1
|
Zhou S, Mei Y, Yang W, Jiang C, Guo H, Feng SP, Tang CY. Energy harvesting from acid mine drainage using a highly proton/ion-selective thin polyamide film. WATER RESEARCH 2024; 255:121530. [PMID: 38564897 DOI: 10.1016/j.watres.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenxiao Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230052, PR China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China.
| |
Collapse
|
2
|
Guo BB, Liu C, Zhu CY, Xin JH, Zhang C, Yang HC, Xu ZK. Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration. Nat Commun 2024; 15:2282. [PMID: 38480727 PMCID: PMC10937904 DOI: 10.1038/s41467-024-46580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/02/2024] [Indexed: 03/17/2024] Open
Abstract
Fine design of surface charge properties of polyamide membranes is crucial for selective ionic and molecular sieving. Traditional membranes face limitations due to their inherent negative charge and limited charge modification range. Herein, we report a facile ionic liquid-decoupled bulk/interfacial diffusion strategy to elaborate the double charge flips of polyamide membranes, enabling on-demand transformation from inherently negative to highly positive and near-neutral charges. The key to these flips lies in the meticulous utilization of ionic liquid that decouples intertwined bulk/interfacial diffusion, enhancing interfacial while inhibiting bulk diffusion. These charge-tunable polyamide membranes can be customized for impressive separation performance, for example, profound Cl-/SO42- selectivity above 470 in sulfate recovery, ultrahigh Li+/Mg2+ selectivity up to 68 in lithium extraction, and effective divalent ion removal in pharmaceutical purification, surpassing many reported polyamide nanofiltration membranes. This advancement adds a new dimension to in the design of advanced polymer membranes via interfacial polymerization.
Collapse
Affiliation(s)
- Bian-Bian Guo
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chang Liu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Ye Zhu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Hui Xin
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| | - Hao-Cheng Yang
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| | - Zhi-Kang Xu
- Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, MOE Engineering Research Center of Membrane and Water Treatment, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Fang Y, Zhu CY, Yang HC, Zhang C, Xu ZK. Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance. J Colloid Interface Sci 2024; 655:327-334. [PMID: 37948806 DOI: 10.1016/j.jcis.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Vacuum assistance is used for filtering solid substances onto porous substrates to create composite membranes typically. However, the potential of this approach has rarely been assessed in facilitating the distribution of liquids within those porous substrates to fabricate composite membranes in typical interfacial polymerization. In this work, we demonstrate the advantages of vacuum-assisted interfacial polymerization (VAIP) in terms of substrate universality, monomer concentration range, and performance reproducibility in the fabrication of polyimide nanofiltration membranes. Aqueous solutions of PIP can be homogeneously distributed by vacuum filtration on diverse microfiltration substrates of polyether sulfone (PES), Nylon-66, polyvinylidene fluoride (PVDF), cellulose acetate (CA), and mixed cellulose esters (MCE), respectively. Interfacial polymerization is then performed on these substrates using different concentrations of piperazine (PIP, 0.0075-0.1000 wt%) and trimoyl chloride (TMC, 0.0112-0.1500 wt%). Remarkably, a uniform and ultra-thin polyamide layer with a thickness of 15 nm can be achieved at an exceptionally low PIP concentration of 0.0250 wt%, exhibits a rejection rate of over 98.8 % for Na2SO4 and a water permeance of 25.8 L·m-2·h-1·bar-1. The membranes with a diameter of 30 cm demonstrate reproducibility in nanofiltration performance and satisfactory long-term stability. This method offers a simple yet effective strategy for regulating the liquid distribution and optimizing interfacial polymerization in fabricating polyamide composite membranes.
Collapse
Affiliation(s)
- Yu Fang
- MOE Engineering Center of Separation Membranes and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310058, China
| | - Cheng-Ye Zhu
- MOE Engineering Center of Separation Membranes and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310058, China
| | - Hao-Cheng Yang
- MOE Engineering Center of Separation Membranes and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310058, China.
| | - Chao Zhang
- MOE Engineering Center of Separation Membranes and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Kang Xu
- MOE Engineering Center of Separation Membranes and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Baig U, Jillani SMS, Waheed A. Decoration of β-Cyclodextrin and Tuning Active Layer Chemistry Leading to Nanofiltration Membranes for Desalination and Wastewater Decontamination. MEMBRANES 2023; 13:membranes13050528. [PMID: 37233589 DOI: 10.3390/membranes13050528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Given the huge potential of thin film composite (TFC) nanofiltration (NF) membranes for desalination and micro-pollutant removal, two different sets of six NF membranes were synthesized. The molecular structure of the polyamide active layer was tuned by using two different cross-linkers, terephthaloyl chloride (TPC) and trimesoyl chloride (TMC), reacted with tetra-amine solution containing β-Cyclodextrin (BCD). To further tune the structure of the active layers, the time duration of interfacial polymerization (IP) was varied from 1 to 3 min. The membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), attenuated total reflectance Fourier transform infra-red (ATR-FTIR) spectroscopy, elemental mapping and energy dispersive (EDX) analysis. The six fabricated membranes were tested for their ability to reject divalent and monovalent ions followed by rejection of micro-pollutants (pharmaceuticals). Consequently, terephthaloyl chloride turned out to be the most effective crosslinker for the fabrication of membrane active layer with tetra-amine in the presence of β-Cyclodextrin using interfacial polymerization reaction for 1 min. The membrane fabricated using TPC crosslinker (BCD-TA-TPC@PSf) showed higher % rejection for divalent ions (Na2SO4 = 93%; MgSO4 = 92%; MgCl2 = 91%; CaCl2 = 84%) and micro-pollutants (Caffeine = 88%; Sulfamethoxazole = 90%; Amitriptyline HCl = 92%; Loperamide HCl = 94%) compared to the membrane fabricated using TMC crosslinker (BCD-TA-TMC@PSf). For the BCD-TA-TPC@PSf membrane, the flux was increased from 8 LMH (L/m2.h) to 36 LMH as the transmembrane pressure was increased from 5 bar to 25 bar.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Zhang X, Zhou Y, Zhao F, Geng C, Li Z, Zhang J, Yang Y, Chen H. Anti-fouling mechanism of ultrafiltration membranes modified by graphene oxide with different charged groups under simulated seawater conditions. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Wu LK, Xu ZL, Tong M, Li EC, Tang YJ. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Kadhom M. A Review on the Polyamide Thin Film Composite (TFC) Membrane Used for Desalination: Improvement Methods, Current Alternatives, and Challenges. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Enhanced performance of thin-film nanocomposite membranes achieved by hierarchical zeolites for nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Wang K, Fu W, Wang XM, Xu C, Gao Y, Liu Y, Zhang X, Huang X. Molecular Design of the Polyamide Layer Structure of Nanofiltration Membranes by Sacrificing Hydrolyzable Groups toward Enhanced Separation Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17955-17964. [PMID: 36446026 DOI: 10.1021/acs.est.2c04232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) is an effective technology for removing trace organic contaminants (TrOCs), while the inherent trade-off effect between water permeance and solute rejections hinders its widespread application in water treatment. Herein, we propose a novel scheme of "monomers with sacrificial groups" to regulate the microstructure of the polyamide active layer via introducing a hydrolyzable ester group onto piperazine to control the diffusion and interfacial polymerization process. The achieved benefits include narrowing the pore size, improving the interpore connectivity, enhancing the microporosity, and reducing the active layer thickness, which collectively realized the simultaneous improvement of water permeance and enhancement of TrOCs rejection performance. The resulting membranes were superior to both the control and commercial membranes, especially in water-TrOCs selectivity. The effects of using the new monomers on the membrane physicochemical properties were systematically studied, and underlying mechanisms for the enhanced separation performance were further revealed by simulating the polymerization process through density functional theory calculation and measuring the trans-interface diffusion rate of monomers. This study demonstrates a novel promising NF membrane synthesis strategy by designing the structure of reaction monomers for achieving excellent rejection of TrOCs with a low energy input in water treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Wenjie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin541004, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
10
|
Liu Y, Wang K, Zhou Z, Wei X, Xia S, Wang XM, Xie YF, Huang X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15220-15237. [PMID: 36330774 DOI: 10.1021/acs.est.2c06579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Zixuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- Environmental Engineering Programs, The Pennsylvania State University, Middletown, Pennsylvania17057, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Song J, Xu D, Luo X, Han Y, Ding J, Zhu X, Yang L, Li G, Liang H. In-situ assembled amino-quinone network of nanofiltration membrane for simultaneously enhanced trace organic contaminants separation and antifouling properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Jillani SMS, Baig U, Waheed A, Ansari MA. NH 2-CuO-MCM-41 covalently cross-linked multipurpose membrane for applications in water treatment: Removal of hazardous pollutants from water, water desalination and anti-biofouling performance. CHEMOSPHERE 2022; 307:135592. [PMID: 35803377 DOI: 10.1016/j.chemosphere.2022.135592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The current study was planned to fabricate a new set of membranes to target multiple application areas such as desalting, removal of micropollutants and antibiofouling performance. In-situ incorporated copper oxide to MCM-41 (CuO-MCM-41) was synthesized and amine (-NH2) functionalized by reacting with N1-(3-trimethoxy silylpropyl) diethylenetriamine (NTSDETA) yielding NH2-CuO-MCM-41. Different concentrations of NH2-CuO-MCM-41 were covalently cross-linked in polyamide active layer during interfacial polymerization (IP) between N, N'-bis(3-aminopropyl)ethylenediamine and terephthaloyl chloride (TPC) on polysulfone/poly ester terephthalate (PS/PET) support. The membranes were extensively characterized by Water Contact Angle (WCA), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red (FTIR) spectroscopy, Energy Dispersive X-ray (EDX) analysis, Elemental mapping and Powder X-ray Diffraction (PXRD). From among the different versions of X-CuO-MCM-41/PA@PS/PET membranes, the 0.05%-CuO-MCM-41/PA@PS/PET membrane showed best performance in terms of rejecting a variety of salts, micropollutants and antibiofouling. The 0.05%-CuO-MCM-41/PA@PS/PET showed >98% rejection of MgCl2 and 78% rejection of caffeine with a permeate flux of 16 LMH at 25 bar. The 0.1-NH2-CuO-MCM-41inhibited S. aureus growth by 51.7%. Hence, the current strategy of membrane fabrication proved to be highly efficient for multipurpose applications in water treatment.
Collapse
Affiliation(s)
- Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohammad Azam Ansari
- Epidemic Disease Research Department, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
14
|
Gao Y, Zhao Y, Wang XM, Tang C, Huang X. Modulating the Asymmetry of the Active Layer in Pursuit of Nanofiltration Selectivity via Differentiating Interfacial Reactions of Piperazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14038-14047. [PMID: 36150164 DOI: 10.1021/acs.est.2c04124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF), highly prospective for drinking water treatment, faces a challenge in simultaneously removing emerging contaminants while maintaining mineral salts, particularly divalent cations. To overcome this challenge, NF membranes possessing small pores concomitant with highly negatively charged surfaces were synthesized via a two-step fabrication strategy. The key is to generate a polyamide active layer having a loose and carboxyl group-abundant segment on top and a dense barrier segment underneath. This was achieved by restrained interfacial polymerization between trimesoyl chloride and partly protonated piperazine to form a highly depth-heterogeneous polyamide network, followed by second amidation in an organic environment to remove untethered polyamide fragments and associate malonyl chlorides with reserved amine groups to introduce more negative charges. Most importantly, on first-principle engineering the spatial architecture of the polyamide layer, amplifying asymmetric charge distribution was paired with the thinning of the vertical structure. The optimized membrane exhibits high salt/organic rejection selectivity and water permeance superior to most NF membranes reported previously. The rejections of eight emerging contaminants were in the range of 66.0-94.4%, much higher than the MgCl2 rejection of 41.1%. This new fabrication strategy, suitable for various diacyl chlorides, along with the new membranes so produced, offers a novel option for NF in potable water systems.
Collapse
Affiliation(s)
- Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangying Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhang T, He ZH, Wang KP, Wang XM, Xie YFF, Hou L’. Loose nanofiltration membranes for selective rejection of natural organic matter and mineral salts in drinking water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
He Z, Wang K, Liu Y, Zhang T, Wang X. Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment. MEMBRANES 2022; 12:887. [PMID: 36135906 PMCID: PMC9501612 DOI: 10.3390/membranes12090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS-IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.
Collapse
Affiliation(s)
- Zhihai He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Gao Y, Wang K, Wang XM, Huang X. Exploitation of Amine Groups Cooped up in Polyamide Nanofiltration Membranes to Achieve High Rejection of Micropollutants and High Permeance of Divalent Cations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10954-10962. [PMID: 35819002 DOI: 10.1021/acs.est.2c02410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enhance the use of nanofiltration in the production of quality drinking water, particularly through the efficient removal of micropollutants yet still preserving essential minerals, the targeted nanofiltration membranes (NFMs) are required to have small pore dimensions coupled with a high, net-negative charge density. Herein, after the formation of a separation layer using piperazine interfacially polymerized with trimesoyl chloride, the exploitation of residual amine groups was systematically investigated by different diacyl chlorides in an organic milieu, which caused the upper part of the final separation layer to be denser and highly negatively charged. Hence, this protocol offers a novel means to fabricate NFMs simultaneously endowed with a low molecular cutoff (MWCO) of 145-238 Da and a reduced rejection of MgCl2 (48%-80%) as well as a competitive water permeance. Those features are ideally applicable to the goal of removing small micropollutants while preserving mineral ions, as needed for the energy-efficient production of safe, quality drinking water. Furthermore, an attempt was made to correlate MWCO with MgCl2 rejection, which provides some insights on the nexus of the electrostatic effects constrained by size exclusion. The significance of residual amine groups and the modification environment was unveiled, and this method paves a new avenue for designing functional NFMs.
Collapse
Affiliation(s)
- Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
He Q, Hu Y, Li X, Liu M, Yu S, Gao C. Pore size regulation of polyamide composite membrane via a sol-gel process confined within the selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Wu ZJ, Li HX, Li PP, Xu ZL, Zhan ZM, Wu YZ. Thin-Film Composite Nanofiltration Membrane Modified by Fulvic Acid to Enhance Permeability and Antifouling Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhao-Jun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hua-Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ping-Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
21
|
Zhu QY, Wu LK, Li LQ, Zhuang LW, Xue SM, Xu ZL, Tang YJ. Novel Insight on the Effect of the Monomer Concentration on the Polypiperazine-Amide Nanofiltration Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiu-Yu Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liu-Kun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Wei Zhuang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuang-Mei Xue
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
Xie HY, Tang RH, Chen GE, Xu ZL, Mao HF. Highly heat-resistant NF membrane modified by quinoxaline diamines for Li+ extraction from the brine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhang T, Fu RY, Wang KP, Gao YW, Li HR, Wang XM, Xie YF, Hou L. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Tuning pore size and surface charge of poly(piperazinamide) nanofiltration membrane by enhanced chemical cleaning treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Tian J, Song B, Gao S, Van der Bruggen B, Zhang R. Omnifarious performance promotion of the TFC NF membrane prepared with hyperbranched polyester intervened interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Highly Selective and pH-Stable Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. MEMBRANES 2022; 12:membranes12020156. [PMID: 35207077 PMCID: PMC8874617 DOI: 10.3390/membranes12020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
Ultrathin and smooth polyamide (PA) reverse osmosis (RO) membranes have attracted significant interest due to their potential advantages of high permeance and low fouling propensity. Although a layered interfacial polymerization (LIP) technique aided by the insertion of a polyelectrolyte interlayer has proven effective in fabricating ultrathin and uniform membranes, the RO performance and pH stability of the fabricated LIP membrane remain inadequate. In this study, a poly(piperazineamide) (PIPA) layer prepared via interfacial polymerization (IP) was employed as an interlayer to overcome the limitations of the prototype LIP method. Similar to the control polyelectrolyte-interlayered LIP membrane, the PIPA-interlayered LIP (pLIP) membrane had a much thinner (~20 nm) and smoother selective layer than the membrane fabricated via conventional IP due to the highly surface-confined and uniform LIP reaction. The pLIP membrane also exhibited RO performance exceeding that of the control LIP and conventional IP-assembled membranes, by enabling denser monomer deposition and a more confined interfacial reaction. Importantly, the chemically crosslinked PIPA interlayer endowed the pLIP membrane with higher pH stability than the control polyelectrolyte interlayer. The proposed strategy enables the fabrication of high-performance and pH-stable PA membranes using hydrophilic supports, which can be applied to other separation processes, including osmosis-driven separation and organic solvent filtration.
Collapse
|
27
|
Han S, Mai Z, Wang Z, Zhang X, Zhu J, Shen J, Wang J, Wang Y, Zhang Y. Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3427-3436. [PMID: 34989545 DOI: 10.1021/acsami.1c19605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have evinced a potential solution that promises for fast and efficient molecular separation due to the presence of orderly arranged pores and regulable pore apertures. Herein, the synthesized COF (TPB-DMTP-COF) with the pore aperture matching the pore size of the nanofiltration (NF) membrane was utilized to modulate the physicochemical characters of the polyamide (PA) membranes. It is demonstrated that COFs with superior polymer affinity and hydrophilicity not only circumvent the nonselective interfacial cavities but also improve the hydrophilicity of the resultant thin-film nanocomposite (TFN) membranes. Furthermore, the predeposited COF layer is able to slow down the diffusion rate toward the reaction boundary through hydrogen bonding, which is consistent with the results of molecular dynamic (MD) and dissipative particle dynamic (DPD) simulations. In this context, COF-modulated TFN membranes show a roughened and thickened surface with bubble-shaped structures in contrast to the nodular structure of original polyamide membranes. Combined with the introduced in-plane pores of COFs, the resultant TFN membranes display a significantly elevated water permeance of 35.7 L m2 h-1 bar-1, almost 4-fold that of unmodified polyamide membranes. Furthermore, the selectivity coefficient of Cl-/SO42- for COF-modulated TFN membranes achieves a high value of 84 mainly related to the enhanced charge density, far exceeding the traditional NF membranes. This work is considered to provide a guideline of exploring hydrophilic COFs as an interlayer for constructing highly permeable membranes with precise ion-sieving ability.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Institute of Energy Conversion, Jiangxi Academy of Sciences, Changdong Rd., Nanchang 330096, China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Wang
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Li Y, Qi Q, Shan S, Yao Z, Liu F, Zhu B. The stabilization of ultrafiltration membrane blended with randomly structured amphiphilic copolymer: Micropollutants adsorption properties in filtration processes. J Colloid Interface Sci 2022; 613:234-243. [PMID: 35042024 DOI: 10.1016/j.jcis.2022.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
In this study, a blend membrane consisting of polyvinylidene fluoride (PVDF) and tertiary amine containing random copolymer poly(methyl methacrylate-r-dimethylamino-2-ethyl methacrylate) (P(MMA-r-DMAEMA)) was fabricated and utilized as an adsorptive membrane for micropollutants (anionic dye and heavy metal ions) removal from aqueous solutions. Cross-linking the random copolymer by p-xylylene dichloride (XDC) produced the membrane with improved copolymer retention ratio and stability, while slightly variated physicochemical properties. Besides, the fluxes of crosslinked blend membranes dramatically increased from 0.7 ± 0.1 L/(m2h) to 118.6 ± 5.9 L/(m2h). Then the present blend membrane was carried out adsorption and filtration experiments to investigate the influence of various of operation parameters including initial solution pH value, contacting time, initial solution concentration, and recycling efficiency on micropollutants removal. The experimental results showed that the removal of the anionic dyes and heavy metal ions on this tertiary amine containing blend membrane was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 3.5 for anionic dyes and 6.0 for metal ions, respectively. The membrane showed highly efficient capture of sunset yellow (above 99%). Meanwhile, the captured sunset yellow was recovered and concentrated with a small volume of alkaline solutions at pH 10.0, which simultaneously regenerated the membrane for its reuse. In a 3-cycle capture-recovery test, the membrane demonstrated a high sunset yellow recovery ratio and a volumetric concentration ratio as high as 400%. Our study provides an alternative strategy for functionalized membrane fabrication, micropollutants removal and recovery.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Quan Qi
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Zhikan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China; Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Baoku Zhu
- Engineering Research Center of Membrane and Water Treatment (Ministry of Education), Zhejiang University, Hangzhou, 310027, P. R. China; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
29
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
30
|
Cheng X, Lai C, Li J, Zhou W, Zhu X, Wang Z, Ding J, Zhang X, Wu D, Liang H, Zhao C. Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57998-58010. [PMID: 34817167 DOI: 10.1021/acsami.1c17783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyamide (PA) chemistry-based nanofiltration (NF) membranes have an important role in the field of seawater desalination and wastewater reclamation. Achieving an ultrathin and defect-free active layer via precisely controlled interfacial polymerization (IP) is an effective routine to improve the separation efficiencies of NF membranes. Herein, the morphologies and chemical structures of the thin-film composite (TFC) NF membranes were accurately regulated by tailoring the interfacial reaction temperature during the IP process. This strategy was achieved by controlling the temperature (-15, 5, 20, 35, and 50°) of the oil-phase solutions. The structural compositions, morphological variations, and separation features of the fabricated NF membranes were studied in detail. In addition, the formation mechanisms of the NF membranes featuring different PAs were also proposed and discussed. The temperature-assisted IP (TAIP) method greatly changed the compositions of the resultant PA membranes. A very smooth and thin PA film was obtained for the NF membranes fabricated at a low interfacial temperature; thus, a high 19.2 L m-2 h-1 bar-1 of water permeance and 97.7% of Na2SO4 rejection were observed. With regard to the NF membranes obtained at a high interfacial temperature, a lower water permeance and higher salt rejection with fewer membrane defects were achieved. Impressively, the high interfacial temperature-assisted NF membranes exhibited uniform coffee-ring-like surface morphologies. The special surface-featured NF membrane showed superior separation for selected heavy metals. Rejections of 93.9%, 97.9%, and 87.7% for Cu2+, Mn2+, and Cd2+ were observed with the optimized membrane. Three cycles of fouling tests indicated that NF membranes fabricated at low temperatures exhibited excellent antifouling behavior, whereas a high interface temperature contributed to the formation of NF membranes with high fouling tendency. This study provides an economical, facile, and universal TAIP strategy for tailoring the performances of TFC PA membranes for environmental water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Cunxian Lai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jinyu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weiwei Zhou
- Shandong Urban Construction Vocational College, Jinan 250103, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
31
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
|
33
|
Guo Z, Zhang K, Guan H, Liu M, Yu S, Gao C. Improved separation efficiency of polyamide-based composite nanofiltration membrane by surface modification using 3-aminopropyltriethoxysilane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Huang S, McDonald JA, Kuchel RP, Khan SJ, Leslie G, Tang CY, Mansouri J, Fane AG. Surface modification of nanofiltration membranes to improve the removal of organic micropollutants: Linking membrane characteristics to solute transmission. WATER RESEARCH 2021; 203:117520. [PMID: 34392040 DOI: 10.1016/j.watres.2021.117520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Surface modification of nanofiltration (NF) membranes has great potential to improve the removal of organic micropollutants (OMs) by NF membranes. This study used polydopamine (PDA) as a model coating to comprehensively link the changes in membrane properties with the changes in transmission of 34 OMs. The membrane characterization demonstrated that a thicker, denser, and more hydrophilic PDA coating can be achieved by increasing the PDA deposition time from 0.5 to 4 hours. Overall, the transmissions of target OMs were reduced by PDA-coated NF membranes compared to unmodified NF membranes. The neutral hydrophobic compounds showed lower transmissions for longer PDA coating (PDA4), while the neutral hydrophilic compounds tended to show lower transmissions for shorter PDA coating (PDA0.5). To explain this, competing effects provided by the PDA coatings are proposed including sealing defects, inducing cake-enhanced concentration polarization in the coating layer for neutral hydrophilic compounds, and weakened hydrophobic adsorption for neutral hydrophobic compounds. For charged compounds, PDA4 with the greatest negative charge among the PDA-coated membranes showed the lowest transmission. Depending on the molecular size and hydrophilicity of the compounds, the transmission of OMs by the PDA4 coating could be reduced by 70% with only a 26.4% decline in water permeance. The correlations and mechanistic insights provided by this work are highly useful for designing membranes with specific surface properties via surface modification to improve the removal of OMs without compromising water production.
Collapse
Affiliation(s)
- Shiyang Huang
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Greg Leslie
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jaleh Mansouri
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
36
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Wang L, Lin Y, Tang Y, Ren D, Wang X. Fabrication of oppositely charged thin-film composite polyamide membranes with tunable nanofiltration performance by using a piperazine derivative. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Zhan ZM, Tang YJ, Zhu KK, Xue SM, Ji CH, Tang CY, Xu ZL. Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Zhao Y, Tong X, Chen Y. Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3352-3361. [PMID: 33596060 DOI: 10.1021/acs.est.0c08101] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Domestic wastewater is a valuable reservoir of nutrients such as nitrogen and phosphorus. However, the presence of emerging micropollutants (EMPs) hinders its applications in resource recovery. In this study, we designed and fabricated a novel thin-film composite polyamide membrane, which enables highly selective nanofiltration (NF) that removes EMPs effectively while preserving valuable nutrients in the permeate. By incorporating polyethylenimine as an additional monomer to piperazine and surfactant sodium dodecyl sulfate in interfacial polymerization, we precisely tuned membrane pore size, pore size distribution, and surface charge. The resultant NF membrane achieved desirable solute-solute selectivity between EMPs (rejection rate > 75%) and nutrient N and P ions (rejection rate < 25%). By applying a modified Donnan steric pore model with dielectric exclusion, which takes membrane pore size distribution into consideration, we demonstrate the synergistic effect of membrane pore size, pore size distribution, and surface charge in regulating membrane solute-solute selectivity. Designing solute-solute selective NF membranes for fit-for-purpose wastewater treatment has great potential to improve the flexibility of membrane technologies that can convert wastewater streams to valuable water and nutrient resources.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Léniz-Pizarro F, Liu C, Colburn A, Escobar IC, Bhattacharyya D. Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation. J Memb Sci 2021; 620:118973. [PMID: 35002049 PMCID: PMC8740894 DOI: 10.1016/j.memsci.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. Particularly, the NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6,000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Chunqing Liu
- Membranes R&D Group, Honeywell UOP, 50 E. Algonquin Road, Des Plaines, IL 60016, USA
| | - Andrew Colburn
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
41
|
Zhang Z, Luo Y, Peng H, Chen Y, Liao RZ, Zhao Q. Deep spatial representation learning of polyamide nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Wu M, Ruan X, Richman Tinotenda K, Hou B, Jiang X, He G. Cefalexin crystallization residual liquor separation via nanofiltration based multistage process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Li SL, Wu P, Wang J, Hu Y. High-performance zwitterionic TFC polyamide nanofiltration membrane based on a novel triamine precursor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Tagliavini M, Weidler PG, Njel C, Pohl J, Richter D, Böhringer B, Schäfer AI. Polymer-based spherical activated carbon - ultrafiltration (UF-PBSAC) for the adsorption of steroid hormones from water: Material characteristics and process configuration. WATER RESEARCH 2020; 185:116249. [PMID: 32777598 DOI: 10.1016/j.watres.2020.116249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The European Union has proposed the value of 1 ng L-1 as a drinking water quality standard for estradiol. With conventional technologies only partially removing estradiol, the investigation of novel alternatives is more than ever required. Tagliavini and Schäfer proposed that the use of a thin activated carbon layer combined with a membrane is worth considering. In this work, the process was further advanced through a systematic investigation of the role of activated carbon size, activation and surface chemistry on the removal of estradiol. The use of smaller carbon particles allows reaching the ambitious target value of 1 ng L-1 in a millimetric layer. Further, adsorption kinetic enhancement by increasing the oxygen content on the carbon improves the removal from 96 to 99 % (for a layer of 2 mm) for OH-containing pollutants such as estradiol. High removal, together with low pressure and no by-product formation, are characteristics that make the UF-PBSAC a promising and competitive approach.
Collapse
Affiliation(s)
- Matteo Tagliavini
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter Georg Weidler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Njel
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julia Pohl
- Blücher GmbH, Mettmanner Straße 25, 40699 Erkrath, Germany
| | - Dennis Richter
- Blücher GmbH, Mettmanner Straße 25, 40699 Erkrath, Germany
| | | | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
46
|
Ang MBMY, Huang SH, Wei SW, Chiao YH, Aquino RR, Hung WS, Tsai HA, Lee KR, Lai JY. Surface Properties, Free Volume, and Performance for Thin-Film Composite Pervaporation Membranes Fabricated through Interfacial Polymerization Involving Different Organic Solvents. Polymers (Basel) 2020; 12:E2326. [PMID: 33053660 PMCID: PMC7601289 DOI: 10.3390/polym12102326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The type of organic solvents used in interfacial polymerization affects the surface property, free volume, and separation performance of the thin-film composite (TFC) polyamide membrane. In this study, TFC polyamide membrane was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC). Four types of organic solvent were explored in the preparation of pervaporation membrane. These are tetralin, toluene, hexane, and isopentane. The solubility parameter distance between organic solvents and DETA follows in increasing order: tetralin (17.07 MPa1/2) < toluene (17.31 MPa1/2) < hexane (19.86 MPa1/2) < isopentane (20.43 MPa1/2). Same trend was also observed between the organic solvents and DETA. The larger the solubility parameter distance, the denser and thicker the polyamide. Consequently, field emission scanning electron microscope (FESEM) and positron annihilation spectroscopy (PAS) analysis revealed that TFCisopentane had the thickest polyamide layer. It also delivered the highest pervaporation efficiency (permeation flux = 860 ± 71 g m-2 h-1; water concentration in permeate = 99.2 ± 0.8 wt%; pervaporation separation index = 959,760) at dehydration of 90 wt% aqueous ethanol solution. Furthermore, TFCisopentane also exhibited a high separation efficiency in isopropanol and tert-butanol. Therefore, a suitable organic solvent in preparation of TFC membrane through interfacial polymerization enables high pervaporation efficiency.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Shi-Wei Wei
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ruth R. Aquino
- General Education Department, Colegio de Muntinlupa, Mayor J. Posadas Avenue, Sucat, Muntinlupa City 1770, Metro Manila, Philippines;
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Wei-Song Hung
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
47
|
Graphene oxide interlayered thin-film nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
49
|
Feng X, Yu Z, Long R, Sun Y, Wang M, Li X, Zeng G. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116945] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118220] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|