1
|
Govindan I, Paul A, Rama A, Kailas AA, Abutwaibe KA, Annadurai T, Naha A. Mesogenic Architectures for Advanced Drug Delivery: Interrogating Lyotropic and Thermotropic Liquid Crystals. AAPS PharmSciTech 2024; 26:6. [PMID: 39638963 DOI: 10.1208/s12249-024-02985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.
Collapse
Affiliation(s)
- Induja Govindan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Angeeta Paul
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Annamalai Rama
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anjana A Kailas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K A Abutwaibe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thamizharasan Annadurai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Liu X, Zhang G, Al Mohawes KB, Khashab NM. Smart membranes for separation and sensing. Chem Sci 2024:d4sc04793a. [PMID: 39483248 PMCID: PMC11523821 DOI: 10.1039/d4sc04793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Self-assembled membranes are extensively applied across various fields due to their non-thermal and low-carbon footprint characteristics. Recently, smart membranes with stimuli responsiveness have garnered significant attention for their ability to alter physical and chemical properties in response to different stimuli, leading to enhanced performance and a wider range of applications compared to traditional membranes. This review highlights the recent advancements in self-assembled smart membranes, beginning with widely used membrane preparation strategies such as interfacial polymerization and blending. Then it delves into the primary types of stimuli-responses, including light, pH, and temperature, illustrated in detail with relevant examples. Additionally, the review explores the latest progress in the use of smart membranes for separation and sensing, addressing the challenges and opportunities in both fields. This review offers new insights into the design of novel smart membrane platforms for sustainable development and provides a broader perspective on their commercial potential.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Khozama Bader Al Mohawes
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University (PNU) Riyadh 11671 Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Nesterkina M, Kravchenko I, Hirsch AKH, Lehr CM. Thermotropic liquid crystals in drug delivery: A versatile carrier for controlled release. Eur J Pharm Biopharm 2024; 200:114343. [PMID: 38801980 DOI: 10.1016/j.ejpb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Responsive and adaptive soft-matter systems represent an advanced category of materials with potential applications in drug delivery. Among these, liquid crystals (LCs) emerge as multifunctional anisotropic scaffolds capable of reacting to temperature, light, electric or magnetic fields. Specifically, the ordering and physical characteristics of thermotropic LCs are primarily contingent on temperature as an external stimulus. This comprehensive review aims to bridge a notable gap in the biomedical application of thermotropic mesogens by exclusively focusing on drug delivery. Anticipated to inspire diverse ideas, the review intends to facilitate the elegant exploitation of controllable and temperature-induced characteristics of LCs to enhance drug permeation. Here, we delineate recent advancements in thermally-driven LCs with a substantial emphasis on LC monomer mixtures, elastomers, polymers, microcapsules and membranes. Moreover, special emphasis is placed on the biocompatibility and toxicity of LCs as the foremost prerequisite for their application in healthcare. Given the promising prospect of thermotropic LC formulations in a clinical context, a special section is devoted to skin drug delivery. The review covers content from multiple disciplines, primarily targeting researchers interested in innovative strategies in drug delivery. It also appeals to those enthusiastic about firsthand exploration of the feasible biomedical applications of thermotropic LCs. To the best of our knowledge, this marks the first review addressing thermotropic LCs as tunable soft-matter systems for drug delivery.
Collapse
Affiliation(s)
- Mariia Nesterkina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany.
| | - Iryna Kravchenko
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Zhan Y, Broer DJ, Li J, Xue J, Liu D. A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease. MATERIALS HORIZONS 2023. [PMID: 37098874 DOI: 10.1039/d3mh00271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Critical temperature indicators have been extensively utilized in various fields, ranging from healthcare to food safety. However, the majority of the temperature indicators are designed for upper critical temperature monitoring, indicating when the temperature rises and exceeds a predefined limit, whereas stringently demanded low critical temperature indicators are scarcely developed. Herein, we develop a new material and system that monitor temperature decrease, e.g., from ambient temperature to the freezing point, or even to an ultra-low temperature of -20 °C. For this purpose, we create a dynamic membrane which can open and close during temperature cycles from high temperature to low temperature. This membrane consists of a gold-liquid crystal elastomer (Au-LCE) bilayer structure. Unlike the commonly used thermo-responsive LCEs which actuate upon temperature rise, our LCE is cold-responsive. This means that geometric deformations occur when the environmental temperature decreases. Specifically, upon temperature decrease the LCE creates stresses at the gold interface by uniaxial deformation due to expansion along the molecular director and shrinkage perpendicular to it. At a critical stress, optimized to occur at the desired temperature, the brittle Au top layer fractures, which allows contact between the LCE and material on top of the gold layer. Material transport via cracks enables the onset of the visible signal for instance caused by a pH indicator substance. We apply the dynamic Au-LCE membrane for cold-chain applications, indicating the loss of the effectiveness of perishable goods. We anticipate that our newly developed low critical temperature/time indicator will be shortly implemented in supply chains to minimize food and medical product waste.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Dirk J Broer
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Junyu Li
- Molecular Materials and Nanosystems, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Jiuzhi Xue
- Smart Liquid Crystal Technologies Co. Ltd, Jiangsu Industrial Technology Research Institute (JITRI), 280 Huangpujiang Road, Chuangshu, 215556, China
| | - Danqing Liu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|
5
|
Jiang Y, Dong X, Zhu S, Dai S, Bai H, Li Q, Li L, Yuan N, Ding J. Skin-friendly and antibacterial monodomain liquid crystal elastomer actuator. Colloids Surf B Biointerfaces 2023; 222:113110. [PMID: 36586236 DOI: 10.1016/j.colsurfb.2022.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Monodomain liquid crystal elastomers (mLCEs) are flexible and biocompatible smart materials that show unique behaviors of soft elasticity, anisotropy, and reversible shape changes above the nematic-isotropic transition temperature. Therefore, it has great potential for application in wearable devices and biologically. However, most of the reported mLCEs have nematic-isotropic transition temperature (TNI) higher than 60 °C; and above this TNI, the tensile strength of the mLCEs decreases by orders of magnitude. These issues have received little attention, limiting their application in humans. Herein, the TNI of mLCEs was reduced from 78.4 °C to 23.5 °C by substituting part of the rigid LC mesogens with a flexible backbone. The physical entanglement of hydrogen bonds between molecular chains alleviated the molecular chain slip caused by the long flexible backbone. The tensile strength remained constant during the phase transformation. Furthermore, dynamic disulfide bonds were used to modify the LC polymer network, imparting it with excellent antimicrobial, programmable, and self-healing properties. To realize its application in the closure of skin wounds, a porous PHG-mLCE/hydrogel patch that was breathable and waterproof was designed to increase skin adhesion (262 N/m).
Collapse
Affiliation(s)
- Yaoyao Jiang
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xu Dong
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Shijie Zhu
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Shengping Dai
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Hongyu Bai
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Qingyue Li
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Lvzhou Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jianning Ding
- Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China; School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Suzuki T, Sato K, Seki T, Seki T. Study of Polymer Nanofilms Using for High-Throughput Screening in the Development of Transdermal Therapeutic System. Chem Pharm Bull (Tokyo) 2022; 70:868-875. [PMID: 36450585 DOI: 10.1248/cpb.c22-00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We investigated polymer nanofilm (PNF) for use in high-throughput screening (HTS) to promote the development of transdermal therapeutic systems (TTS). The drug permeability of PNF with a 1 : 1 weight mix ratio of poly(L-lactic acid) (PLLA) and poly(methylhydrosiloxane) (PMHS) (PLLA/PMHS (1/1) PNF) and Strat-M® of the transdermal diffusion test membrane, was evaluated using 12 kinds of drugs with the logarithmic value of n-octanol/water partition coefficients of -4.70 to 3.86. The lag time of PLLA/PMHS (1/1) PNF made via polymer alloying was significantly shorter than that of Strat-M® for 10 drug types, and the formation of a highly diffusible PMHS-rich phase accompanying the formation of a sea-island structure was suggested as a contributing factor. Additionally, a high correlation was confirmed between the measured value for the logarithm of the apparent permeability coefficient of PLLA/PMHS (1/1) PNF and the literature values for the logarithm of the apparent permeability coefficient of human skin (r = 0.929). This study shows that PLLA/PMHS (1/1) PNF can reliably predict drug permeability in human skin and can potentially be used in HTS for developing TTS.
Collapse
Affiliation(s)
| | - Kanae Sato
- Faculty of Pharmaceutical Sciences, Josai University
| | - Tomohiro Seki
- Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
7
|
Inoue Y, Takada K, Kawamura A, Miyata T. Amphiphilic Liquid Crystalline Polymer Micelles That Exhibit a Phase Transition at Body Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31513-31524. [PMID: 35767380 DOI: 10.1021/acsami.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid crystalline polymers (LCPs), which exhibit unique structures and properties intermediate between those of liquids and solids, are widely utilized as functional and advanced materials for fabricating optical devices and high-performance fibers. This utility stems from their ability to abruptly change their organized structures and mobilities at their liquid crystalline-isotropic phase transition temperatures, similar to the properties of biological membranes. Despite these numerous potential applications of LCPs, no study on their use in medical applications such as drug delivery has been reported. In the present study, we synthesized amphiphilic side-chain LCPs (LCP-g-OEGs, where OEG is oligo(ethylene glycol)) for medical applications, where the LCP-g-OEGs undergo a nematic-isotropic phase transition at body temperature. The LCP-g-OEGs formed micelles with a diameter of approximately 130 nm in aqueous media. The micelles were stable and did not dissociate in aqueous media even when the temperature exceeded the nematic-isotropic phase transition temperature (TNI). Although the release of a dye as a model drug from micelles was suppressed at temperatures lower than TNI, their dye release was drastically enhanced at temperatures higher than TNI. The LCP-g-OEG micelles regulated dye release reversibly in accordance with stepwise changes in temperature, without undergoing dissociation, differing from the behavior of standard temperature-responsive micelles. The temperature-responsive dye release behavior is induced by dramatic changes in their well-organized and dynamic structures as a result of the nematic-isotropic phase transition. These results demonstrate that the LCP-g-OEG micelles have a lot of medical applications as reversibly stimuli-responsive drug carriers.
Collapse
Affiliation(s)
- Yasuaki Inoue
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kazuhito Takada
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Akifumi Kawamura
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takashi Miyata
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
8
|
Hamaguchi K, Ichikawa R, Kajiyama S, Torii S, Hayashi Y, Kumaki J, Katayama H, Kato T. Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20598-20605. [PMID: 33836127 DOI: 10.1021/acsami.0c20524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have developed a two-dimensional (2D) liquid-crystalline (LC) nanostructured water-treatment membrane showing high virus rejection ability (over 99.99997% for bacteriophage Qβ) and improved water permeation. Polymerizable gemini amphiphiles have been designed and synthesized. They have H-shaped gemini-type structures of thermotropic smectic liquid crystals composed of cationic imidazolium moieties. One of the gemini amphiphiles shows a smectic A phase with an interdigitated bilayer structure. A cross-linked self-standing 2D nanostructured polymer film has been obtained by in situ photopolymerization of the gemini amphiphile in the smectic phase. The length of linkers in gemini amphiphiles affects the formation of LC phases. The 2D nanostructured membrane also showed selective salt rejection.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rino Ichikawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Shaha RK, Torbati AH, Frick CP. Body‐temperature
s
hape‐shifting
liquid crystal elastomers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rajib K. Shaha
- Department of Mechanical Engineering University of Wyoming Laramie WY USA
| | - Amir H. Torbati
- Department of Mechanical Engineering University of Colorado Denver Aurora CO USA
| | - Carl P. Frick
- Department of Mechanical Engineering University of Wyoming Laramie WY USA
| |
Collapse
|
10
|
Shaha RK, Merkel DR, Anderson MP, Devereaux EJ, Patel RR, Torbati AH, Willett N, Yakacki CM, Frick CP. Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J Mech Behav Biomed Mater 2020; 107:103757. [DOI: 10.1016/j.jmbbm.2020.103757] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 03/28/2020] [Indexed: 12/01/2022]
|