1
|
Yu Z, Zhang H, Yang F, Peng Y, Guo Z, Liu W. Two-dimensional multilayer materials-enabled precise molecular sieving membranes for water purification. Adv Colloid Interface Sci 2025; 343:103545. [PMID: 40359869 DOI: 10.1016/j.cis.2025.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/20/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
The growth and urbanization of global population have intensified water resource challenges as well as increasing contamination. Membrane separation technology has effectively tackled issues such as drinking water purification, wastewater treatment, and seawater desalination. Recently, two-dimensional (2D) materials have emerged as promising candidates for enhancing the efficiency of water purification. These materials enable rapid advancements in traditional membrane technologies by leveraging their unique nanoscale properties and ease of surface modification, facilitating the creation of multifunctional membranes with superior performance. Extensive research has focused on 2D materials like graphene and similar substances for developing nanoporous and layered membranes. This review highlights significant progress in optimizing transport pathways by addressing defects, pores, and edges in nanosheets, as well as interactions within layers. The impact of intrinsic structural features on membrane functionality was examined. Specifically, this paper discussed the precise control of molecular sieving by various porous 2D multilayer materials, including graphene oxide (GO), MXene (Ti3C2Tx), transition metal disulfide compounds (TMDC), boron nitride (BN) and graphitized carbonitride (g-C3N4). The analysis covers membrane morphology, water purification mechanism and the development of transport routes. In addition, the application of stable films and emphasize their role in the commercialization of two-dimensional multilayer membranes were also discussed. This review emphasizes the revolutionary potential of two-dimensional materials in water purification, and outlines the key factors needed for the transition from research to commercial application.
Collapse
Affiliation(s)
- Zhengting Yu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Yubing Peng
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Gupta KM, Aitipamula S, Chin X, Chow PS. Synergistic Computational and Experimental Investigation of Covalent Organic Frameworks for Efficient Alcohol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26551-26564. [PMID: 40273888 DOI: 10.1021/acsami.5c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covalent organic frameworks (COFs), a promising class of nanoporous materials, have received significant attention for membrane separation. Currently, several COFs are reported for alcohol dehydration, but they are not efficient owing to the pervasive challenge to separate small-sized molecular mixture. Herein, first we have computationally explored a series of COFs with different functionality and aperture size as pervaporation (PV) membrane and identified a novel COF for efficient dehydration of water/alcohol mixtures (90 wt % IPA, 90 wt % n-butanol and 90 wt % t-butanol). Subsequently, the best-performing COF was experimentally synthesized and characterized, and its sorption properties were correlated with computational results. Molecular dynamics (MD) simulations revealed that solvent permeation fluxes are predominantly influenced by the pore aperture of COFs, and larger pore aperture exhibits higher flux. Conversely, the separation factor is primarily determined by the polarity of the pore functional groups. Among the tested COF membranes, TpPa-1-OC3H6OCH3 demonstrated superior performance, surpassing the current state-of-the-art membranes. The activation energy (Ea) for water permeation in alcohol mixtures through TpPa-1-OC3H6OCH3 is mostly governed by water-alcohol interactions. Furthermore, experimental evaluation of the COFs indicated a plate-like morphology for TpPa-1-OC3H6OCH3 which ascertained a 2D-sheet-like structure. TpPa-1 showed greater sorption than TpPa-1-OC3H6OCH3 with all of the solvents tested owing to the inability of the solvent molecules to enter the relatively small pores in the later COF. This is in accordance with the MD simulation predictions, which indicated that the solvent molecules cannot penetrate the small pores of TpPa-1-OC3H6OCH3. This work synergistically integrates computational and experimental approaches to develop novel COFs with superior performance compared to previously reported PV membranes, paving the way for advanced membranes for sustainable solvent recovery.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, J&K, India
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
3
|
Kang J, Kwon O, Kim JP, Kim JY, Kim J, Cho Y, Kim DW. Graphene Membrane for Water-Related Environmental Application: A Comprehensive Review and Perspectives. ACS ENVIRONMENTAL AU 2025; 5:35-60. [PMID: 39830720 PMCID: PMC11741062 DOI: 10.1021/acsenvironau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025]
Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Collapse
Affiliation(s)
- Junhyeok Kang
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeong Pil Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghwi Cho
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Kononova SV, Gubanova GN, Lebedeva GK, Kruchinina EV, Vlasova EN, Popova EN, Zakharova NV, Vylegzhanina ME, Novozhilova EA, Danilova KV. Realization of Intermolecular Interactions as a Basis for Controlling Pervaporation Properties of Membranes Made of Aromatic Polyamide-Imides. MEMBRANES 2025; 15:23. [PMID: 39852264 PMCID: PMC11766727 DOI: 10.3390/membranes15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs. This effect is discussed in the context of the effectiveness of intermolecular interactions between polymer chains containing carboxyl and hydroxyl functional groups.
Collapse
Affiliation(s)
- Svetlana V. Kononova
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Galina N. Gubanova
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Galina K. Lebedeva
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Elena V. Kruchinina
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Elena N. Vlasova
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Elena N. Popova
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Natalya V. Zakharova
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Milana E. Vylegzhanina
- Branch of Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»—Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (G.K.L.); (E.N.P.); (N.V.Z.); (M.E.V.)
| | - Elena A. Novozhilova
- Saint-Petersburg State Institute of Technology, Technical University, 190013 Saint Petersburg, Russia
| | - Ksenia V. Danilova
- Saint-Petersburg State Institute of Technology, Technical University, 190013 Saint Petersburg, Russia
| |
Collapse
|
5
|
Inchongkol Y, Adpakpang K, Ponchai P, Atithep T, Chitterisin N, Ittisanronnachai S, Butburee T, Bureekaew S. Economically Scalable Cu-based MOFs: Vital Role of Structural Integrity towards Selectivity on Azeotropic Ethanol Dehydration. Chemistry 2025; 31:e202402509. [PMID: 39629954 DOI: 10.1002/chem.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 12/14/2024]
Abstract
A facile, green, and economical method for the scalable synthesis of hydrophilic copper-triazole metal-organic frameworks (Cu-trz) is demonstrated. Numerous open metal sites within the highly crystalline porous structure of Cu-trz are generated through mild thermal activation, enabling its application in liquid-phase ethanol dehydration under ambient conditions. The frameworks with distinct crystallinity and particle sizes were achieved by modifying the synthesis process. The high crystallinity of the framework plays an exclusive role in enhancing water adsorption capacity. With selective water adsorption comparable to commercial zeolite 3 A, Cu-trz MOF emerges as a promising candidate for cost-effective water-ethanol separation.
Collapse
Affiliation(s)
- Yollada Inchongkol
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Panyapat Ponchai
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Thassanant Atithep
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Nattamon Chitterisin
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
6
|
Li X, Song Y, Yang X, Xu J, Zhang X, Sun H. Multi-functional reinforced food packaging using delivery carriers: A comprehensive review of preparation, properties, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70050. [PMID: 39495570 DOI: 10.1111/1541-4337.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
With the rapid development of globalization, food packaging takes on more responsibility, while guaranteeing product quality and safety. In this context, the health risks associated with chemically synthesized additives and inorganic nanoparticles have opened a new chapter in the reinforcement of food packaging with natural active ingredients. Various delivery carriers have been developed to overcome the limitations of poor stability, uneven dispersion, and low bioavailability of natural active ingredients. The combination of encapsulation technologies can increase the biocompatibility of the active ingredient with the packaging material. Moreover, the protective and slow-release effects of the carrier matrix on the active ingredients are desirable for the reinforcement of food packaging. This review presents the latest advances in the application of delivery systems in food packaging, including the types of delivery systems used in food packaging, reinforced properties of food packaging, and potential applications in the food industry. Previous scientific studies found that active ingredient-loaded delivery carriers increased the effectiveness of food packaging in preventing food spoilage. Furthermore, the integration of active packaging with smart food packaging exhibits the synergistic effects of freshness monitoring and quality preservation. This review also discusses the challenges and trends in reinforcing food packaging with delivery carriers under a synergistic strategy that will provide new ideas and insights for the development and application of innovative food packaging.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Yao Song
- Department of Dairy Chemical Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Xiyue Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Jian Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
| | - Hui Sun
- Huanan Nongshengyuan Food Co., Ltd., Huanan County, Heilongjiang, P. R. China
| |
Collapse
|
7
|
Boonprab K, Chirapart A, Effendy WNA. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6987-7001. [PMID: 38619109 DOI: 10.1002/jsfa.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Conventional petroleum-based packaging films cause severe environmental problems. In the present study, bio-edible film was introduced as being safe to replace petroleum-based polymers. A food application for edible sachets and a composite edible film (EF) from marine algae, Gracilaria fisheri (GF) extract, were proposed. RESULTS Carbohydrates were the most prevalent component in fresh GF fronds. Under neutral conditions comprising 90 °C for 40 min, the structure of the extract was determined by Fourier transform infrared to be a carrageenan-like polysaccharide. Glycerol was the best plasticizer for EF formation because it had the highest tensile strength (TS). The integration of gelatin into the algal composite film with gelatin (CFG) was validated to be significant. The best casting temperatures for 2 h were 70 and 100 °C among the four tested temperatures (25, 60, 70 and 100 °C). Temperatures did not result in any significant (P ≤ 0.05) differences in any character (color values, TS, water vapor permeability, oxygen transmission, thickness and water activity), except elongation at break. Visually, the CFG had a slightly yellow appearance. The best-to-worst order of film stability in the three tested solvents was oil, distilled water (DW) and ethanol. Its stability in ethanol (0-100%), temperature of DW (30-100 °C) and pH (3-7 in DW) demonstrated inverse relationships with the concentration or different conditions, except for pH 8-10 in DW. All treatments were significantly (P ≤ 0.05) different. CONCLUSION The novel material made from polysaccharides from algae, G. fisheri, was used to improve EF. The edible sachet application is plausible from the EF. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Anong Chirapart
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
8
|
Kharazmi F, Sadat Hosseini F, Ebrahimzadeh H. Quick synthesis of CoFe-PBA@GO with electrochemical method as a novel, sensitive, and degradable nanocomposite applied in nanofibers for triazole extraction before HPLC-UV analysis. Food Chem 2024; 446:138890. [PMID: 38452510 DOI: 10.1016/j.foodchem.2024.138890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Today, the wide use of triazole fungicides due to environmental damage and its side effects has raised global concern. Hence, in this research, poly-vinyl alcohol/polyacrylic-acid/CoFe-PBA@GO electrospun nanofiber was synthesized and applied as effective, degradable, and novel adsorbent at pipette-tip microextraction (PT-μSPE) method for the rapid and concurrent extraction of five of triazole fungicides in fruit and vegetable samples prior to quantitative analysis by high-performance liquid chromatography-ultraviolet. The incorporation of CoFe-PBA@GO with superporous structure and abundant functional groups in a polymer medium improves the extraction efficiency of nanofibers due to hydrogen bonding and π-π interactions formed between analytes and synthesized nano-adsorbent. Various important elements that affect the extraction yield of the target analytes were optimized utilizing a time-variable approach. Under the optimum conditions, dynamic range was attained in the range of 0.3-900.0 ng/mL with correlation coefficients ≥ 0.999. The identification limit of the PT-μSPE-HPLC-UV method ranged from 0.1 to 0.3 ng/mL.
Collapse
Affiliation(s)
- Farbod Kharazmi
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Sadat Hosseini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Castro-Muñoz R. Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review. Molecules 2024; 29:2829. [PMID: 38930894 PMCID: PMC11206894 DOI: 10.3390/molecules29122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation (PV), as a highly selective technology for liquid separation, benefits from using 2D materials to selectively transport water or other solvent molecules. Therefore, this review paper offers an interesting update in revising the ongoing progress of PV membranes using 2D materials in several applications, including solvent purification (the removal of water from organic systems), organics removal (the removal of organic molecules diluted in water systems), and desalination (selective water transport from seawater). In general, recent reports from the past 3 years have been discussed and analyzed. Attention has been devoted to the proposed strategies and fabrication of membranes for the inclusion of 2D materials into polymer phases. Finally, the future trends and current research gaps are declared for the scientists in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Divakar S, Naik NS, Balakrishna RG, Padaki M. Liquid- liquid (Cyclohexanone: Cyclohexanol) separation using augmented tight nanofiltration membrane: A sustainable approach. CHEMOSPHERE 2024; 355:141820. [PMID: 38561158 DOI: 10.1016/j.chemosphere.2024.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.
Collapse
Affiliation(s)
- Swathi Divakar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Nagaraj S Naik
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| |
Collapse
|
12
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
13
|
Kujawska A, Kujawski W, Capała W, Kiełkowska U, Plesnar M, Kujawa J. Influence of Process Parameters on the Efficiency of Pervaporation Pilot ECO-001 Plant for Raw Ethanol Dehydration. MEMBRANES 2024; 14:90. [PMID: 38668118 PMCID: PMC11052157 DOI: 10.3390/membranes14040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol is the most common application of hydrophilic pervaporation. The pilot scale properties of hydrophilic composite poly(vinyl alcohol) PVA membrane (PERVAPTM 2200) in contact with wet raw bioethanol are presented. The wet raw bioethanol was composed of ethanol (82.4-89.6 wt%), water (5.9-8.5 wt%), methanol (2.3-6.9 wt%), cyclohexane (0.2-2.4 wt%), higher alcohols (0.2-1.3 wt%), and acetaldehyde (0.004-0.030 wt%). All experiments were performed using a SULZER ECO-001 plant equipped with a 1.5 m2 membrane module. The efficiency of the dehydration process (i.e., membrane selectivity, permeate flux, degree of dehydration) was discussed as a function of the following parameters: the feed temperature, the feed composition, and the feed flow rate through the module. It was found that the low feed flow rate influenced the dehydration efficiency as the enthalpy of evaporation caused a high temperature drop in the module (around 25 °C at a feed flow rate equal to 5 kg h-1). The separation coefficient during pervaporation was in the range of 600-1200, depending on the feed composition. The increase in temperature augmented the permeation flux and shortened the time needed to reach the assumed level of dehydration. It was revealed that dehydration by pervaporation using ECO-001 pilot plant is an efficient process, allowing also to investigate the influence of various parameters on the process efficiency.
Collapse
Affiliation(s)
- Anna Kujawska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Wiesław Capała
- Łukasiewicz Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland; (W.C.)
| | - Urszula Kiełkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Marek Plesnar
- Łukasiewicz Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland; (W.C.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| |
Collapse
|
14
|
Yousef S, Tonkonogovas A, Mohamed A. Graphene-modified MIL-125-NH 2 mixed matrix membranes for efficient H 2 and CH 4 purification. CHEMOSPHERE 2024; 352:141362. [PMID: 38309606 DOI: 10.1016/j.chemosphere.2024.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
This study investigates the performance of the mixed matrix membranes (MMMs) incorporating hybrid fillers of metal-organic framework (MIL-125-NH2) and graphene nanosheets (GNs) for enhanced methane (CH₄) and hydrogen (H₂) separation in the purification sector. The physico-chemical properties of the MMMs were evaluated by SEM, XRD, FTIR, AFM, TGA, DTG, and Brunauer-Emmett-Teller. The permeability and selectivity of the MMMs were determined using different single gases (CO2, N2, H2, and CH4) at various temperatures (20-60 °C). Optimization of fabrication parameters resulted in a significant improvement in porosity and roughness of the fabricated MMMs. The permeabilities of the MOF/PES membrane are 20.3 (CO2), 23.9 (N2), 32.2 (CH4), and 24.1 (H2) x 104 Barrer, while incorporating 0.05 wt% of GNs into the MOF/PES membrane improved the permeability by 36 % (CO2), 41 % (N2), 31 % (CH4), and 370 % (H2). In addition, the H2/CO2 and H2/N2 selectivities of the MMMs significantly increased up to 4 and 3.3, with an improvements of 236 % and 230 %, respectively, compared to the MOF/PES membrane. Furthermore, the CH4/CO2 and CH4/N2 selectivities of the MMMs decreased by 4 %. Therefore, a hybrid filler (10 wt % of MIL-125-NH2 and 0.05 wt % of GNs is highly recommended to improve the permeability and selectivity of the PES membrane, expanding its potential applications in CH4 and H2 purification.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424, Kaunas, Lithuania
| | - Andrius Tonkonogovas
- Lithuanian Energy Institute, Laboratory of Heat Equipment Research and Testing, Breslaujos 3, LT 44403, Kaunas, Lithuania
| | - Alaa Mohamed
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
15
|
Wang X, Cui W, Guo W, Sun B, Huang M, Li J, Li H, Meng N. Separation techniques for manufacturing fruit spirits: From traditional distillation to advanced pervaporation process. Compr Rev Food Sci Food Saf 2024; 23:e13278. [PMID: 38284610 DOI: 10.1111/1541-4337.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.
Collapse
Affiliation(s)
- Xiaoqin Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenwen Cui
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wentao Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jinchen Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
16
|
Chettri S, Sharma N, Mohite AM. Edible coatings and films for shelf-life extension of fruit and vegetables. BIOMATERIALS ADVANCES 2023; 154:213632. [PMID: 37742558 DOI: 10.1016/j.bioadv.2023.213632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The execution of the edible coatings and films for food preservation; vegetables, fruits, meat, and dry fruits has been ladened in history. The study of literature portrays enough pieces of evidence dating back from centuries of coatings or films being utilized for the conservation of numerous fruits and vegetables to stretch their average shelf-life. The mechanism that remains operative in extending the shelf-life of fruits and vegetables beyond the normal shelf-life is the controlled entry and exit of moisture and gases. The non- biodegradable packaging which is also non-sustainable can be substituted with compostable and edible coatings and films made up of natural biopolymers. Therefore, keeping in mind the environment and consumer safety, a score of research has been going on from former decades for the development of edible coatings and films with efficient shelf life-extending qualities. The films composed of proteins exhibit a good mechanical strength while the polysaccharide composed films and coatings show efficient gas blocking qualities, however, both lack moisture shielding attributes. These shortcomings can be fixed by combining them with lipids and or some appropriate hydrocolloids. The edible coatings and films have been integrated with various food products; however, they haven't been completely successful in substitution of the total fraction of their non-edible counterparts. The implementation of edible coatings and films have shown to serve an immense value in extending the shelf-life of fruits and vegetables along with being a sustainable and eco-friendly approach for food packaging.
Collapse
Affiliation(s)
- Shristy Chettri
- Amity Institute of Food Technology, Amity University, Noida, U.P., India
| | - Neha Sharma
- Amity Institute of Food Technology, Amity University, Noida, U.P., India
| | - Ashish M Mohite
- Amity Institute of Food Technology, Amity University, Noida, U.P., India.
| |
Collapse
|
17
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
18
|
Liu B, Zhang S, Li M, Wang Y, Mei D. Metal-Organic Framework/Polyvinyl Alcohol Composite Films for Multiple Applications Prepared by Different Methods. MEMBRANES 2023; 13:755. [PMID: 37755178 PMCID: PMC10537366 DOI: 10.3390/membranes13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.
Collapse
Affiliation(s)
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| | | | | | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| |
Collapse
|
19
|
Matloob A, Ayub H, Mohsin M, Ambreen S, Khan FA, Oranab S, Rahim MA, Khalid W, Nayik GA, Ramniwas S, Ercisli S. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS OMEGA 2023; 8:28932-28944. [PMID: 37599927 PMCID: PMC10433350 DOI: 10.1021/acsomega.3c03459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Food is a crucial source for the endurance of individuals, and quality concerns of consumers are being raised with the progression of time. Edible coatings and films (ECFs) are increasingly important in biobased packaging because they have a prime role in enhancing the organoleptic characteristics of the food products and minimizing the spread of microorganisms. These sustainable ingredients are crucial for a safer and healthier environment. These are created from proteins, polysaccharides, lipids, plasticizers, emulsifiers, and active substances. These are eco-friendly since made from innocuous material. Nanocomposite films are also beginning to be developed and support networks of biological polymers. Antioxidant, flavoring, and coloring compounds can be employed to improve the quality, wellbeing, and stability of packaged foods. Gelatin-enhanced fruit and vegetable-based ECFs compositions have the potential to produce biodegradable films. Root plants like cassava, potato, and sweet potato have been employed to create edible films and coatings. Achira flour, amylum, yam, ulluco, and water chestnut have all been considered as novel film-forming ingredients. The physical properties of biopolymers are influenced by the characteristics, biochemical confirmation, compatibility, relative humidity, temperature, water resistance, and application procedures of the components. ECFs must adhere to all regulations governing food safety and be generally recognized as safe (GRAS). This review covers the new advancements in ECFs regarding the commitment of novel components to the improvement of their properties. It is expected that ECFs can be further investigated to provide innovative components and strategies that are helpful for global financial issues and the environment.
Collapse
Affiliation(s)
- Anam Matloob
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hudda Ayub
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Mohsin
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saadia Ambreen
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadaf Oranab
- Department
of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Abdul Rahim
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Government
Degree College Shopian Gagran 192303, Jammu and Kashmir, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
20
|
Liu N, Cheng J, Liu L, Gao S, Hou W, Luo M, Zhang H, Ye B, Zhou J. Crosslinking two-dimensional metalloporphyrin (Me-TCPP) nanosheet with poly(ethylene) glycol semi-interpenetrating polymer network for ultrahigh CO2/N2 separation selectivity via “rubber-band” straightening effect. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Kachhadiya DD, Murthy Z. Microfluidic synthesized ZIF-67 decorated PVDF mixed matrix membranes for the pervaporation of toluene/water mixtures. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Takenaka R, Moriyama N, Nagasawa H, Kanezashi M, Tsuru T. Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes. MEMBRANES 2023; 13:membranes13050533. [PMID: 37233594 DOI: 10.3390/membranes13050533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) has attracted attention as an excellent membrane material for water treatment and desalination owing to its high mechanical strength, hydrophilicity, and permeability. In this study, composite membranes were prepared by coating GO on various polymeric porous substrates (polyethersulfone, cellulose ester, and polytetrafluoroethylene) using suction filtration and casting methods. The composite membranes were used for dehumidification, that is, water vapor separation in the gas phase. GO layers were successfully prepared via filtration rather than casting, irrespective of the type of polymeric substrate used. The dehumidification composite membranes with a GO layer thickness of less than 100 nm showed a water permeance greater than 1.0 × 10-6 mol/(m2 s Pa) and a H2O/N2 separation factor higher than 104 at 25 °C and 90-100% humidity. The GO composite membranes were fabricated in a reproducible manner and showed stable performance as a function of time. Furthermore, the membranes maintained high permeance and selectivity at 80°C, indicating that it is useful as a water vapor separation membrane.
Collapse
Affiliation(s)
- Risa Takenaka
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Norihiro Moriyama
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
23
|
Castro-Muñoz R, Plata-Gryl M, Boczkaj G. Merging Proline:Xylitol Eutectic Solvent in Crosslinked Chitosan Pervaporation Membranes for Enhanced Water Permeation in Dehydrating Ethanol. MEMBRANES 2023; 13:451. [PMID: 37103878 PMCID: PMC10146218 DOI: 10.3390/membranes13040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The scope of this research aims at merging a new deep eutectic mixture (DES) into a biopolymer-based membrane for a pervaporation application in dehydrating ethanol. Herein, an L-proline:xylitol (at 5:1) eutectic mixture was successfully synthesized and blended with chitosan (CS). A complete characterization of the hybrid membranes, in terms of morphology, solvent uptake, and hydrophilicity, has been conducted. As part of their applicability, the blended membranes were assayed for their ability to separate water from ethanolic solutions by means of pervaporation. At the highest temperature (50 °C), a water permeation of ca. 0.46 kg m-2 h-1 was acquired, representing a higher permeation than the pristine CS membranes (ca. 0.37 kg m-2 h-1). Therefore, CS membranes demonstrated an enhanced water permeation thanks to their blending with the hydrophilic L-proline:xylitol agent, making these membranes a good candidate for other separations containing polar solvents.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| | - Maksymilian Plata-Gryl
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
24
|
Performance tuning of chitosan-based membranes by protonated 2-Pyrrolidone-5-carboxylic acid-sulfolane DES for effective water/ethanol separation by pervaporation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Thin-film composite polymer membranes based on nylon and halloysite: synthesis, characterization, and performance. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
26
|
Gupta I, Gupta O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. MEMBRANES 2023; 13:membranes13010108. [PMID: 36676915 PMCID: PMC9862370 DOI: 10.3390/membranes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
The energy crisis in the world is increasing rapidly owing to the shortage of fossil fuel reserves. Climate change and an increase in global warming necessitates a change in focus from petroleum-based fuels to renewable fuels such as biofuels. The remodeling of existing separation processes using various nanomaterials is of a growing interest to industrial separation methods. Recently, the design of membrane technologies has been the most focused research area concerning fermentation broth to enhance performance efficiency, while recovering those byproducts to be used as value added fuels. Specifically, the use of novel nano material membranes, which brings about a selective permeation of the byproducts, such as organic solvent, from the fermentation broth, positively affects the fermentation kinetics by eliminating the issue of product inhibition. In this review, which and how membrane-based technologies using novel materials can improve the separation performance of organic solvents is considered. In particular, technical approaches suggested in previous studies are discussed with the goal of emphasizing benefits and problems faced in order to direct research towards an optimized membrane separation performance for renewable fuel production on a commercial scale.
Collapse
Affiliation(s)
- Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Oindrila Gupta
- Vertex Pharmaceuticals Inc., Boston, MA 02210, USA
- Correspondence: ; Tel.: +1-201-467-1138
| |
Collapse
|
27
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
28
|
Gupta O, Roy S, Rao L, Mitra S. Graphene Oxide-Carbon Nanotube (GO-CNT) Hybrid Mixed Matrix Membrane for Pervaporative Dehydration of Ethanol. MEMBRANES 2022; 12:membranes12121227. [PMID: 36557134 PMCID: PMC9783890 DOI: 10.3390/membranes12121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
The pervaporation process is an energy-conservative and environmentally sustainable way for dehydration studies. It efficiently separates close boiling point and azeotrope mixtures unlike the distillation process. The separation of ethanol and water is challenging as ethanol and water form an azeotrope at 95.6 wt.% of ethanol. In the last few decades, various polymers have been used as candidates in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration but have not been able to achieve an enhanced performance both in terms of flux and selectivity. Composite membranes comprising of poly (vinyl alcohol) (PVA) incorporated with carboxylated carbon nanotubes (CNT-COOH), graphene oxide (GO) and GO-CNT-COOH mixtures were fabricated for the dehydration of ethanol by pervaporation (PV). The membranes were characterized with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Raman spectroscopy, Raman imaging, contact angle measurement, and water sorption to determine the effects of various nanocarbons on the intermolecular interactions, surface hydrophilicity, and degrees of swelling. The effects of feed water concentration and temperature on the dehydration performance were investigated. The incorporation of nanocarbons led to an increase in the permeation flux and separation factor. At a feed water concentration of 10 wt.%, a permeation flux of 0.87 kg/m2.h and a separation factor of 523 were achieved at 23 °C using a PVA-GO-CNT-COOH hybrid membrane.
Collapse
Affiliation(s)
| | | | | | - Somenath Mitra
- Correspondence: ; Tel.: +1-973-596-5611; Fax: +1-973-596-3586
| |
Collapse
|
29
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Highly-selective MOF-303 membrane for alcohol dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Janjhi FA, Janwery D, Chandio I, Ullah S, Rehman F, Memon AA, Hakami J, Khan F, Boczkaj G, Thebo KH. Recent Advances in Graphene Oxide‐Based Membranes for Heavy Metal Ions Separation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farooque Ahmed Janjhi
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Dahar Janwery
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Imamdin Chandio
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Sami Ullah
- King Fahd University of Petroleum & Mineral (KFUPM) K.A. CARE Energy Research & Innovation Center (ERIC) 31261 Dhahran Saudi Arabia
| | - Faisal Rehman
- University of Virginia Department of Mechanical and Aerospace Engineering 22904 Charlottesville VA USA
| | - Ayaz Ali Memon
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Jabir Hakami
- Jazan University Department of Physics, College of Science P.O. Box 114 45142 Jazan Saudi Arabia
| | - Firoz Khan
- King Fahd University of Petroleum & Minerals (KFUPM) Interdiscipliary Research Center for Renewable Energy and Power Systems (IRC–REPS), Research Institute 31261 Dhahran Saudi Arabia
| | - Grzegorz Boczkaj
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Khalid Hussain Thebo
- Chinese Academy of Science Institute of Metal Research (IMR) Wenhua Road Shenynag China
| |
Collapse
|
32
|
Peng L, Wu Z, Wang B, Liu H, Zhang C, Gu X. Fabrication of high-stability W-MFI zeolite membranes for ethanol/water mixture separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Almafie M, Marlina L, Riyanto R, Jauhari J, Nawawi Z, Sriyanti I. Dielectric Properties and Flexibility of Polyacrylonitrile/Graphene Oxide Composite Nanofibers. ACS OMEGA 2022; 7:33087-33096. [PMID: 36157738 PMCID: PMC9494686 DOI: 10.1021/acsomega.2c03144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Energy storage and modern electronics industries are in essential need of high dielectric and highly flexible materials. In this study, polyacrylonitrile and reduced graphene oxide (PAN/GO) were prepared by electrospinning. The composite morphology produced a homogeneous, smooth, and flexible surface with high tensile strength and durability. The diameter of the fibers in the composite mats ranged from 232 to 592 nm. The X-ray diffraction pattern recording displayed a sharp peak characteristic centered between 20 and 30° angles with a maximum degree of crystallinity of 86.23%. The evaluation of the Fourier-transform infrared spectrum indicated the interaction between GO and PAN through hydrogen bonds. The differential scanning calorimetry measurements confirmed that GO acted as a nucleating agent that improves the thermal stability of the composite. The dielectric properties exhibited the relative permittivity of the composite of 86.4 with a dielectric loss (tan δ) of 4.97 at 102 Hz, and the maximum conductivity was achieved at 34.9 × 10-6 Sm-1 at high frequencies.
Collapse
Affiliation(s)
- Muhammad
Rama Almafie
- Physics
Education, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
- Laboratory
of Instrumentation and Nanotechnology Applications, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| | - Leni Marlina
- Physics
Education, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| | - Riyanto Riyanto
- Biology
Education, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| | - Jaidan Jauhari
- Department
of Computer Science, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
- Laboratory
of Instrumentation and Nanotechnology Applications, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| | - Zainuddin Nawawi
- Department
of Electrical Engineering, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| | - Ida Sriyanti
- Physics
Education, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
- Laboratory
of Instrumentation and Nanotechnology Applications, Universitas Sriwijaya, Palembang-Prabumulih Street KM.32, Indralaya 30662, ID, Indonesia
| |
Collapse
|
34
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Tuning of solvent evaporation to prepare PEBA membrane with high separation performance for the pervaporation of phenol aqueous solution. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Dehydration of isopropanol by poly(vinyl alcohol) hybrid membrane containing oxygen-plasma treated graphene oxide in pervaporation process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Preparation and pervaporation performance of PVA membrane with biomimetic modified silica nanoparticles as coating. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Burts KS, Plisko TV, Prozorovich VG, Melnikova GB, Ivanets AI, Bildyukevich AV. Modification of Thin Film Composite PVA/PAN Membranes for Pervaporation Using Aluminosilicate Nanoparticles. Int J Mol Sci 2022; 23:ijms23137215. [PMID: 35806220 PMCID: PMC9266310 DOI: 10.3390/ijms23137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
- Correspondence:
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Galina B. Melnikova
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| |
Collapse
|
39
|
Design of a perstraction-based extraction system for the removal of polychlorinated biphenyls from bovine milk via COSMO-RS: Membrane screening. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Du C, Runhong Du J, Feng X, Du F, Cheng F, Ali ME. Pervaporation-assisted desalination of seawater reverse osmosis brine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Castro-Muñoz R, Gontarek E, Karczewski J, Cabezas R, Merlet G, Araya-Lopez C, Boczkaj G. Hybrid cross-linked chitosan/protonated-proline:glucose DES membranes with superior pervaporation performance for ethanol dehydration. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
43
|
Sun N, Li J, Ren J, Xu Z, Sun H, Du Z, Zhao H, Ettelatie R, Cheng F. Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces. WATER RESEARCH 2022; 212:118091. [PMID: 35093603 DOI: 10.1016/j.watres.2022.118091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) coating has recently been reported as a novel approach to increase membrane flux of membrane distillation (MD), yet the phenomena underlying the process are still not fully understood. In this study, a mathematical model based on capillary-film assumption was developed and validated with the results (R2>0.99) from a series of MD experiments. According to the model, when GO layer was placed at the evaporation interface, the temperature difference across the membrane surface increases significantly (44.2%∼92.0%) and the temperature polarization coefficient is increased greatly from 0.29∼0.38 to around 0.55. This leads to a big increase of driving force for higher heat flow and subsequently mass flux (17.8∼45.5%). However, the vapor pressure on membrane surface was decreased due to Kelvin effect of GO capillary pores, which has a negative influence on the driving force, accounting for about 26.9% to 52.6% drop in the achieved flux. In comparison, when GO layer was placed at the condensation interface, the temperature difference across the membrane surface decreases slightly (7.2∼12.2%), but the reduced vapor pressure on GO capillary pores due to Kelvin effect become the dominant factor affecting membrane flux, resulting in an increase mass flux of 12.4∼16.4%. The model developed in this study provides a theoretical foundation for understanding the role of GO coating on flux improvement, and can be used for further development of high flux membranes.
Collapse
Affiliation(s)
- Nan Sun
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; Shanxi Laboratory for Yellow River, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jing Ren
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhaozan Xu
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Huifang Sun
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiping Du
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Huazhang Zhao
- Shanxi Laboratory for Yellow River, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Rammile Ettelatie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fangqin Cheng
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
44
|
Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites has been observed for membrane technology. This review highlights the design, properties, and promising features of the polymer/graphene nanomaterials and nanocomposite membranes for the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane properties are examined. Graphene oxide, an important modified form of graphene, is also utilized in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop high-performance membranes for methodological purposes. The adaptability of polymer/graphene nanocomposites is observed for water management and purification technologies.
Collapse
|
45
|
Xiong Y, Deng N, Wu X, Zhang Q, Liu S, Sun G. De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Wu Y, Ye H, You C, Zhou W, Chen J, Xiao W, Garba ZN, Wang L, Yuan Z. Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Unlu D. High-efficiency pervaporative separation of fuel bioadditive methylal from methanol by poly(vinyl alcohol)/poly(vinylpyrrolidone) blend membrane. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
48
|
Tomietto P, Russo F, Galiano F, Loulergue P, Salerno S, Paugam L, Audic JL, De Bartolo L, Figoli A. Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and Cyrene™ as green solvent. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Aydin G, Zorlu EB. Characterisation and Antibacterial Properties of Novel Biodegradable Films Based on Alginate and Roselle ( Hibiscus sabdariffa L.) Extract. WASTE AND BIOMASS VALORIZATION 2022; 13:2991-3002. [PMID: 35222746 PMCID: PMC8856933 DOI: 10.1007/s12649-022-01710-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Composite films were prepared with alginate and roselle extract (HE) at different concentrations (1%, 3%, and 5% w/v) via solvent casting technique and analyzed in terms of physical, mechanical, and antibacterial properties. The incorporation of HE into alginate films resulted in rough and heterogeneous surface characteristics with increasing concentrations of HE. The thickness and water vapor permeability of alginate-HE composite films were significantly higher (p < 0.05) compared to pure alginate films. Moreover, water content, solubility, swelling, tensile strength, and elongation at break value of the composite films decreased (p < 0.05) with increasing concentrations of the extract. FTIR spectra revealed shifts and intensity variations in the composite films and the formation of new peaks suggesting a possible interaction between alginate and HE. Alginate-HE films exhibited good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antibacterial effect of the films, more pronounced against Gram-positive bacteria, increased with higher amounts of HE. The resulting films may be utilised as new biodegradable, antibacterial films in the food packaging industry to prolong shelf life and preserve food safety. Graphical Abstract Supplementary Information The online version of this article (10.1007/s12649-022-01710-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gulsum Aydin
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| | - Elif Busra Zorlu
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
50
|
Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A. High performance of PES-GNs MMMs for gas separation and selectivity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|