1
|
Mazumder MM, Gerber H, Kohl PA, Minteer SD. Development and Evaluation of Butyl Norbornene Based Cross-Linked Anion Exchange Membranes for Enhanced Nonaqueous Redox Flow Battery Efficiency. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6315-6325. [PMID: 39831506 DOI: 10.1021/acsami.4c18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker. The performance of the AEMs was investigated in nonaqueous redox flow batteries under ideal conditions. Performance evaluation encompassed several key factors, including durability in a nonaqueous solvent, charge-carrying ions permeability, electric cell resistance, crossover of redox-active molecules, and mechanical properties. The BuNB-based AEMs outperformed the commercial Fumasep membrane in battery cycling tests, showcasing their superior performance characteristics. Long-term performance tests showed that the top performing PNB membrane exhibited an impressive 83% total capacity retention over 1000 charge/discharge cycles. The low loss was primarily due to minimal crossover. In contrast, the FAPQ-375 commercial membrane experienced significantly lower capacity retention, measuring only 28%, due to high crossover.
Collapse
Affiliation(s)
- M Motiur Mazumder
- Department of Chemistry and Biochemistry, Utah Tech University, St. George, Utah 84770, United States
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hazel Gerber
- Department of Chemistry, Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, United States
| | - Paul A Kohl
- Department of Chemistry, Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, United States
| | - Shelley D Minteer
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
2
|
Yang H, Lin S, Qu Y, Wang G, Xiang S, Liu F, Wang C, Tang H, Wang D, Wang Z, Liu X, Zhang Y, Wu Y. An Ultra-Low Self-Discharge Aqueous|Organic Membraneless Battery with Minimized Br 2 Cross-Over. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307780. [PMID: 38168899 PMCID: PMC10870083 DOI: 10.1002/advs.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Batteries dissolving active materials in liquids possess safety and size advantages compared to solid-based batteries, yet the intrinsic liquid properties lead to material cross-over induced self-discharge both during cycling and idle when the electrolytes are in contact, thus highly efficient and cost-effective solutions to minimize cross-over are in high demand. An ultra-low self-discharge aqueous|organic membraneless battery using dichloromethane (CH2 Cl2 ) and tetrabutylammonium bromide (TBABr) added to a zinc bromide (ZnBr2 ) solution as the electrolyte is demonstrated. The polybromide is confined in the organic phase, and bromine (Br2 ) diffusion-induced self-discharge is minimized. At 90% state of charge (SOC), the membraneless ZnBr2 |TBABr (Z|T) battery shows an open circuit voltage (OCV) drop of only 42 mV after 120 days, 152 times longer than the ZnBr2 battery, and superior to 102 previous reports from all types of liquid active material batteries. The 120-day capacity retention of 95.5% is higher than commercial zinc-nickel (Zn-Ni) batteries and vanadium redox flow batteries (VRFB, electrolytes stored separately) and close to lithium-ion (Li-ion) batteries. Z|T achieves >500 cycles (2670 h, 0.5 m electrolyte, 250 folds of membraneless ZnBr2 battery) with ≈100% Coulombic efficiency (CE). The simple and cost-effective design of Z|T provides a conceptual inspiration to regulate material cross-over in liquid-based batteries to realize extended operation.
Collapse
Affiliation(s)
- Han Yang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shiyu Lin
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yunpeng Qu
- College of PhysicsGuizhou UniversityGuiyang550025China
| | - Guotao Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Shuangfei Xiang
- School of Materials Science and Engineering and Institute of Smart Fiber MaterialsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chao Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Hao Tang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Di Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Zhoulu Wang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Xiang Liu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yi Zhang
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| | - Yutong Wu
- School of Energy Sciences and EngineeringNanjing Tech UniversityNanjingJiangsu211816China
| |
Collapse
|
3
|
Chu J, Liu Q, Ji W, Li J, Ma X. Novel microporous sulfonated polyimide membranes with high energy efficiency under low ion exchange capacity for all vanadium flow battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Yu Y, Zeng Z, Gao X, Xiong C, Zhu H, Cen H, Zheng X, Liu Q, Hu T, Wu C. A Maximization of the Proton Conductivity of Sulfonated Poly(Ether Ether Ketone) with Grafted Segments Containing Multiple, Flexible Propanesulfonic Acid Groups. Macromol Rapid Commun 2023; 44:e2200926. [PMID: 36527198 DOI: 10.1002/marc.202200926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 12/23/2022]
Abstract
To enhance the proton conductivity of sulfonated poly(ether ether ketone) (SPEEK), proton-conducting groups are required to be covalently connected to SPEEK and form proton-conducting channels. Herein, SPEEK fully grafted with segments containing multiple, flexible propanesulfonic acid groups (MS-SPEEK-102) is successfully prepared. Compared with SPEEK, MS-SPEEK-102 exhibits a higher proton conductivity of 8.3 × 10-2 S cm-1 at 80 °C with 98% relative humidity, and consequently a greater power density of 0.530 W cm-2 at 60 °C. These can be ascribed to the increased number of sulfonic acid groups, and ample, uninterrupted proton-conducting channels constructed by the movement of the maximum content, flexible side-chain segments. This approach offers an idea for obtaining a proton exchange membrane with good proton conductivity based on SPEEK.
Collapse
Affiliation(s)
- Yang Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Zheng Zeng
- Jingmen City Huafu Polymeric Materials Co., Ltd., Jingmen, Hubei, 448000, P. R. China
| | - Xuesong Gao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Chunyong Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Huamei Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Hongyu Cen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| |
Collapse
|
5
|
Advancements in Polyelectrolyte Membrane Designs for Vanadium Redox Flow Battery (VRFB). RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
6
|
Li G, Wang G, Wei S, Yu Y, Li X, Zhang J, Chen J, Wang R. Side-Chain Grafting-Modified Sulfonated Poly(ether ether ketone) with Significantly Improved Selectivity for a Vanadium Redox Flow Battery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
7
|
Liu J, Long J, Huang W, Xu W, Qi X, Li J, Zhang Y. Enhanced proton selectivity and stability of branched sulfonated polyimide membrane by hydrogen bonds construction strategy for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Li W, Wang H, Zhang J, Xiang Y, Lu S. Advancements of Polyvinylpyrrolidone-Based Polymer Electrolyte Membranes for Electrochemical Energy Conversion and Storage Devices. CHEMSUSCHEM 2022; 15:e202200071. [PMID: 35318798 DOI: 10.1002/cssc.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Polymer electrolyte membranes (PEMs) play vital roles in electrochemical energy conversion and storage devices, such as polymer electrolyte membrane fuel cell (PEMFC), redox flow battery, and water electrolysis. As the crucial component of these devices, PEMs need to possess high ion conductivity and electronic insulation, remarkable mechanical and chemical stability, and outstanding isolation function for the materials on both sides of the cathode and anode. Polyvinylpyrrolidone has received widespread attention in the research of PEMs owing to its tertiary amine basic groups and exceptional hydrophilic properties. This review focuses on the application status of polyvinylpyrrolidone-based PEMs in PEMFC, vanadium redox flow battery, and alkaline water electrolysis, and describes in detail the key scientific problems in these fields, providing constructive suggestions and guidance for the application of polyvinylpyrrolidone-based PEMs in electrochemical energy conversion and storage devices.
Collapse
Affiliation(s)
- Wen Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
11
|
TiO 2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:polym14081617. [PMID: 35458366 PMCID: PMC9026947 DOI: 10.3390/polym14081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Collapse
|
12
|
Zhai S, Lu Z, Ai Y, Liu X, Wang Q, Lin J, He S, Tian M, Chen L. Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Lou X, Lu B, He M, Yu Y, Zhu X, Peng F, Qin C, Ding M, Jia C. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
An H, Zhang R, Li W, Li P, Qian H, Yang H. Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7845-7855. [PMID: 35104405 DOI: 10.1021/acsami.1c20627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An aminopropyl isobutyl polyhedral oligosilsesquioxane (NH2-POSS) surface-modified Nafion membrane has been designed by chemical grafting for vanadium redox flow batteries (VRFBs). NH2-POSS is a cage-like macromer consisting of an inorganic Si8O12 core surrounded by seven inert isobutyl groups and one active aminopropyl group. The sulfonic acid groups on the surface of Nafion can be activated by 1,1-carbonyldiimidazole for further modification with NH2-POSS. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) prove that NH2-POSS has been successfully grafted on the surface of a Nafion 115 membrane. Although the proton conductivity decreases slightly, the organic-inorganic hybrid membranes display enhanced ion selectivity and excellent dimensional stability with lower water uptake and swelling ratio than Nafion 115. Moreover, two-dimensional-grazing incidence X-ray diffraction (2D-GIXRD) reveals that the introduction of NH2-POSS forms a POSS layer on the surface of the membrane and narrows the space of Nafion clusters, which helps to block VO2+ permeation. A VRFB with the surface-modified Nafion membrane displays an outstanding performance with an average Coulombic efficiency (CE) of 98.7% and energy efficiency (EE) of 84.5% at a current density of 80 mA cm-2, superior to those of the Nafion 115 membrane (CE = 95.7%, EE = 81.7%). Furthermore, the cell holds a high capacity retention of 49.2% after 1000 charge-discharge cycles, in contrast to that of 41.9% for the cell with Nafion 115 after only 200 cycles. The results suggest that the surface-modified hybrid membrane is a promising strategy to overcome the vanadium ion crossover in VRFBs.
Collapse
Affiliation(s)
- Hongli An
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pan Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huidong Qian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
A low vanadium permeability sulfonated polybenzimidazole membrane with a metal-organic framework for vanadium redox flow batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Sharma P, Kumar S, Bhushan M, Shahi VK. Ion selective redox active anion exchange membrane: Improved performance of vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Thiam BG, El Magri A, Vaudreuil S. An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211049317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vanadium redox flow batteries (VRFB) are among the most promising approaches to efficiently store renewable energies. In such battery type, Nafion is commonly used as membrane material but suffers from high vanadium crossover and cost. These drawbacks negatively influence the widespread commercial application of VRFBs. Alternative membrane materials with high performance and low cost are thus being developed to address these shortfalls. Among those, possible materials for the VRFB membrane is sulfonated polyether ether ketone (SPEEK), which recently attracted considerable attention due to its low cost, combined with mechanical and chemical stability, and ease of preparation. This review summarizes the research activities related to the development of SPEEK-based membranes for VRFB applications and gives an overview of the properties of PEEK and its sulfonated form. A critical analysis on the challenges of SPEEK-based membranes is also discussed.
Collapse
Affiliation(s)
- Baye Gueye Thiam
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Anouar El Magri
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| | - Sébastien Vaudreuil
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Fès-Morocco
| |
Collapse
|
19
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Zhu B, Sui Y, Wei P, Wen J, Cao H, Cong C, Meng X, Zhou Q. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Feroze Gooty Saleha W, Nalajala N, Neergat M. Polyaryletherketone in energy conversion and storage devices – a highly tailorable material with versatile properties. POLYM INT 2021. [DOI: 10.1002/pi.6233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wasim Feroze Gooty Saleha
- Advanced Polymer Design & Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP) Central Institute of Petrochemical Engineering and Technology (CIPET) Bengaluru India
| | | | - Manoj Neergat
- Department of Energy Science and Engineering (DESE) Indian Institute of Technology Bombay (IITB) Mumbai India
| |
Collapse
|
22
|
Rajput A, Raj SK, Sharma J, Rathod NH, Maru P, Kulshrestha V. Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
24
|
Wang G, Zhang M, He Z, Zhang J, Chen J, Wang R, Teng A, Dai Y. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gang Wang
- College of Materials Science and Engineering Sichuan University Chengdu China
| | | | - Zhenhua He
- College of Materials Science and Engineering Sichuan University Chengdu China
| | - Jie Zhang
- College of Materials Science and Engineering Sichuan University Chengdu China
| | - Jinwei Chen
- College of Materials Science and Engineering Sichuan University Chengdu China
| | - Ruilin Wang
- College of Materials Science and Engineering Sichuan University Chengdu China
| | - Aijun Teng
- Ansteel Beijing Research Institute Co., Ltd Beijing China
| | - Yu Dai
- Ansteel Beijing Research Institute Co., Ltd Beijing China
| |
Collapse
|
25
|
Wu S, Lv X, Ge Z, Wang L, Dai L, He Z. Thiourea-Grafted Graphite Felts as Positive Electrode for Vanadium Redox Flow Battery. Front Chem 2021; 8:626490. [PMID: 33520942 PMCID: PMC7841072 DOI: 10.3389/fchem.2020.626490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, thiourea was successfully grafted onto the surface of acid preprocessed graphite felts [sulfuric acid-treated graphite felt (SA-GFs)] by thiol-carboxylic acid esterification. The thiourea-grafted graphite felts (TG-GFs) were investigated as the positive electrode for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggested that thiourea was grafted into the surface of graphite felts. The cyclic voltammetry showed that the peak potential separation decreased by 0.2 V, and peak currents were greatly enhanced on TG-GF electrode compared with SA-GF electrode, implying improved electro-catalytic activity and reversibility of TG-GF electrode toward VO2+/VO2+ redox reaction. The initial capacity of TG-GF-based cell reached 55.6 mA h at 100 mA cm−2, 22.6 mA h larger than that of SA-GF-based cell. The voltage and energy efficiency for TG-GF-based cell increased by 4.9% and 4.4% compared with those of SA-GF-based cell at 100 mA cm−2, respectively.
Collapse
Affiliation(s)
- Shangzhuo Wu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xin Lv
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Zhijun Ge
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
26
|
Lu W, Shi D, Zhang H, Li X. Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|