1
|
Gao Y, Liang S, Jiang C, Gu M, Zhang Q, Abdelhafiz A, Zhang Z, Han Y, Yang Y, Zhang X, Liang P, Li J, Huang X. Electric field-confined synthesis of single atomic TiO xC y electrocatalytic membranes. SCIENCE ADVANCES 2025; 11:eads7154. [PMID: 40249798 PMCID: PMC12007568 DOI: 10.1126/sciadv.ads7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiOxCy) sub-3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiOxCy filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m-2 hour-1 bar-1), energy efficiency (e.g., >99% removal of toxins within 1.25 s at 0.022 kWh·m-3 per order), and erosion resistance. The hierarchical design of the TiOxCy membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (1O2, ·OH, and O2·-, etc.) oxidations. The electric field-confined DESP strategy provides a general platform for making high-performance 3D electrodes.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chengxu Jiang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Quanbiao Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zhen Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ying Han
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyuan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
3
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Jiang W, Haider MR, Duan Y, Han J, Ding Y, Mi B, Wang A. Metal-free electrified membranes for contaminants oxidation: Synergy effect between membrane rejection and nanoconfinement. WATER RESEARCH 2024; 248:120862. [PMID: 37976953 DOI: 10.1016/j.watres.2023.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Electro-Fenton processes are frequently impeded by depletion of metal catalysts, unbalance between H2O2 generation and activation, and low concentration of reactive species (e.g., •OH) in the bulk solution. A metal-free electro-Fenton membrane was fabricated with nitrogen-doped carbon nanotube (N-CNT) and reduced graphene oxide (RGO). N-CNT acted as a catalyst for both H2O2 generation and activation, while the incorporated RGO served as the second catalyst for H2O2 generation and improved the performance of membrane rejection. The electrified membrane was optimized in terms of nitrogen precursors selection and composition of N-CNT and RGO to achieve optimal coupling between H2O2 generation and activation. The membrane fabricated with 67% mass of N-CNT with urea as the precursor achieved over 95% removal of the target contaminants in a single pass through the membrane with a water flux of 63 L m-2 h-1. This membrane also exhibited efficient transformation of various concentrations of contaminants (i.e., 1-10 mg L-1) over a broad range of pH (i.e., 3-9). Due to its good durability and low energy consumption, the metal-free electro-Fenton membrane holds promise for practical water treatment application. The concentration-catalytic oxidation model elucidated that the elevated contaminant concentration near the membrane surface enhanced the transformation rate by 40%. The nanoconfinement enhanced the transformation rate constant inside the membrane by a factor of 105 because of elevated •OH concentration inside the nanopores. Based on the prediction of this model, the configuration of the membrane reactor has been optimized.
Collapse
Affiliation(s)
- Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Rizwan Haider
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yanghua Duan
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Baoxia Mi
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
5
|
Yan N, Ren T, Lu K, Gao Y, Sun M, Huang X, Zhang X. Carbon-based electrocatalytic dual-membrane system bolsters singlet oxygen production for ultrafast water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132787. [PMID: 39491991 DOI: 10.1016/j.jhazmat.2023.132787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Reactive electrochemical membranes (REMs) are promising technologies in treating pharmaceuticals and personal care products (PPCPs) in water. Herein, a novel carbon-based electrocatalytic dual-membrane system was designed to exploit the whole redox process of electrodes, in which the membrane cathode and anode were formed by carbon fibers doped with Fe and metal organic frameworks derived SnO2, respectively. Propranolol (PRO) was used as a representative of PPCPs. The system bolstered singlet oxygen (1O2) production by the synergy of two REM electrodes, further improving the removal rate constant of PRO compared with single-electrode-dominant modes. 97.5 ± 1.7% of PRO removal was achieved in a single-pass electro-filtration at a residence time of ∼2.9 s. The generation of 1O2 and its reaction with pollutants were systematically and thoroughly explored via experiments coupled with theoretical calculation. The toxicity of the decomposition products was predicted to be reduced compared with PRO. These findings suggested that the carbon-based electrocatalytic dual-membrane system could effectively promote 1O2 production for ultrafast catalytic oxidation of PRO, providing a cost-effective solution for the development of an efficient and stable technology for PPCPs removal.
Collapse
Affiliation(s)
- Ni Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yifan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Gao Y, Liang S, Liu B, Jiang C, Xu C, Zhang X, Liang P, Elimelech M, Huang X. Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation. Nat Commun 2023; 14:2059. [PMID: 37045829 PMCID: PMC10097648 DOI: 10.1038/s41467-023-37676-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Achieving controllable fine-tuning of defects in catalysts at the atomic level has become a zealous pursuit in catalysis-related fields. However, the generation of defects is quite random, and their flexible manipulation lacks theoretical basis. Herein, we present a facile and highly controllable thermal tuning strategy that enables fine control of nanodefects via subtle manipulation of atomic/lattice arrangements in electrocatalysts. Such thermal tuning endows common carbon materials with record high efficiency in electrocatalytic degradation of pollutants. Systematic characterization and calculations demonstrate that an optimal thermal tuning can bring about enhanced electrocatalytic efficiency by manipulating the N-centered annulation-volatilization reactions and C-based sp3/sp2 configuration alteration. Benefiting from this tuning strategy, the optimized electrocatalytic anodic membrane successfully achieves >99% pollutant (propranolol) degradation during a flow-through (~2.5 s for contact time), high-flux (424.5 L m-2 h-1), and long-term (>720 min) electrocatalytic filtration test at a very low energy consumption (0.029 ± 0.010 kWh m-3 order-1). Our findings highlight a controllable preparation approach of catalysts while also elucidating the molecular level mechanisms involved.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Biming Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengxu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Dong C, Fang W, Yi Q, Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). CHEMOSPHERE 2022; 308:136205. [PMID: 36049639 DOI: 10.1016/j.chemosphere.2022.136205] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this account, the reactive oxygen species (ROS) were comprehensively reviewed, which were based on electro-Fenton and photo-Fenton processes and correlative membrane filtration technology. Specifically, this review focuses on the fundamental principles and applications of advanced oxidation processes (AOPs) based on a series of nanomaterials, and we compare the pros and cons of each method and point out the perspective. Further, the emerging reviews regarding AOPs rarely emphasize the involved ROS and consider the convenience of radical classification and transformation mechanism, such a review is of paramount importance to be needed. Owing to the strong oxidation ability of radical (e.g., •OH, O2•-, and SO4•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the organic contaminants of emerging concern, thus achieving the goal of environmental remediation. Hopefully, this review can offer detailed theoretical guidance for the researchers, and we believe it able to offer the frontier knowledge of AOPs for wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
9
|
Pacheco-Álvarez M, Picos Benítez R, Rodríguez-Narváez OM, Brillas E, Peralta-Hernández JM. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. CHEMOSPHERE 2022; 303:134883. [PMID: 35577132 DOI: 10.1016/j.chemosphere.2022.134883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico
| | - Ricardo Picos Benítez
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, 98160, Zacatecas, Zac., Mexico
| | - Oscar M Rodríguez-Narváez
- Dirección de Investigación y Soluciones Tecnológicas, Centro de Innovación Aplicado en Tecnologías Competitivas, Omega 201, Leon, Guanajuato, 37545, Mexico
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| |
Collapse
|
10
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
11
|
Modified Polyethersulfone Ultrafiltration Membrane for Enhanced Antifouling Capacity and Dye Catalytic Degradation Efficiency. SEPARATIONS 2022. [DOI: 10.3390/separations9040092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Catalytic membranes, as a combination of heterogeneous advanced oxidation and membrane technology reaction systems, have important application prospects in the treatment of dyes and other organics. In practical applications, it is still challenging to construct catalytic membranes with excellent removal efficiency and fouling mitigation. Herein, molybdenum disulfide-iron oxyhydroxide (MoS2-FeOOH) was fabricated using iron oxide and MoS2 nanoflakes, which were synthesized by the hydrothermal method. Furthermore, by changing the concentration of MoS2-FeOOH, the MoS2-FeOOH/polyethersulfone (PES) composite ultrafiltration membrane was obtained with improved hydrophilicity, permeability, and antifouling capacity. The pure water flux of the composite membrane reached 385.3 L/(m2 h), which was 1.7 times that of the blank PES membrane. Compared with the blank membrane, with the increase of MoS2-FeOOH content, the MoS2-FeOOH/PES composite membranes had better adsorption capacity and catalytic performance, and the membrane with 3.0% MoS2-FeOOH content (M4) could be achieved at a 60.2% methylene blue (MB) degradation rate. In addition, the membrane flux recovery ratio (FRR) of the composite membrane also increased from 25.6% of blank PES membrane (M0) to more than 70% after two cycles of bovine serum albumin (BSA) filtration and hydraulic cleaning. The membrane with 2.25% MoS2-FeOOH content (M3) had the best antifouling performance, with the largest FRR and the smallest irreversible ratio (Rir). Catalytic self-cleaning of the composite membrane M3 recovered 95% of the initial flux with 0.1 mol/L H2O2 cleaning. The MoS2-FeOOH/PES composite membranes with the functions of excellent rejection and antifouling capacity have a good prospect in the treatment of printing and dyeing wastewater composed of soluble dyes.
Collapse
|
12
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. A critical review on the electrosorption of organic compounds in aqueous effluent - Influencing factors and engineering considerations. ENVIRONMENTAL RESEARCH 2022; 204:112128. [PMID: 34600882 DOI: 10.1016/j.envres.2021.112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Despite being an old process from the end of the 19th century, electrosorption has attracted renewed attention in recent years because of its unique properties and advantages compared to other separation technologies and due to the concomitant development of new porous electrode materials. Electrosorption offer the advantage to separate the pollutants from wastewater with the possibility of selectively adsorbing and desorbing the targeted compounds. A comprehensive review of electrosorption is provided with particular attention given to the electrosorption of organic compounds, unlike existing capacitive deionization review papers that only focus on inorganic salts. The background and principle of electrosorption are first presented, while the influence of the main parameters (e.g., electrode materials, electrode potential, physico-chemistry of the electrolyte solutions, type of compounds, co-sorption effect, reactor design, etc.) is then detailed and the modeling and engineering aspects are discussed. Finally, the main output and future prospects about recovery studies and combination between electro-sorption/desorption and degradation processes are given. This review particularly highlights that carbon-based materials have been mostly employed (85% of studies) as porous electrode in organics electrosorption, while existing studies lack of electrode stability and durability tests in real conditions. These electrodes have been implemented in a fixed-bed reactor design most of the time (43% of studies) due to enhanced mass transport. Moreover, the electrode potential is a major criterion: it should be applied in the non-faradaic domain otherwise unwanted reactions can easily occur, especially the corrosion of carbon from 0.21 V/standard hydrogen electrode or the water oxidation/reduction. Furthermore, there is lack of studies performed with actual effluents and without addition of supporting electrolyte, which is crucial for testing the real efficiency of the process. The associated predictive model will be required by considering the matrix effect along with transport phenomena and physico-chemical characteristics of targeted organic compounds.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | |
Collapse
|
14
|
Wang X, Ren L, Zha W, Li Z, Dai R, Wang Z. Removal of p-toluenesulfonic acid from wastewater using a filtration-enhanced electro-Fenton reactor. RSC Adv 2022; 12:25424-25432. [PMID: 36199312 PMCID: PMC9451130 DOI: 10.1039/d2ra04921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
A filtration-enhanced electro-Fenton reactor was developed for the removal of p-toluenesulfonic acid from wastewater.
Collapse
Affiliation(s)
- Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wengui Zha
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
15
|
D Tecuapa-Flores E, Hernández JG, Roquero-Tejeda P, Arenas-Alatorre JA, Thangarasu P. Rapid electrochemical recognition of trimethoprim in human urine samples using new modified electrodes (CPE/Ag/Au NPs) analysing tunable electrode properties: experimental and theoretical studies. Analyst 2021; 146:7653-7669. [PMID: 34806723 DOI: 10.1039/d1an01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 μmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).
Collapse
Affiliation(s)
- Eduardo D Tecuapa-Flores
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México, Estado de México, CP 57130, Mexico
| | - Pedro Roquero-Tejeda
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - Jesús A Arenas-Alatorre
- Instituto de Fisica, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| |
Collapse
|
16
|
Li B, Tang W, Sun D, Li B, Ge Y, Ye X, Fang W. Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Barhoum A, Favre T, Sayegh S, Tanos F, Coy E, Iatsunskyi I, Razzouk A, Cretin M, Bechelany M. 3D Self-Supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoO x Nanoparticles: Application to Dyes Degradation by Electro-Fenton-Based Process. NANOMATERIALS 2021; 11:nano11102686. [PMID: 34685127 PMCID: PMC8540561 DOI: 10.3390/nano11102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
We developed free-standing nitrogen-doped carbon nanofiber (CNF) electrodes incorporating Co/CoOx nanoparticles (NPs) as a new cathode material for removing Acid Orange 7 (AO7; a dye for wool) from wastewater by the heterogeneous electro-Fenton reaction. We produced the free-standing N-doped CNF electrodes by electrospinning a polyacrylonitrile (PAN) and cobalt acetate solution followed by thermal carbonation of the cobalt acetate/PAN nanofibers under a nitrogen atmosphere. We then investigated electro-Fenton-based removal of AO7 from wastewater with the free-standing N-doped-CNFs-Co/CoOx electrodes, in the presence or not of Fe2+ ions as a co-catalyst. The electrochemical analysis showed the high stability of the prepared N-doped-CNF-Co/CoOx electrodes in electrochemical oxidation experiments with excellent degradation of AO7 (20 mM) at acidic to near neutral pH values (3 and 6). Electro-Fenton oxidation at 10 mA/cm2 direct current for 40 min using the N-doped-CNF-Co/CoOx electrodes loaded with 25 wt% of Co/CoOx NPs led to complete AO7 solution decolorization with total organic carbon (TOC) removal values of 92.4% at pH 3 and 93.3% at pH 6. The newly developed N-doped-CNF-Co/CoOx electrodes are an effective alternative technique for wastewater pre-treatment before the biological treatment.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
- Correspondence: (A.B.); (M.B.)
| | - Therese Favre
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Fida Tanos
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Antonio Razzouk
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Marc Cretin
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Correspondence: (A.B.); (M.B.)
| |
Collapse
|
18
|
Chen J, Fan S, Chen Y, Wang Y, Bai K, Mai Z, Xiao Z. Electrocatalytic composite membrane with deep-permeation nano structure fabricated by flowing synthesis for enhanced catalysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tian Y, Wang Z, Wang L. Hollow fibers: from fabrication to applications. Chem Commun (Camb) 2021; 57:9166-9177. [PMID: 34519322 DOI: 10.1039/d1cc02991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hollow fibers have attracted more and more attention due to their broad range of applications in numerous fields. We review the latest advance and summarize the fabrication methods, types and applications of hollow fibers. We mainly introduce the fabrication methods of hollow fibers, including co-extrusion/co-axial spinning methods, template methods, 3D printing methods, electrospinning methods, self-crimping methods and gas foaming process. Meanwhile, we summarize four types of hollow fibers: one-layered hollow fibers, multi-layered hollow fibers, multi-hollow fibers and branched hollow fibers. Next, we focus on the main applications of hollow fibers, such as gas separation, cell culture, microfluidic channels, artificial tubular tissues, etc. Finally, we present the prospects of the future trend of development. The review would promote the further development of hollow fibers and benefit their advance in sensing, bioreactors, electrochemical catalysis, energy conversion, microfluidics, gas separation, air purification, drug delivery, functional materials, cell culture and tissue engineering. This review has great significance for the design of new functional materials and development of devices and systems in the related fields.
Collapse
Affiliation(s)
- Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China.,Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China.,Foshan Graduate School of Northeastern University, Foshan, 528300, China
| | - Liqiu Wang
- Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Chu L, Sun Z, Fang G, Cang L, Wang X, Zhou D, Gao J. Highly effective removal of BPA with boron-doped graphene shell wrapped FeS2 nanoparticles in electro-Fenton process: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Graphene Oxide Membranes for Trace Hydrocarbon Contaminant Removal from Aqueous Solution. NANOMATERIALS 2020; 10:nano10112242. [PMID: 33198157 PMCID: PMC7697333 DOI: 10.3390/nano10112242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023]
Abstract
The aim of this paper is to shed light on the application of graphene oxide (GO) membranes for the selective removal of benzene, toluene, and xylene (BTX) from wastewater. These molecules are present in traces in the water produced from oil and gas plants and are treated now with complex filtration systems. GO membranes are obtained by a simple, fast, and scalable method. The focus of this work is to prove the possibility of employing GO membranes for the filtration of organic contaminants present in traces in oil and gas wastewater, which has never been reported. The stability of GO membranes is analyzed in water solutions with different pH and salinity. Details of the membrane preparation are provided, resulting in a crucial step to achieve a good filtration performance. Material characterization techniques such as electron microscopy, x-ray diffraction, and infrared spectroscopy are employed to study the physical and chemical structure of GO membranes, while gas chromatography, UV-visible spectroscopy, and gravimetric techniques allow the quantification of their filtration performance. An impressive rejection of about 90% was achieved for 1 ppm of toluene and other pollutants in water, demonstrating the excellent performance of GO membranes in the oil and gas field.
Collapse
|
22
|
Wei K, Cui T, Huang F, Zhang Y, Han W. Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. MEMBRANES 2020; 10:membranes10110337. [PMID: 33198324 PMCID: PMC7697808 DOI: 10.3390/membranes10110337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022]
Abstract
Research on the coupling of membrane separation (MS) and electrochemical advanced oxidation processes (EAOPs) has been a hot area in water pollution control for decades. This coupling aims to greatly improve water quality and focuses on the challenges in practical application to provide a promising solution to water shortage problems. This article provides a summary of the coupling configurations of MS and EAOPs, including two-stage and one-pot processes. The two-stage process is a combination of MS and EAOPs where one process acts as a pretreatment for the other. Membrane fouling is reduced when setting EAOPs before MS, while mass transfer is promoted when placing EAOPs after MS. A one-pot process is a kind of integration of two technologies. The anode or cathode of the EAOPs is fabricated from porous materials to function as a membrane electrode; thus, pollutants are concurrently separated and degraded. The advantages of enhanced mass transfer and the enlarged electroactive area suggest that this process has excellent performance at a low current input, leading to much lower energy consumption. The reported conclusions illustrate that the coupling of MS and EAOPs is highly applicable and may be widely employed in wastewater treatment in the future.
Collapse
Affiliation(s)
- Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China
| | - Fang Huang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
| | - Yonghao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- Correspondence: (Y.Z.); (W.H.)
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (K.W.); (T.C.); (F.H.)
- Correspondence: (Y.Z.); (W.H.)
| |
Collapse
|
23
|
Qaseem S, Dlamini DS, Zikalala SA, Tesha JM, Husain MD, Wang C, Jiang Y, Wei X, Vilakati GD, Li J. Electro-catalytic membrane anode for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110629. [PMID: 32349954 DOI: 10.1016/j.jenvman.2020.110629] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The modified multifunctional electrodes for electro-Fenton (EF) process are suggested to be promising cathodes for in situ electro-generation and activation of H2O2 to produce hydroxyl radicals (•OH). However, heterogeneous EF process still faces the challenges of limited catalytic activity and releasing of massive amounts of transition metals to the solution after removal of organic pollutants. The main aim of the present investigation was to prepare a cathode containing carbon nanotubes (CNTs) and CuFe nano-layered double hydroxide (NLDH) for degradation and mineralization of cefazolin antibiotic through electro-Fenton process. Structural and electrochemical analyses demonstrated that CuFeNLDH-CNTs nanocomposite was successfully incorporated on the surface of graphite cathode. Due to the increased formation of •OH in the reactor, the incorporation of CNTs into NLDH matrix with a catalyst loading of 0.1 g substantially improved the degradation efficiency of cefazolin (89.9%) in comparison with CNTs-coated (28.7%) and bare graphite cathode (22.8%) within 100 min. In the presence of 15 mM of ethanol, the degradation efficiency of cefazolin was remarkably decreased to 43.7% by the process, indicating the major role of •OH in the destruction of target molecules. Acidic conditions favored the degradation efficiency of cefazolin by the modified EF process. Mineralization efficiency of the bio-refractory compound was obtained to be 70.1% in terms of chemical oxygen demand (COD) analysis after 300 min. The gas chromatography-mass spectroscopy (GC-MS) analysis was also implemented to identify the intermediate byproducts generated during the degradation of cefazolin in the CuFeNLDH-CNTs/EF reactor.
Collapse
Affiliation(s)
- Masoumeh Ghasemi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345, Arak, Iran
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Yu T, Breslin CB. Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2254. [PMID: 32422892 PMCID: PMC7288041 DOI: 10.3390/ma13102254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
In recent years, graphene-based materials have been identified as an emerging and promising new material in electro-Fenton, with the potential to form highly efficient metal-free catalysts that can be employed in the removal of contaminants from water, conserving precious water resources. In this review, the recent applications of graphene-based materials in electro-Fenton are described and discussed. Initially, homogenous and heterogenous electro-Fenton methods are briefly introduced, highlighting the importance of the generation of H2O2 from the two-electron reduction of dissolved oxygen and its catalysed decomposition to produce reactive and oxidising hydroxy radicals. Next, the promising applications of graphene-based electrodes in promoting this two-electron oxygen reduction reaction are considered and this is followed by an account of the various graphene-based materials that have been used successfully to give highly efficient graphene-based cathodes in electro-Fenton. In particular, graphene-based composites that have been combined with other carbonaceous materials, doped with nitrogen, formed as highly porous aerogels, three-dimensional materials and porous gas diffusion electrodes, used as supports for iron oxides and functionalised with ferrocene and employed in the more effective heterogeneous electro-Fenton, are all reviewed. It is perfectly clear that graphene-based materials have the potential to degrade and mineralise dyes, pharmaceutical compounds, antibiotics, phenolic compounds and show tremendous potential in electro-Fenton and other advanced oxidation processes.
Collapse
Affiliation(s)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland;
| |
Collapse
|
26
|
Opportunities for coupled electrochemical and ion-exchange technologies to remove recalcitrant micropollutants in water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Cui L, Huang H, Ding P, Zhu S, Jing W, Gu X. Cogeneration of H2O2 and OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Sun S, Yao H, Fu W, Xue S, Zhang W. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121955. [PMID: 31887563 DOI: 10.1016/j.jhazmat.2019.121955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Micropollution such as pharmaceutical residuals potentially compromises water quality and jeopardizes human health. This study evaluated the photo-Fenton ceramic membrane filtration toward the removal of sulfadiazine (SDZ) as a common antibiotic chemical. The batch experiments verified that the photo-Fenton reactions with as Goethite (α-FeOOH) as the photo-Fenton catalyst achieved the degradation rates of 100% within 60 min with an initial SDZ concentration of 12 mg·L-1. Meanwhile, a mineralization rate of over 80% was obtained. In continuous filtration, a negligible removal rate (e.g., 4%) of SDZ was obtained when only filtering the feed solution with uncoated or catalyst-coated membranes. However, under Ultraviolet (UV) irradiation, both the removal rates of SDZ were significantly increased to 70% (no H2O2) and 99% (with H2O2), respectively, confirming the active degradation by the photo-Fenton reactions. The highest apparent quantum yield (AQY) reached up to approximately 25% when the UV254 intensity was 100 μW·cm-2 and H2O2 was 10 mmol·L-1. Moreover, the photo-Fenton reaction was shown to effectively mitigate fouling and prevent flux decline. This study demonstrated synchronization of photo-Fenton reactions and membrane filtration to enhance micropollutant degradation. The findings are also important for rationale design and operation of photo-Fenton or photocatalytic membrane filtration systems.
Collapse
Affiliation(s)
- Shaobin Sun
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of municipal and environmental Engineering, School of civil engineering, Beijing Jiaotong University, Beijing, 100044, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of municipal and environmental Engineering, School of civil engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| | - Shan Xue
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| | - Wen Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| |
Collapse
|
29
|
Tao L, Yang Y, Yu F. Highly efficient electro-generation of H 2O 2by a nitrogen porous carbon modified carbonaceous cathode during the oxygen reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02360d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, active carbon fibers (ACFs) were modified with nitrogen-doped porous carbon (NPC) and carbon nanotubes (CNTs) to prepare a novel modified electrode as a cathode.
Collapse
Affiliation(s)
- Ling Tao
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Yang Yang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Fangke Yu
- School of Environmental Science and Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| |
Collapse
|