1
|
Yang Y, Chen Z, Lv T, Dong K, Liu Y, Qi Y, Cao S, Chen T. Ultrafast self-assembly of supramolecular hydrogels toward novel flame-retardant separator for safe lithium ion battery. J Colloid Interface Sci 2023; 649:591-600. [PMID: 37364459 DOI: 10.1016/j.jcis.2023.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Traditional polyolefin separators for lithium-ion batteries (LIBs) often experience limited thermal stability and intrinsic flammability, resulting in great safety risks during their usage. Therefore, it is highly important to develop novel flame-retardant separators for safe LIBs with high performance. In this work, we report a flame-retardant separator derived from boron nitride (BN) aerogel with a high BET surface area of 1127.3 m2 g-1. The aerogel was pyrolyzed from a melamine-boric acid (MBA) supramolecular hydrogel, which was self-assembled at an ultrafast speed. The in-situ evolution details of the nucleation-growth process of the supramolecules could be observed in real-time using a polarizing microscope under ambient conditions. The BN aerogel was further composited with bacterial cellulose (BC) to form a BN/BC composite aerogel with excellent flame-retardant performance, electrolyte-wetting ability and high mechanical property. By using the BN/BC composite aerogel as the separator, the developed LIBs exhibited high specific discharge capacity of 146.5 mAh g-1 and excellent cyclic performance, maintaining 500 cycles with a capacity degradation of only 0.012% per cycle. The high-performance flame-retardant BN/BC composite aerogel represents a promising candidate for separators not only in LIBs but also in other flexible electronics.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunlong Qi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Jung JH, Vijayakumar V, Haridas AK, Ahn JH, Nam SY. Effect of Cross-Linking and Surface Treatment on the Functional Properties of Electrospun Polybenzimidazole Separators for Lithium Metal Batteries. ACS OMEGA 2022; 7:47784-47795. [PMID: 36591163 PMCID: PMC9798493 DOI: 10.1021/acsomega.2c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, electrospun PBI separators with a highly porous structure and nanofiber diameter of about 90-150 nm are prepared using a multi-nozzle under controlled conditions for lithium metal batteries. Cross-linking with α, α-dibromo-p-xylene and surface treatment using 4-(chloromethyl) benzoic acid successfully improve the electrochemical as well as mechanical properties of the separators. The resulting separator is endowed with high thermal stability and excellent wettability (1080 to 1150%) with commercial liquid electrolyte than PE and PP (Celgard 2400) separators. Besides, attractive cycling stability and rate capability in LiFePO4/Li cells are attained with the modified separators. Prominently, CROSSLINK PBI exhibits a stable Coulombic efficiency of more than 99% over 100 charge-discharge cycles at 0.5 C, which is superior to the value of cells using commercial PE and PP (Celgard 2400) separators. The half cells assembled using the CROSSLINK PBI separator can deliver a discharge capacity of 150.3 mAh g-1 at 0.2 C after 50 cycles corresponding to 88.4% of the theoretical value of LiFePO4 (170 mAh g-1). This work offers a worthwhile method to produce thermally stable separators with noteworthy electrochemical performances which opens new possibilities to improve the safe operation of batteries.
Collapse
Affiliation(s)
- Ji Hye Jung
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Vijayalekshmi Vijayakumar
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Anupriya K. Haridas
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Jou-Hyeon Ahn
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Department
of Chemical Engineering, Gyeongsang National
University, Jinju52828, Republic of Korea
| | - Sang Yong Nam
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| |
Collapse
|
3
|
An advanced hybrid fibrous separator by in-situ confining growth method for high performance lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Polyimide-Based Materials for Lithium-Ion Battery Separator Applications: A Bibliometric Study. INT J POLYM SCI 2022. [DOI: 10.1155/2022/6740710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyimide (PI) has excellent thermal stability, high porosity, and better high-temperature resistance. It has the potential to become a more high-end separator material, which has attracted the attention of the majority of researchers. This review is aimed at identifying the research progress and development trends of the PI-based material for separator application. We searched the published papers (2012–2021) from the WOS core collection database for analysis and analyzed their research progress and development trend based on CiteSpace text mining and visualization software. The analysis shows that the PI-based composite separator material is a research hotspot in the future and the combination of nanofiber and cellulose materials with PI is also an important research direction in the future.
Collapse
|
5
|
Sun G, Jiang S, Feng X, Shi X, Zhang X, Li T, Chen N, Hou L, Qi S, Wu D. Ultra-robust polyimide nanofiber separators with shutdown function for advanced lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Su M, Huang G, Wang S, Wang Y, Wang H. High safety separators for rechargeable lithium batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Liu Z, Hu Q, Guo S, Yu L, Hu X. Thermoregulating Separators Based on Phase-Change Materials for Safe Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008088. [PMID: 33710704 DOI: 10.1002/adma.202008088] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Safety issues in lithium-ion batteries (LIBs) have aroused great interest owing to their wide applications, from miniaturized devices to large-scale storage plants. Separators are a vital component to ensure the safety of LIBs; they prevent direct electric contact between the cathode and anode while allowing ion transport. In this study, the first design is reported for a thermoregulating separator that responds to heat stimuli. The separator with a phase-change material (PCM) of paraffin wax encapsulated in hollow polyacrylonitrile nanofibers renders a wide range of enthalpy (0-135.3 J g-1 ), capable of alleviating the internal temperature rise of LIBs in a timely manner. Under abuse conditions, the generated heat in batteries stimulates the melting of the encapsulated PCM, which absorbs large amounts of heat without creating a significant rise in temperature. Experimental simulation of the inner short-circuit in prototype pouch cells through nail penetration demonstrates that the PCM-based separator can effectively suppress the temperature rise due to cell failure. Meanwhile, a cell penetrated by a nail promptly cools down to room temperature within 35 s, benefiting from the latent heat-storage of the unique PCM separator. The present design of separators featuring latent heat-storage provides effective strategies for overheat protection and enhanced safety of LIBs.
Collapse
Affiliation(s)
- Zhifang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiaomei Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Zhai Y, Wang X, Chen Y, Sang X, Liu H, Sheng J, Wu Y, Wang X, Li L. Multiscale-structured polyvinylidene fluoride/polyacrylonitrile/ vermiculite nanosheets fibrous membrane with uniform Li+ flux distribution for lithium metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhu C, Zhang J, Zeng X, Xu J, Wang L, Li Z. Semi‐Interpenetrating Polymer Electrolyte as a Coating Layer Constructed on Polyphenylene Sulfide Nonwoven to Afford Superior Stability and Performance for Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Changqing Zhu
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Jingxi Zhang
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Xinyu Zeng
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Jing Xu
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Luoxin Wang
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Department of Polymer Science & Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
10
|
Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr Polym 2020; 248:116753. [DOI: 10.1016/j.carbpol.2020.116753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023]
|
11
|
Zholobko O, Wu X, Zhou Z, Aulich T, Thakare J, Hurley J. A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solution‐cast films of polybenzimidazole. J Appl Polym Sci 2020. [DOI: 10.1002/app.49639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oksana Zholobko
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Xiang‐Fa Wu
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Zhengping Zhou
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota USA
| | - Ted Aulich
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| | - Jivan Thakare
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| | - John Hurley
- Energy and Environmental Research Center, University of North Dakota Grand Forks North Dakota USA
| |
Collapse
|
12
|
PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Chen Q, Zuo X, Liang H, Zhu T, Zhong Y, Liu J, Nan J. A Heat-Resistant Poly(oxyphenylene benzimidazole)/Ethyl Cellulose Blended Polymer Membrane for Highly Safe Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:637-645. [PMID: 31825197 DOI: 10.1021/acsami.9b17374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A blended membrane based on poly(oxyphenylene benzimidazole) (PBI) and ethyl cellulose (EC) exhibits heat resistance and good electrochemical performance. The prepared blended polymer gel membranes show no visible dimensional change after being held at 350 °C for 30 min, whereas the polyethylene (PE) separator almost completely melts. In addition to excellent thermal stability, the self-supporting blended membranes also exhibit a uniform thermal distribution during the heating process from 60 to 200 °C. Additionally, the ionic conductivities of the PBI/EC blended membranes with different ratios are 1.24 mS cm-1 (1:1), 2.58 mS cm-1 (1:2), and 1.68 mS cm-1 (1:3), which are much higher than those of the PE separator (0.39 mS cm-1). Compared to that of the PE separator (113 mAh g-1), the cell with a separator of PBI/EC = 1:2 retained a discharge capacity of 131 mAh g-1 after 150 cycles at 0.5C. Meanwhile, the rate performance of the cell was also better than that of the PE separator, especially at high currents (5C). All of the results indicate that this blended polymer gel membrane with good thermal stability is expected to be applied to high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Qiuyu Chen
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Xiaoxi Zuo
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Huiying Liang
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Tianming Zhu
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Yaotang Zhong
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Jiansheng Liu
- Guangzhou Great Power Energy Technology Co., Ltd. , Guangzhou 511483 , P. R. China
| | - Junmin Nan
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| |
Collapse
|
15
|
Sun G, Guo J, Niu H, Chen N, Zhang M, Tian G, Qi S, Wu D. The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Adv 2019; 9:40084-40091. [PMID: 35541409 PMCID: PMC9076257 DOI: 10.1039/c9ra08006f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we design a controllable approach for preparing multifunctional polybenzimidazole porous membranes with superior fire-resistance, excellent thermo-stability, and high wettability. Specifically, the recyclable imidazole is firstly utilized as the eco-friendly template for micropores formation, which is an interesting finding and has tremendous potential for low-cost industrial production. The unique backbone structure of the as-prepared polybenzimidazole porous membrane endows the separator with superb thermal dimensional stability at 300 °C. Most significantly, the inherent flame retardancy of polybenzimidazole can ensure the high security of lithium-ion batteries, and the existence of polar groups of imidazole can regulate the Li+ flux and improve the ionic conductivity of lithium ions. Notably, the cell with a polybenzimidazole porous membrane presents higher capability (131.7 mA h g-1) than that of a commercial Celgard membrane (95.4 mA h g-1) at higher charge-discharge density (5C), and it can work normally at 120 °C. The fascinating comprehensive properties of the polybenzimidazole porous membrane with excellent thermal-stability, satisfying wettability, superb flame retardancy and good electrochemical performance indicate its promising application for high-safety and high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Guohua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Jiacong Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Hongqing Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University Seoul 04763 Republic of Korea
| | - Mengying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Shengli Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology Changzhou 213164 Jiangsu China +86 10 6442 2381
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| |
Collapse
|