1
|
Gao Y, Liang S, Jiang C, Gu M, Zhang Q, Abdelhafiz A, Zhang Z, Han Y, Yang Y, Zhang X, Liang P, Li J, Huang X. Electric field-confined synthesis of single atomic TiO xC y electrocatalytic membranes. SCIENCE ADVANCES 2025; 11:eads7154. [PMID: 40249798 PMCID: PMC12007568 DOI: 10.1126/sciadv.ads7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiOxCy) sub-3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiOxCy filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m-2 hour-1 bar-1), energy efficiency (e.g., >99% removal of toxins within 1.25 s at 0.022 kWh·m-3 per order), and erosion resistance. The hierarchical design of the TiOxCy membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (1O2, ·OH, and O2·-, etc.) oxidations. The electric field-confined DESP strategy provides a general platform for making high-performance 3D electrodes.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chengxu Jiang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Quanbiao Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zhen Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ying Han
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyuan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Qian L, Yuan C, Wang X, Zhang H, Du L, Wei G, Chen S. Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance. RSC Adv 2023; 13:15872-15880. [PMID: 37250227 PMCID: PMC10213828 DOI: 10.1039/d3ra01116j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Membrane fouling is a major challenge for the membrane separation technique in water treatment. Herein, an MXene ultrafiltration membrane with good electroconductivity and hydrophilicity was prepared and showed excellent fouling resistance under electrochemical assistance. The fluxes under negative potential were 3.4, 2.6 and 2.4 times higher than those without external voltage during treatment of raw water containing bacteria, natural organic matter (NOM), and coexisting bacteria and NOM, respectively. During the treatment of actual surface water with 2.0 V external voltage, the membrane flux was 1.6 times higher than that without external voltage and the TOC removal was improved from 60.7% to 71.2%. The improvement is mainly attributed to the enhanced electrostatic repulsion. The MXene membrane presents good regeneration ability after backwashing under electrochemical assistance with the TOC removal remaining stable at around 70.7%. This work demonstrates that the MXene ultrafiltration membrane under electrochemical assistance possesses excellent antifouling ability and has great potential in advanced water treatment.
Collapse
Affiliation(s)
- Lulu Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Chengyu Yuan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Xu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Haiguang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Lei Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China +86-411-84706263
| |
Collapse
|
4
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
5
|
Pan Z, Xin H, Xu S, Xu R, Wang P, Yuan Y, Fan X, Song Y, Song C, Wang T. Preparation and performance of polyaniline modified coal-based carbon membrane for electrochemical filtration treatment of organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Wang Y, Liang RZ, Jia TZ, Cao XL, Wang Q, Cao JR, Li S, Shi Q, Isaacs L, Sun SP. Voltage-Gated Membranes Incorporating Cucurbit[ n]uril Molecular Containers for Molecular Nanofiltration. J Am Chem Soc 2022; 144:6483-6492. [DOI: 10.1021/jacs.2c01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rong-Zu Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Rong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Ge L, Rabiee H, Li M, Subramanian S, Zheng Y, Lee JH, Burdyny T, Wang H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Kang KW, Choi CW, Jin JW. A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties. Polymers (Basel) 2021; 13:polym13224048. [PMID: 34833347 PMCID: PMC8619640 DOI: 10.3390/polym13224048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Studies of polymer/carbon nanotube (CNT) fibers typically focus on optimizing the overall properties, and the effects of structural variation on these properties are ignored. Thus, we investigated the longitudinal variation in the properties of CNT/polyvinylidene fluoride (CNT/PVDF) fibers prepared by wet spinning a solution of multi-walled nanotubes, PVDF, and dimethylacetamide. To this end, materials for the CNT/PVDF fiber were selected, and a dope solution was prepared using MWNT, PVDF, and dimethylacetamide (DMAc). To consider the process parameters that would affect the performance of the CNT/PVDF fiber during the wet-spinning process using the dope solution, the initial conditions for wet spinning were selected, including bath concentration, bath temperature, drying temperature, and elongation, and the CNT/PVDF fiber was spun under the corresponding conditions. Additionally, three performance stabilization processes were proposed to improve the initial conditions for wet spinning and manufacturing the fiber. Lastly, to confirm the reliability of the CNT/PVDF fiber in all sections, tensile strength, electrical conductivity, and cross-sectional images were analyzed for the 30 m, 60 m, and 90 m sections of the fiber, and the reliability of the wet-spinning process was verified.
Collapse
Affiliation(s)
- Ki-Weon Kang
- Department of Mechanical Engineering, Kunsan National University, Kunsan 54150, Korea;
| | - Chan-Woong Choi
- Strategy Planning Team, Jeonbuk Institute of Automotive Convergence Technology, Kunsan 54158, Korea;
| | - Ji-Won Jin
- Green Mobility R&D Center, Jeonbuk Institute of Automotive Convergence Technology, Kunsan 54158, Korea
- Correspondence:
| |
Collapse
|
10
|
Alayande AB, Goh K, Son M, Kim CM, Chae KJ, Kang Y, Jang J, Kim IS, Yang E. Recent Progress in One- and Two-Dimensional Nanomaterial-Based Electro-Responsive Membranes: Versatile and Smart Applications from Fouling Mitigation to Tuning Mass Transport. MEMBRANES 2020; 11:5. [PMID: 33375122 PMCID: PMC7822182 DOI: 10.3390/membranes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Membrane technologies are playing an ever-important role in the field of water treatment since water reuse and desalination were put in place as alternative water resources to alleviate the global water crisis. Recently, membranes are becoming more versatile and powerful with upgraded electroconductive capabilities, owing to the development of novel materials (e.g., carbon nanotubes and graphene) with dual properties for assembling into membranes and exerting electrochemical activities. Novel nanomaterial-based electrically responsive membranes have been employed with promising results for mitigating membrane fouling, enhancing membrane separation performance and self-cleaning ability, controlling membrane wettability, etc. In this article, recent progress in novel-nanomaterial-based electrically responsive membranes for application in the field of water purification are provided. Thereafter, several critical drawbacks and future outlooks are discussed.
Collapse
Affiliation(s)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
| | - Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea;
| | - Chang-Min Kim
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), Gyeonggi-do 2066, Korea;
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Yesol Kang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - In S. Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Korea
| |
Collapse
|
11
|
Yuan H, Li G, Dai E, Lu G, Huang X, Hao L, Tan Y. Ordered
Honeycomb‐Pattern
Membrane
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Yuan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guangzhen Li
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Enhao Dai
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guolin Lu
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Xiaoyu Huang
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Longyun Hao
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Yeqiang Tan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| |
Collapse
|
12
|
Liu Y, Liu F, Ding N, Hu X, Shen C, Li F, Huang M, Wang Z, Sand W, Wang CC. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Yu X, Tang Y, Pan J, Shen L, Begum A, Gong Z, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1751-1769. [PMID: 32762110 DOI: 10.1002/wer.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
By summarizing 187 relevant research articles published in 2019, the review is focused on the research progress of physicochemical processes for wastewater treatment. This review divides into two sections, physical processes and chemical processes. The physical processes section includes three sub-sections, that is, adsorption, granular filtration, and dissolved air flotation, whereas the chemical processes section has five sub-sections, that is, coagulation/flocculation, advanced oxidation processes, electrochemical, capacitive deionization, and ion exchange. PRACTITIONER POINTS: Totally 187 research articles on wastewater treatment have been reviewed and discussed. The review has two major sections with eight sub-topics.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- China Construction Science & Technology Co. Ltd., Shenzhen Branch, Shenzhen, China
| | - Yao Tang
- Ebo Environmental Protection Group, Guangzhou, China
| | - Jian Pan
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, China
- Environmental Technology Innovation Center of Jiande, Hangzhou, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | | | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| |
Collapse
|
14
|
Yang Y, Qiao S, Zhou J, Quan X. Mitigating Membrane Fouling Based on In Situ •OH Generation in a Novel Electro-Fenton Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7669-7676. [PMID: 32437134 DOI: 10.1021/acs.est.0c01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel electro-Fenton membrane bioreactor was constructed to investigate the effect of electro-Fenton on mitigating membrane fouling. Herein, porous carbon (PC), carbon nanotubes (CNTs) and Fe2+ were spun into hollow fiber membranes (Fe-PC-CHFM), then served as cathode and filtration core simultaneously. The H2O2 can be in situ produced by O2 reduction with electro-assistance, and further induce hydroxyl radicals (•OH) generation with loaded Fe2+ on the surface of Fe-PC-CHFM. In addition, Fe3+/Fe2+ cycle can be realized effectively by the electro-assistance, avoiding ferrous iron addition. During over 100-day operation, the electro-Fenton membrane bioreactor achieved 93% of COD and 88% of NH4+-N removal at a HRT of 8 h. At the end of operation, the membranes in electro-Fenton membrane bioreactor still exhibited obviously mesh-like structure similarly to initial level. Importantly, merely 15 min with an operation voltage of -0.8 V was sufficient to completely recover permeate flux of the fouled Fe-PC-CHFM. The energy consumption used for membrane fouling control was barely 8.64 × 10-5 kW·h/m3. Therefore, this novel energy-saved electro-Fenton membrane bioreactor process could provide an envisaging prospective and promising method for practice wastewater membrane treatment.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
15
|
Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Elnabawy E, Elsherbiny IMA, Abdelsamad AMA, Anis B, Hassan A, Ulbricht M, Khalil ASG. Tailored CNTs Buckypaper Membranes for the Removal of Humic Acid and Separation of Oil-in-Water Emulsions. MEMBRANES 2020; 10:membranes10050097. [PMID: 32408564 PMCID: PMC7281685 DOI: 10.3390/membranes10050097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are a robust material and proven as a promising candidate for a wide range of electronic, optoelectronic and environmental applications. In this work, two different methods were utilized for the preparation of CNTs exhibiting different aspect ratios via chemical vapor deposition (CVD). The as-prepared CNTs were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2adsorption isotherms, thermogravimetric analysis and Raman spectroscopy in order to investigate their morphological and structural properties. Free-standing CNTs "buckypaper" membranes were fabricated, characterized and tailored to meet the requirements of two applications, i.e., (1) the removal of humic acid (HA) from water and (2) separation of oil-in-water emulsions. It was revealed that the hydrophobic buckypapers showed high separation performance for Shell oil-in-water emulsions filtration, with up to 98% through the accumulation of oil droplets onto the membrane surface. The absorption capacity of buckypaper membranes for various organic liquids (oil, chloroform and toluene) was evaluated over 10 absorption cycles to investigate their recyclability and robustness. Moreover, surface modification was introduced to the pristine CNTs to increase their surface hydrophilicity and improve the pure water permeability of buckypapers. These modified buckypapers showed high flux for HA solutions and excellent HA rejection efficiency up to 95%via size exclusion and electrostatic repulsion mechanisms.
Collapse
Affiliation(s)
- Eman Elnabawy
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
| | - Ibrahim M. A. Elsherbiny
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
| | - Ahmed M. A. Abdelsamad
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
- Water Pollution Dept, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Badawi Anis
- Spectroscopy Dept, Physics Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelwahab Hassan
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
| | - Mathias Ulbricht
- Lehrstuhlfür Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany; (I.M.A.E.); (A.M.A.A.); (M.U.)
| | - Ahmed S. G. Khalil
- Physics Department and Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (E.E.); (A.H.)
- Materials Science & Engineering Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria 21934, Egypt
- Correspondence:
| |
Collapse
|
17
|
Ma C, Yi C, Li F, Shen C, Wang Z, Sand W, Liu Y. Mitigation of Membrane Fouling Using an Electroactive Polyether Sulfone Membrane. MEMBRANES 2020; 10:membranes10020021. [PMID: 32019206 PMCID: PMC7074576 DOI: 10.3390/membranes10020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/13/2023]
Abstract
Membrane fouling is the bottleneck limiting the wide application of membrane processes. Herein, we adopted an electroactive polyether sulfone (PES) membrane capable of mitigating fouling by various negatively charged foulants. To evaluate anti-fouling performance and the underlying mechanism of this electroactive PES membrane, three types of model foulants were selected rationally (e.g., bovine serum albumin (BSA) and sodium alginate (SA) as non-migratory foulants, yeast as a proliferative foulant and emulsified oil as a spreadable foulant). Water flux and total organic carbon (TOC) removal efficiency in the filtering process of various foulants were tested under an electric field. Results suggest that under electrochemical assistance, the electroactive PES membrane has an enhanced anti-fouling efficacy. Furthermore, a low electrical field was also effective in mitigating the membrane fouling caused by a mixture of various foulants (containing BSA, SA, yeast and emulsified oil). This result can be attributed to the presence of electrostatic repulsion, which keeps foulants away from the membrane surface. Thereby it hinders the formation of a cake layer and mitigates membrane pore blocking. This work implies that an electrochemical control might provide a promising way to mitigate membrane fouling.
Collapse
Affiliation(s)
- Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chao Yi
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- Correspondence: ; Tel.: +86-21-6779-8752
| |
Collapse
|
18
|
Cai N, Larese-Casanova P. Facile Synthesis and Reuse of Magnetic Black Carbon Magnetite (BC-Mag) for Fast Carbamazepine Removal from Water. NANOMATERIALS 2020; 10:nano10020213. [PMID: 31991921 PMCID: PMC7074862 DOI: 10.3390/nano10020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
Magnetic carbonaceous nanomaterials are needed in water treatment applications because they can offer both carbon surfaces for sorption of organic pollutants and ease of material magnetic retrieval for regeneration and reuse. In this study, we employed a facile one-step method to synthesize a black carbon-magnetite composite (BC-Mag) by high-temperature annealing of black carbon and hematite. The nanocomposite was easily dispersed and stable in water owing to the presence of negatively charged oxygen surface functional groups. Sorption kinetics with dissolved carbamazepine showed a rapid initial uptake with equilibrium achieved within only minutes. The sorption extent can be described with the Freundlich model, and surface area normalized sorption affinity was an order of magnitude greater than conventional granular activated carbon. The sorption extent of neutral carbamazepine remained constant between pH 2–10 while surface zeta potential decreased. BC-Mag can be reused for the sorption of carbamazepine up to six times without significant loss of the sorption extent.
Collapse
Affiliation(s)
- Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering and Technology Research Center of Online Monitoring for Water Environmental Pollution, Guangdong Institute of Analysis, Guangzhou 510070, China;
| | - Philip Larese-Casanova
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
- Correspondence: or ; Tel.: +1-617-373-2899
| |
Collapse
|