis phase had higher fouling potential. In summary, our results suggest that the tactic of pre-hydrolysis and acidification with feedstocks and constructing AnMBRs by coupling with multi-phase anaerobic bioprocesses and membrane units could be beneficial to fouling control.
Collapse
Affiliation(s)
- Houlong Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zicong Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| |
Collapse
|
11
|
Hollow-Fiber Membrane Contactor for Biogas Recovery from Real Anaerobic Membrane Bioreactor Permeate. MEMBRANES 2022; 12:membranes12020112. [PMID: 35207034 PMCID: PMC8877462 DOI: 10.3390/membranes12020112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
This study demonstrates the application of hollow-fiber membrane contactors (HFMCs) for the recovery of biogas from the ultrafiltration permeate of an anaerobic membrane bioreactor (AnMBR) and synthetic effluents of pure and mixed CH4 and CO2. The developed membrane degassing setup was coupled with a pilot-scale AnMBR fed with synthetic domestic effluent working at 25 °C. The membrane degassing unit was able to recover 93% of the total dissolved CH4 and 83% of the dissolved CO2 in the first two hours of permeate recirculation. The initial recovery rates were very high (0.21 mg CH4 L−1 min−1 and 8.43 mg CO2 L−1 min−1) and the membrane was able to achieve a degassing efficiency of 95.7% for CH4 and 76.2% for CO2, at a gas to liquid ratio of 1. A higher mass transfer coefficient of CH4 was found in all experimental and theoretical evaluations compared to CO2. This could also be confirmed from the higher transmembrane mass transport resistance to CO2 rather than CH4 found in this work. A strong dependency of the selective gas transport on the gas and liquid side hydrodynamics was observed. An increase in the liquid flow rate and gas flow rate favored CH4 transport and CO2 transport, respectively, over each component. The results confirmed the effectiveness of the collective AnMBR and membrane degassing setup for biogas recovery. Still, additional work is required to improve the membrane contactor’s performance for biogas recovery during long-term operation.
Collapse
|
12
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
13
|
Li X, Lee HS, Wang Z, Lee J. State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. WATER RESEARCH 2021; 200:117269. [PMID: 34091220 DOI: 10.1016/j.watres.2021.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors and vacuum degassers for methane recovery, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
Collapse
Affiliation(s)
- Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|
14
|
Yue C, Dong H, Chen Y, Shang B, Wang Y, Wang S, Zhu Z. Direct Purification of Digestate Using Ultrafiltration Membranes: Influence of Pore Size on Filtration Behavior and Fouling Characteristics. MEMBRANES 2021; 11:membranes11030179. [PMID: 33802519 PMCID: PMC7999823 DOI: 10.3390/membranes11030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Ultrafiltration (UF) can effectively remove large particles, suspended solids, and colloidal substances from anaerobic digestate. However, membrane fouling is a technical challenge in the purification of the digestate by UF. In this study, polyethersulfone (PES) membranes with four pore sizes (50.0, 20.0, 10.0 and 5.0 kDa) were employed to filter anaerobic digestate from swine manure. The effects of temperature, transmembrane pressure (TMP), and cross-flow velocity (CFV) on flux were investigated. The purification effects and fouling characteristics of the four membranes were analyzed. The results revealed that the increase of temperature and CFV can effectively promote UF separation efficiency, but as the TMP exceeded 3.0 bar, the flux increase rates of the four membranes were almost zero. The larger membrane pore size caused the faster flux increase with the increase in pressure. During the batch experiment, the 20.0 kDa membrane showed the lowest flux maintenance ability, while the 5.0 kDa showed the highest ability due to the smaller pore size. All four membranes can effectively remove tetracyclines residues. Elements C, O, and S were the major membrane foulant elements. The dominant bacteria orders of membrane fouling were Pseudomonadales, Xanthomonadales and Burkholderiales. Compared with tap water and citric acid, the membrane cleaning by NaOH and NaClO showed higher flux recovery rates. The 50.0 kDa membrane achieved the best cleaning effects under all cleaning methods.
Collapse
Affiliation(s)
- Caide Yue
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: ; Tel.: +86-010-82109979
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Y.); (Y.C.); (B.S.); (Y.W.); (S.W.); (Z.Z.)
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
15
|
Dutta A, Li X, Lee J. Dissolved methane recovery from anaerobically treated wastewaters using solvent-based membrane contactor: An experimental and modelling study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
17
|
Jiménez-Robles R, Gabaldón C, Martínez-Soria V, Izquierdo M. Simultaneous application of vacuum and sweep gas in a polypropylene membrane contactor for the recovery of dissolved methane from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Wetting- and fouling-resistant hollow fiber membranes for dissolved methane recovery from anaerobic wastewater treatment effluents. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Gao T, Zhang H, Xu X, Yang F. Dissolved methane rejection by forward osmosis membrane to achieve in-situ energy recovery from anaerobic effluent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Centeno-Mora E, Fonseca PR, Andreão WL, Brandt EMF, de Souza CL, de Lemos Chernicharo C. Mitigation of diffuse CH 4 and H 2S emissions from the liquid phase of UASB-based sewage treatment plants: challenges, techniques, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35979-35992. [PMID: 32277414 DOI: 10.1007/s11356-020-08644-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Upflow anaerobic sludge blanket (UASB) reactors are considered to be a sustainable and well-established technology for sewage treatment in warm climate countries. However, gases dissolved in the effluent of these reactors, CH4 and H2S in some instances, are a major drawback. These dissolved gases can be emitted into the atmosphere downstream of the anaerobic reactors, resulting in odour nuisance and, in the case of H2S, corrosion, while in the case of CH4, increasing greenhouse gas emissions with a significant loss of potentially recoverable energy. In this sense, this study aims to provide a critical review of the recent efforts to control CH4 and H2S dissolved in UASB reactor effluents, with a focus on the different available techniques. Different desorption techniques have been tested for the removal/recovery of dissolved CH4 and H2S: diffused aeration, simplified desorption chamber, packed desorption chamber, closed downflow hanging sponge reactor, membrane contactor, and vacuum desorption chamber. Other recent publications addressing the oxidation of these compounds in biological posttreatments with simultaneous nitrification/denitrification of ammonia were also discussed. Additionally, the rationale of CH4 recovery was determined by energy balance and carbon footprint approaches, and the H2S removal was examined by modelling its emission and atmospheric dispersion.
Collapse
Affiliation(s)
- Erick Centeno-Mora
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- School of Civil Engineering, University of Costa Rica (UCR), San José, Costa Rica.
| | - Paula Rafaela Fonseca
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Willian Lemker Andreão
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emanuel Manfred Freire Brandt
- Department of Sanitary and Environmental Engineering, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carlos de Lemos Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
21
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
22
|
Crone BC, Sorial GA, Pressman JG, Ryu H, Keely SP, Brinkman N, Bennett-Stamper C, Garland JL. Design and evaluation of degassed anaerobic membrane biofilm reactors for improved methane recovery. BIORESOURCE TECHNOLOGY REPORTS 2020; 10:100407. [PMID: 33015594 PMCID: PMC7529100 DOI: 10.1016/j.biteb.2020.100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anaerobic treatment of domestic wastewater (DWW) produces dissolved methane that needs to be recovered for use as an energy product. Membrane-based recovery systems have been reported in the literature but are often limited by fouling. The objective of this study was to develop a methane producing biofilm on the shell side surface a membrane to allow for immediate recovery of methane as it was produced, negating mass transfer resistance caused by fouling. Between 89 and 96% of total methane produced was recovered via in-situ degassing without the need for fouling control or cleaning throughout 72 weeks of operation. High methane recovery efficiencies led to predictions of net positive energy yield in one reactor and a 32-61% reduction in energy demand in the others compared to the control. This research demonstrates the feasibility and usefulness of combining attached growth anaerobic wastewater treatment processes with hollow fiber membrane methane recovery systems for improved operation.
Collapse
Affiliation(s)
- Brian C Crone
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - George A Sorial
- Department of Chemical and Environmental Engineering, University of Cincinnati, United States of America
| | - Jonathan G Pressman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Nichole Brinkman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Christina Bennett-Stamper
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| | - Jay L Garland
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States of America
| |
Collapse
|
23
|
Li X, Dutta A, Saha S, Lee HS, Lee J. Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor. WATER RESEARCH 2020; 175:115693. [PMID: 32203817 DOI: 10.1016/j.watres.2020.115693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The difficulty of dissolved methane recovery remains a major hurdle for mainstream anaerobic wastewater treatment processes. We recently proposed solvent-based membrane contactor (SMC) for high (>90%) methane recovery over a wide temperature range and net-energy production. Here, we investigate the methane recovery efficacy of the SMC process by using an AnMBR effluent from treating food waste leachate. We observed almost identical methane transfer kinetics to the process employing foulant-free methane-saturated feed solutions, with >92% methane recoveries, showing that organic foulants have insignificant impacts on the methane transport in the SMC. We then performed two different membrane contactor experiments: direct-contact membrane-distillation (DCMD, with transmembrane water vapor flow) and SMC (no water vapor flow). From the negligible fouling observed in the SMC experiment, opposite to the DCMD, we elucidate that the absence of water vapor flow renders the SMC process intrinsically robust to membrane fouling. With the low fouling propensity of the SMC process under highly fouling environments, our study highlights the feasibility of SMC processes to enhance the energy production in mainstream anaerobic wastewater treatment processes.
Collapse
Affiliation(s)
- Xuesong Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Abhishek Dutta
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Swakshar Saha
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
24
|
Mainardis M, Buttazzoni M, Goi D. Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering (Basel) 2020; 7:E43. [PMID: 32397582 PMCID: PMC7355771 DOI: 10.3390/bioengineering7020043] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Up-flow anaerobic sludge blanket (UASB) reactor belongs to high-rate systems, able to perform anaerobic reaction at reduced hydraulic retention time, if compared to traditional digesters. In this review, the most recent advances in UASB reactor applications are critically summarized and discussed, with outline on the most critical aspects for further possible future developments. Beside traditional anaerobic treatment of soluble and biodegradable substrates, research is actually focusing on the treatment of refractory and slowly degradable matrices, thanks to an improved understanding of microbial community composition and reactor hydrodynamics, together with utilization of powerful modeling tools. Innovative approaches include the use of UASB reactor for nitrogen removal, as well as for hydrogen and volatile fatty acid production. Co-digestion of complementary substrates available in the same territory is being extensively studied to increase biogas yield and provide smooth continuous operations in a circular economy perspective. Particular importance is being given to decentralized treatment, able to provide electricity and heat to local users with possible integration with other renewable energies. Proper pre-treatment application increases biogas yield, while a successive post-treatment is needed to meet required effluent standards, also from a toxicological perspective. An increased full-scale application of UASB technology is desirable to achieve circular economy and sustainability scopes, with efficient biogas exploitation, fulfilling renewable energy targets and green-house gases emission reduction, in particular in tropical countries, where limited reactor heating is required.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 108, 33100 Udine, Italy; (M.B.); (D.G.)
| | | | | |
Collapse
|
25
|
Extraction of dissolved methane from aqueous solutions by membranes: Modelling and parametric studies. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Chuah CY, Kim K, Lee J, Koh DY, Bae TH. CO2 Absorption Using Membrane Contactors: Recent Progress and Future Perspective. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05439] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Kyunam Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Junghyun Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Xu Y, Goh K, Wang R, Bae TH. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115791] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|