1
|
Ma L, Hou M, Wang Y, Tong W, Zheng J. Organosiloxane membranes for heavy aromatic oil fractionation. Chem Commun (Camb) 2024; 60:8083-8086. [PMID: 38990518 DOI: 10.1039/d4cc02669a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The industrial separation of hydrocarbons relies on distillation. Organic solvent nanofiltration can provide an energy-efficient alternative. We prepared high performance organosiloxane membranes for fractionation of heavy aromatics. They achieved a high permeance up to 0.13 L m-2 h-1 bar-1, with a rejection rate of 88.7% for hydrocarbons with five aromatic rings.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Min Hou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Yuemei Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Weiyi Tong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| | - Junlin Zheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co.,Ltd, Shanghai 201208, China.
| |
Collapse
|
2
|
Li H, Li X, Ouyang G, Huang L, Li L, Li W, Huang W, Li D. Ultrathin organic solvent nanofiltration membrane with polydopamine-HKUST-1 interlayer for organic solvent separation. J Environ Sci (China) 2024; 141:182-193. [PMID: 38408819 DOI: 10.1016/j.jes.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 02/28/2024]
Abstract
Polydopamine (PDA) and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine (HDA)-crosslinked polyetherimide (PEI) ultrafiltration membrane as the interlayer, and high-throughput organic solvent nanofiltration membrane (OSN) was prepared by interfacial polymerization and solvent activation reaction. The polyamide (PA) layer surface roughness from 28.4 nm in PA/PEI to 78.3 nm in PA/PDA-HKUST-10.6/PEI membrane, reduced the thickness of the separation layer from 79 to 14 nm, and significantly improved the hydrophilic, thermal and mechanical properties. The flux of the PA/PDA-HKUST-10.6/PEI membrane in a 0.1 g/L Congo Red (CR) ethanol solution at 0.6 MPa test pressure reached 21.8 L/(m2·hr) and the rejection of CR was 92.8%. Solvent adsorption test, N, N-dimethylformamide (DMF) immersion experiment, and long-term operation test in ethanol showed that the membranes had high solvent tolerance. The solvent flux test demonstrated that, under the test pressure of 0.6 MPa, the flux of different solvents ranked as follows: methanol (56.9 L/(m2·hr)) > DMF (39.6 L/(m2·hr)) > ethanol (31.2 L/(m2·hr)) > IPA (4.5 L/(m2·hr)) > N-hexane (1.9 L/(m2·hr)). The ability of the membranes to retain dyes in IPA/water dyes solution was also evaluated. The flux of the membrane was 30.4 L/(m2·hr) and the rejection of CR was 91.6% when the IPA concentration reached 50%. This OSN membrane-making strategy is economical, environment-friendly and efficient, and has a great application prospect in organic solvent separation systems.
Collapse
Affiliation(s)
- Haike Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xindong Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guozai Ouyang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lijinhong Huang
- School of Architecture and Design, Jiangxi University of Science and Technology, Ganzhou 341000, China; WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6845, Australia
| | - Lang Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wenhao Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wanfu Huang
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Duokun Li
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
3
|
Zheng P, Jiang L, Zhang Q, Liu Q, Zhu A. Fabrication of polyamide nanofiltration membrane with tannic acid/poly(sodium 4-styrenesulfonate) network-like interlayer for enhanced desalination performance. J Colloid Interface Sci 2024; 662:707-718. [PMID: 38368828 DOI: 10.1016/j.jcis.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
The traditional polyamide composite nanofiltration membranes have high selectivity and low water permeance, so it is necessary to find strategies to raise the permeance. Herein, a novel polyamide nanofiltration membranes with high permeance were fabricated by coating a loose hydrophilic network-like interlayer, where tannic acid (TA) with pentapophenol arm structure binds to poly(4-styrenesulfonate) (PSS) polymer through hydrogen and ionic interactions. The effects of the network-like TA/PSS interlayer on surface morphology, surface hydrophobicity, and the interfacial polymerization mechanism were investigated. The outcomes demonstrated that the TA/PSS interlayer can offer a favorable environment for interfacial polymerization, enhance the hydrophilicity of the substrate membrane, and delay the release of piperazine (PIP). The optimized TFC-2 presents pure water flux of 22.7 ± 2.8 L m-2 h-1 bar-1, Na2SO4 rejection of 97.1 ± 0.5 %, and PA layer thickness of about 38.9 ± 2.5 nm. This provides new strategies for seeking to prepare simple interlayers to obtain high-performance nanofiltration membranes.
Collapse
Affiliation(s)
- Pingyun Zheng
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lina Jiang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
4
|
Miao Q, Wang Y, Chen D, Cao N, Pang J. Development of novel ionic covalent organic frameworks composite nanofiltration membranes for dye/salt separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133049. [PMID: 38043428 DOI: 10.1016/j.jhazmat.2023.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Covalent organic frameworks (COF) have desirable properties such as high porosity, low mass density, excellent heat resistance and regulatable structure, making them an ideal candidate for membrane material. Traditional methods for preparing covalent organic framework composite membranes, such as interfacial polymerization, vacuum filtration, and covalent organic framework abrasive coating. Stand-alone COF membranes produced by the above methods usually suffer from problems such as poor mechanical properties. Here, we fabricated high performance COF composite membranes by modified casting-precipitation-evaporation method. The designed composite membranes consisted of the ionic COF (iCOF) selective layer and the support layer are applied in dye/salt separation. The high permeability (∼ 68 L h-1 m-2 bar-1), high dyes rejection (97% for Rose Bengal), and low salts rejection (∼ 2.86% for NaCl) are achieved by the iCOF functional layer. The as-prepared composite membranes have a hydrophilic and highly smooth surface, making them have good anti-fouling performance. In addition, the rigid pore structure of iCOF selective layer endows the composite membranes with excellent stability, the composite membranes maintain original structure under high pressure (6 bar) and ultrasonic treatment (16 kHz for 60 min). This work may open up a novel path to fabricate iCOF composite membranes, which exhibit great potential in dye/salt separation.
Collapse
Affiliation(s)
- Qiuyu Miao
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ying Wang
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Dongru Chen
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ning Cao
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Jinhui Pang
- Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
5
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
6
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
7
|
Chu R, Hao S, Shi W, Hu Y. Quantitatively Unveiling the Structure-Activity Relationship of Polyamide Nanofiltration Membranes with Complex Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13503-13511. [PMID: 37705201 DOI: 10.1021/acs.langmuir.3c01440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Nanofiltration polyamide (NF PA) membranes are widely used in seawater desalination and wastewater treatment due to their excellent permeability. The structure-activity relationship of PA membranes has attracted extensive attention in decades. In this work, NF PA membranes with planar structure, nodular structure, and peak-valley structure were constructed, and the pure water permeance was calculated by nonequilibrium molecular dynamics simulation to quantitatively investigate the structure-activity relationship between the microstructure and water permeance. Results showed that the peak-valley structure had the highest effective utilization rate of the membrane surface, which had the highest number of water molecules that passed through membranes per unit cross-sectional area (7.09). Furthermore, with the increase of the specific surface area ratio, the water permeance of the NF PA with peak-valley increased at a rate about 2.5 times than that of the planar NF PA. Therefore, some molecular scale insights were supplied about the structure-activity relationship of NF PA membranes, which is helpful for the fabrication of high-performance NF PA membranes.
Collapse
Affiliation(s)
- Rongrong Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuang Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
8
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
9
|
Liu M, Zhang L, Geng N. Effect of Interlayer Construction on TFC Nanofiltration Membrane Performance: A Review from Materials Perspective. MEMBRANES 2023; 13:membranes13050497. [PMID: 37233558 DOI: 10.3390/membranes13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.
Collapse
Affiliation(s)
- Mingxiang Liu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Nannan Geng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
10
|
Nambikkattu J, Thomas AA, Kaleekkal NJ, Arumugham T, Hasan SW, Vigneswaran S. ZnO/PDA/Mesoporous Cellular Foam Functionalized Thin-Film Nanocomposite Membrane towards Enhanced Nanofiltration Performance. MEMBRANES 2023; 13:membranes13050486. [PMID: 37233547 DOI: 10.3390/membranes13050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.
Collapse
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Anoopa Ann Thomas
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Saravanamuthu Vigneswaran
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Sciences &, Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, 1432 As, Norway
| |
Collapse
|
11
|
Chen L, Zhou C, Yang T, Zhou W, Chen Y, Wang L, Lu C, Dong L. Imparting Outstanding Dispersibility to Nanoscaled 2D COFs for Constructing Organic Solvent Forward Osmosis Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300456. [PMID: 36932874 DOI: 10.1002/smll.202300456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the context of thin-film nanocomposite membranes with interlayer (TFNi), nanoparticles are deposited uniformly onto the support prior to the formation of the polyamide (PA) layer. The successful implementation of this approach relies on the ability of nanoparticles to meet strict requirements regarding their sizes, dispersibility, and compatibility. Nevertheless, the synthesis of covalent organic frameworks (COFs) that are well-dispersed, uniformly morphological, and exhibit improved affinity to the PA network, while preventing agglomeration, remains a significant challenge. In this work, a simple and efficient method is presented for the synthesis of well-dispersed, uniformly morphological, and amine-functionalized 2D imine-linked COFs regardless of the ligand composition, group type, or framework pore size, by utilizing a polyethyleneimine (PEI) shielded covalent self-assembly strategy. Subsequently, the as-prepared COFs are incorporated into TFNi for the recycling of pharmaceutical synthetic organic solvents. After optimization, the membrane exhibits a high rejection rate and a favorable solvent flux, making it a reliable method for efficient organic recovery and the concentration of active pharmaceutical ingredient (API) from the mother liquor through an organic solvent forward osmosis (OSFO) process. Notably, this study represents the first investigation of the impact of COF nanoparticles in TFNi on OSFO performance.
Collapse
Affiliation(s)
- Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tianyi Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Linghao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
12
|
Li C, Zhen W. Preparation, performance and structure-properties relationship of polyphenylene sulfide/ATP-PS/co-deposition of tannic acid nanocomposites membrane. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Zhang X, Fan Z, Xu W, Meng Q, Shen C, Zhang G, Gao C. Thin film composite nanofiltration membrane with nanocluster structure mediated by graphene oxide/metal-polyphenol nanonetwork scaffold interlayer. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat Commun 2023; 14:1112. [PMID: 36849434 PMCID: PMC9971196 DOI: 10.1038/s41467-023-36848-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Fast permeation and effective solute-solute separation provide the opportunities for sustainable water treatment, but they are hindered by ineffective membranes. We present here the construction of a nanofiltration membrane with fast permeation, high rejection, and precise Cl-/SO42- separation by spatial and temporal control of interfacial polymerization via graphitic carbon nitride (g-C3N4). The g-C3N4 nanosheet binds preferentially with piperazine and tiles the water-hexane interface as revealed by molecular dynamics studies, thus lowering the diffusion rate of PIP by one order of magnitude and restricting its diffusion pathways towards the hexane phase. As a result, membranes with nanoscale ordered hollow structure are created. Transport mechanism across the structure is clarified using computational fluid dynamics simulation. Increased surface area, lower thickness, and a hollow ordered structure are identified as the key contributors to the water permeance of 105 L m2·h-1·bar-1 with a Na2SO4 rejection of 99.4% and a Cl-/SO42- selectivity of 130, which is superior to state-of-the-art NF membranes. Our approach for tuning the membrane microstructure enables the development of ultra-permeability and excellent selectivity for ion-ion separation, water purification, desalination, and organics removal.
Collapse
|
15
|
Huang W, Liu Q, Zhang X, Chen Z, Zheng B, Wu D. Amphiphilically Modified Porous Polymeric Nanosandwich-Based Membranes for Rapid and Efficient Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205714. [PMID: 36509641 DOI: 10.1002/smll.202205714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Low removal efficiency, long treatment time, and high energy consumption hinder advanced and eco-friendly use of traditional adsorbents and separation membranes. Here, a class of amphiphilically modified 2D porous polymeric nanosandwich is designed and is subsequently assembled into adsorptive membranes. The 2D nanosandwich is gifted with high porosity and excellent pore accessibility, demonstrating rapid adsorption kinetics. The as-assembled membrane integrates unimpeded interlayer channels and well-developed, amphiphilic, and highly accessible intralayer nanopores, leading to ultrafast water permeation (1.2 × 104 L m-2 h-1 bar-1 ), high removal efficiency, and easy regeneration. The family of the membrane can be expanded by changing amphiphilic functional groups, further providing treatment of a wide-spectrum of pollutants, including aromatic compounds, pesticide, and pharmaceuticals. It is believed that the novel amphiphilically modified adsorptive membrane offers a distinct water treatment strategy with ultrahigh water permeation and efficient pollutants removal performances, and provides a multiple-in-one solution to the detection and elimination of pollutants.
Collapse
Affiliation(s)
- Wen Huang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qiantong Liu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xingcai Zhang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zirun Chen
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|
16
|
Wang XL, Wang Q, Xue YX, Zhang B, Han SR, Zhang H, Zhao KY, Wang W, Wei JF. Preparation of Composite Nanofiltration Membrane with Interlayer for Pharmaceutical Rejection. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
17
|
Sulfonated polyaniline interlayer with controllable doping conditions for high-performance nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
18
|
Wang X, Gao N, Wang L, Liao Y. Polyelectrolyte interlayer assisted interfacial polymerization fabrication of a dual-charged composite nanofiltration membrane on ceramic substrate with high performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
19
|
Li Y, Zhao G, Pan G, Zhang Y, Guo Y, Yu H, Du X, Zhao M, Tang G, Liu Y. Polyvinyl alcohol/attapulgite interlayer modulated interfacial polymerization on a highly porous PAN support for efficient desalination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
20
|
Highly anions-selective polyamide nanofiltration membrane fabricated by rod-coating assisted interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Hong Y, Hua D, Pan J, Cheng X, Xu K, Huo Z, Zhan G. Fabrication of Polyamide Membranes by Interlayer-assisted Interfacial Polymerization Method With Enhanced Organic Solvent Nanofiltration Performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Zhao S, Di N, Lei R, Wang J, Wang Z. Triphenylamine-based COFs composite membrane fabricated through oligomer-triggered interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Asymmetric polyamide nanofilm with coordinated charge and nanopore, tuned by azlactone-based monomer to facilitate ion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interlayered interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Peng Y, Yang J, Qi H, Li H, Li S, Su B, Han L. 2D COFs interlayer manipulated interfacial polymerization for fabricating high performance reverse osmosis membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zhang Y, Xu P, Chen X, Qiu M, Fan Y. Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Li H, Huang L, Li X, Huang W, Li L, Li W, Cai M, Zhong Z. Calcium-alginate/HKUST-1 interlayer-assisted interfacial polymerization reaction enhances performance of solvent-resistant nanofiltration membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Zhang H, Chen Y, Tang S, Sun H, Li P, Hou Y, Niu QJ. Regulation of interfacial polymerization process based on reversible enamine reaction for high performance nanofiltration membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
31
|
Cao S, Zhang A, Tian M, Jiang Y, Dong G, Zhang Y, Zhu J. Fabrication of amino-alcohol based polyesteramide thin film composite membranes for nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Wang Z, Wang X, Zheng T, Mo B, Xu H, Huang Y, Wang J, Gao C, Gao X. High Flux Nanofiltration Membranes with Double-Walled Carbon Nanotube (DWCNT) as the Interlayer. MEMBRANES 2022; 12:1011. [PMID: 36295770 PMCID: PMC9609115 DOI: 10.3390/membranes12101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes with a high permeability and rejection are of great interest in desalination, separation and purification. However, how to improve the permeation and separation performance still poses a great challenge in the preparation of NF membranes. Herein, the novel composite NF membrane was prepared through the interfacial polymerization of M-phenylenediamine (MPD) and trimesoyl chloride (TMC) on a double-walled carbon nanotube (DWCNT) interlayer supported by PES substrate. The DWCNT interlayer had a great impact on the polyamide layer formation. With the increase of the DWCNT dosage, the XPS results revealed an increase in the number of carboxyl groups, which decreased the crosslinking degree of the polyamide layer. Additionally, the AFM results showed that the surface roughness and specific surface area increased gradually. The water flux of the prepared membrane increased from 25.4 L/(m2·h) and 26.6 L/(m2·h) to 109 L/(m2·h) and 104.3 L/(m2·h) with 2000 ppm Na2SO4 and NaCl solution, respectively, under 0.5 MPa. Meanwhile, the rejection of Na2SO4 and NaCl decreased from 99.88% and 99.38% to 96.48% and 60.47%. The proposed method provides a novel insight into the rational design of the multifunctional interlayer, which shows great potential in the preparation of high-performance membranes.
Collapse
Affiliation(s)
- Zhen Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Tao Zheng
- SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266100, China
| | - Bing Mo
- SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266100, China
| | - Huacheng Xu
- Quanzhou Lanshen Environmental Protection Research Institute Co., Ltd., Quanzhou 362000, China
| | - Yijun Huang
- Quanzhou Lanshen Environmental Protection Research Institute Co., Ltd., Quanzhou 362000, China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Congjie Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xueli Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
33
|
Plisko T, Burts K, Zolotarev A, Bildyukevich A, Dmitrenko M, Kuzminova A, Ermakov S, Penkova A. Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation. MEMBRANES 2022; 12:967. [PMID: 36295726 PMCID: PMC9611024 DOI: 10.3390/membranes12100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).
Collapse
Affiliation(s)
- Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
34
|
Porous organic cage supramolecular membrane showing superior monovalent/divalent salts separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Li H, Li X, Ouyang G, Li L, Zhong Z, Cai M, Li W, Huang W. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
37
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
38
|
Song Q, Lin Y, Ueda T, Shen Q, Lee KR, Yoshioka T, Matsuyama H. A zwitterionic copolymer-interlayered ultrathin nanofilm with ridge-shaped structure for ultrapermeable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Pu L, Xia Q, Wang Y, Bu Y, Zhang Q, Gao G. Tailored nanofiltration membranes with enhanced permeability and antifouling performance towards leachate treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Yadav D, Karki S, Ingole PG. Nanofiltration (NF) Membrane Processing in the Food Industry. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Chi M, Zheng P, Wei M, Zhu A, Zhong L, Zhang Q, Liu Q. Polyamide composite nanofiltration membrane modified by nanoporous TiO2 interlayer for enhanced water permeability. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
In-situ fabricated covalent organic frameworks-polyamide hybrid membrane for highly efficient molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Progress for Co-Incorporation of Polydopamine and Nanoparticles for Improving Membranes Performance. MEMBRANES 2022; 12:membranes12070675. [PMID: 35877880 PMCID: PMC9317275 DOI: 10.3390/membranes12070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Incorporating polydopamine has become a viable method for membrane modification due to its universality and versatility. Fillers in their different categories have been confirmed as effective elements to improve the properties of membranes such as hydrophilicity, permeability, mechanical strength, and fouling resistance. Thus, this paper mainly highlights the recent studies that have been carried out using polydopamine and nanomaterial fillers simultaneously in modifying the performance of different membranes such as ultrafiltration, microfiltration, nanofiltration, reverse osmosis, and forward osmosis membranes according to the various modification methods. Graphene oxide nanoparticles have recently attracted a lot of attention among different nanoparticles used with polydopamine, due to their impressive characteristics impacts on enhancing membrane hydrophilicity, mechanical strength, and fouling resistance. Thus, the incorporation techniques of graphene oxide nanoparticles and polydopamine for enhancing membranes have been highlighted in this work. Moreover, different studies carried out on using polydopamine as a nanofiller for optimizing membrane performance have been discussed. Finally, perspectives, and possible paths of further research on mussel-inspired polydopamine and nanoparticles co-incorporation are stated according to the progress made in this field. It is anticipated that this review would provide benefits for the scientific community in designing a new generation of polymeric membranes for the treatment of different feed water and wastewater based on adhesive mussel inspired polydopamine polymer and nanomaterials combinations.
Collapse
|
46
|
Cao S, Deshmukh A, Wang L, Han Q, Shu Y, Ng HY, Wang Z, Lienhard JH. Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS 2 Nanosheets via Precise Thickness Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8807-8818. [PMID: 35583029 DOI: 10.1021/acs.est.2c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for highly permeable and selective thin-film composite (TFC) nanofiltration membranes, which are essential for seawater and brackish water softening and resource recovery, is growing rapidly. However, improving and tuning membrane permeability and selectivity simultaneously remain highly challenging owing to the lack of thickness control in polyamide films. In this study, we fabricated a high-performance interlayered TFC membrane through classical interfacial polymerization on a MoS2-coated polyethersulfone substrate. Due to the enhanced confinement effect on the interface degassing and the improved adsorption of the amine monomer by the MoS2 interlayer, the MoS2-interlayered TFC membrane exhibited enhanced roughness and crosslinking. Compared to the control TFC membrane, MoS2-interlayered TFC membranes have a thinner polyamide layer, with thickness ranging from 60 to 85 nm, which can be tuned by altering the MoS2 interlayer thickness. A multilayer permeation model was developed to delineate and analyze the transport resistance and permeability of the MoS2 interlayer and polyamide film through the regression of experimental data. The optimized MoS2-interlayered TFC membrane (0.3-inter) had a 96.8% Na2SO4 rejection combined with an excellent permeability of 15.9 L m-2 h-1 bar-1 (LMH/bar), approximately 2.4 times that of the control membrane (6.6 LMH/bar). This research provides a feasible strategy for the rational design of tunable, high-performance NF membranes for environmental applications.
Collapse
Affiliation(s)
- Siyu Cao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Akshay Deshmukh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, Untied States
| | - Li Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - How Yong Ng
- Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, Untied States
| |
Collapse
|
47
|
Deng M, Pei T, Ge P, Zhu A, Zhang Q, Liu Q. Ultrathin sulfonated mesoporous interlayer facilitates to prepare highly-permeable polyamide nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Al-Nahari A, Li S, Su B. Negatively charged nanofiltration membrane with high performance via the synergetic effect of benzidinedisulfonic acid and trimethylamine during interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Zhang Y, Su K, Zhang M, Li Z. Polydopamine-modified HKUST-1 as nanofiller of PPS@PA membrane with well improved desalination performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Xu D, Luo X, Jin P, Zhu J, Zhang X, Zheng J, Yang L, Zhu X, Liang H, Van der Bruggen B. A novel ceramic-based thin-film composite nanofiltration membrane with enhanced performance and regeneration potential. WATER RESEARCH 2022; 215:118264. [PMID: 35303558 DOI: 10.1016/j.watres.2022.118264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The rational design of a ceramic-based nanofiltration membrane remains a significant challenge due to its performance and fabrication cost. Herein, we report a high-performance ceramic-based thin-film composite (TFC) membrane fabricated via a typical interfacial polymerization on an interwoven net substrate assembled by titanium dioxide (TiO2) nanowires. The chemical properties and morphologies were systematically investigated for ceramic substrates and their corresponding TFC membranes. Due to the significantly improved hydrophilicity of the TiO2 framework, more reactive amine monomers were uniformly adsorbed on the modified surface of the ceramic substrate, yielding an ultrathin polyamide layer with less resistance. In addition, the smooth surface and decreased pore size of the TiO2 framework contributed to forming a defect-free polyamide layer. As a result, the obtained ceramic-based TFC membrane evinced high permeance of 26.4 L m-2 h-1 bar-1 and excellent salt rejection efficiency, leading to simultaneous improvements compared with the control TFC membrane without the TiO2 framework. Notably, the potential regeneration ability of the ceramic-based TFC membrane could be achieved via facile low-temperature calcination and re-polymerization process due to the varied thermostability between the polyamide layer and the robust ceramic substrate. The operation of regeneration helped to prolong the lifetime and decrease the cost for the ceramic-based TFC membrane. This research provides a feasible protocol to fabricate sustainable ceramic-based nanofiltration membranes with enhanced performance for water treatment.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Junyong Zhu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|