1
|
Tsang ACH, Wong MYL, Tsang CW, Suen DWS, Lu XY. Development of AlN-loaded PET separators from waste water bottle plastics with superior thermal characteristics for next-generation lithium-ion batteries. RSC Adv 2025; 15:5452-5461. [PMID: 40012829 PMCID: PMC11863307 DOI: 10.1039/d4ra06478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Preventing short circuit hazard due to lithium (Li) dendrite formation across a separator from the anode of a lithium-ion battery (LIB) throughout operation is important; however, conventional separator materials cannot fulfil the increasing safety standards of next-generation LIBs. Thus, developing separator materials with high Li dendrite suppression ability in order to prevent short circuit is of paramount importance for realising next-generation LIBs. In this study, aluminum nitride-loaded polyethylene terephthalate (PET/AlN) composites with micro-/nanoarchitecture were synthesized using PET that was recycled from commercial waste bottles via an electrospinning strategy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) suggested that AlN nanoparticles were encapsulated in PET micro-/nanoarchitecture fibres. Thermogravimetric analysis indicated that the AlN content in the composite materials was about 4-5 wt%. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy confirmed the PET polymer structure of PET/AlN composites. The PET/AlN 4 wt% separator exhibited a porosity of 69.23%, according to the n-butanol uptake test, and a high electrolyte uptake of 521.69%. Most importantly, electrochemical results revealed that when evaluated at a current density of 0.5C, PET/AlN 4 wt% composites could deliver a reversible specific capacity of 238.2 mA h g-1 after 100 cycles. When C-rate capability tests were conducted at high charge-discharge densities of 0.2, 0.5, 1, 2, and 4C, the PET/AlN 4 wt% composite manifested average specific capacities of about 225.3, 218.4, 191.0, 127.5, and 28.1 mA h g-1, respectively. The excellent electrochemical performance of the PET/AlN 4 wt% composite could probably be attributed to the combined benefits of AlN nanoparticles and the micro-/nanoarchitecture. These unique features of PET/AlN were advantageous for effective Li ion transport in repeated charge-discharge cycles and strong hydrothermal stability, thereby resulting in safety, high capacity and excellent C-rate performance. Overall, this study demonstrated the excellent electrochemical performance of PET/AlN composites as stable separator materials for advanced LIBs.
Collapse
Affiliation(s)
- Alpha Chi Him Tsang
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Marco Yu Lam Wong
- Department of Civil and Environmental Engineering, School of Engineering, The Hong Kong University of Science and Technology Hong Kong
| | - Chi-Wing Tsang
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Dawson Wai-Shun Suen
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Xiao-Ying Lu
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| |
Collapse
|
2
|
Guo C, Luo ZH, Zhou MX, Wu X, Shi Y, An Q, Shao JJ, Zhou G. Clay-Originated Two-Dimensional Holey Silica Separator for Dendrite-Free Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301428. [PMID: 37127872 DOI: 10.1002/smll.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lithium metal anode is the ultimate choice to obtain next-generation high-energy-density lithium batteries, while the dendritic lithium growth owing to the unstable lithium anode/electrolyte interface largely limits its practical application. Separator is an important component in batteries and separator engineering is believed to be a tractable and effective way to address the above issue. Separators can play the role of ion redistributors to guide the transport of lithium ions and regulate the uniform electrodeposition of Li. The electrolyte wettability, thermal shrinkage resistance, and mechanical strength are of importance for separators. Here, clay-originated two-dimensional (2D) holey amorphous silica nanosheets (ASN) to develop a low-cost and eco-friendly inorganic separator is directly adopted. The ASN-based separator has higher porosity, better electrolyte wettability, much higher thermal resistance, larger lithium transference number, and ionic conductivity compared with commercial separator. The large amounts of holes and rich surface oxygen groups on the ASN guide the uniform distribution of lithium-ion flux. Consequently, the Li//Li cell with this separator shows stable lithium plating/stripping, and the corresponding Li//LiFePO4 , Li//LiCoO2, and Li//NCM523 full cells also show high capacity, excellent rate performance, and outstanding cycling stability, which is much superior to that using the commercial separator.
Collapse
Affiliation(s)
- Chong Guo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ming-Xia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Shi
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Lee H, Lee D. Composite Membrane Containing Titania Nanofibers for Battery Separators Used in Lithium-Ion Batteries. MEMBRANES 2023; 13:membranes13050499. [PMID: 37233560 DOI: 10.3390/membranes13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
In order to improve the electrochemical performance of lithium-ion batteries, a new kind of composite membrane made using inorganic nanofibers has been developed via electrospinning and the solvent-nonsolvent exchange process. The resultant membranes present free-standing and flexible properties and have a continuous network structure of inorganic nanofibers within polymer coatings. Results show that polymer-coated inorganic nanofiber membranes have better wettability and thermal stability than those of a commercial membrane separator. The presence of inorganic nanofibers in the polymer matrix enhances the electrochemical properties of battery separators. This results in lower interfacial resistance and higher ionic conductivity, leading to the good discharge capacity and cycling performance of battery cells assembled using polymer-coated inorganic nanofiber membranes. This provides a promising solution via which to improve conventional battery separators for the high performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Hun Lee
- Applied Chemistry, Division of Energy & Optical Technology Convergence, College of Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Deokwoo Lee
- Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
4
|
Jung JH, Vijayakumar V, Haridas AK, Ahn JH, Nam SY. Effect of Cross-Linking and Surface Treatment on the Functional Properties of Electrospun Polybenzimidazole Separators for Lithium Metal Batteries. ACS OMEGA 2022; 7:47784-47795. [PMID: 36591163 PMCID: PMC9798493 DOI: 10.1021/acsomega.2c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, electrospun PBI separators with a highly porous structure and nanofiber diameter of about 90-150 nm are prepared using a multi-nozzle under controlled conditions for lithium metal batteries. Cross-linking with α, α-dibromo-p-xylene and surface treatment using 4-(chloromethyl) benzoic acid successfully improve the electrochemical as well as mechanical properties of the separators. The resulting separator is endowed with high thermal stability and excellent wettability (1080 to 1150%) with commercial liquid electrolyte than PE and PP (Celgard 2400) separators. Besides, attractive cycling stability and rate capability in LiFePO4/Li cells are attained with the modified separators. Prominently, CROSSLINK PBI exhibits a stable Coulombic efficiency of more than 99% over 100 charge-discharge cycles at 0.5 C, which is superior to the value of cells using commercial PE and PP (Celgard 2400) separators. The half cells assembled using the CROSSLINK PBI separator can deliver a discharge capacity of 150.3 mAh g-1 at 0.2 C after 50 cycles corresponding to 88.4% of the theoretical value of LiFePO4 (170 mAh g-1). This work offers a worthwhile method to produce thermally stable separators with noteworthy electrochemical performances which opens new possibilities to improve the safe operation of batteries.
Collapse
Affiliation(s)
- Ji Hye Jung
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Vijayalekshmi Vijayakumar
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Anupriya K. Haridas
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| | - Jou-Hyeon Ahn
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Department
of Chemical Engineering, Gyeongsang National
University, Jinju52828, Republic of Korea
| | - Sang Yong Nam
- Department
of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
- Research
Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju52828, Republic
of Korea
| |
Collapse
|
5
|
Wang J, Xu Z, Zhang Q, Song X, Lu X, Zhang Z, Onyianta AJ, Wang M, Titirici MM, Eichhorn SJ. Stable Sodium-Metal Batteries in Carbonate Electrolytes Achieved by Bifunctional, Sustainable Separators with Tailored Alignment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206367. [PMID: 36127883 DOI: 10.1002/adma.202206367] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sodium (Na) is the most appealing alternative to lithium as an anode material for cost-effective, high-energy-density energy-storage systems by virtue of its high theoretical capacity and abundance as a resource. However, the uncontrolled growth of Na dendrites and the limited cell cycle life impede the large-scale practical implementation of Na-metal batteries (SMBs) in commonly used and low-cost carbonate electrolytes. Herein, the employment of a novel bifunctional electrospun nanofibrous separator comprising well-ordered, uniaxially aligned arrays, and abundant sodiophilic functional groups is presented for SMBs. By tailoring the alignment degree, this unique separator integrates with the merits of serving as highly aligned ion-redistributors to self-orientate/homogenize the flux of Na-ions from a chemical molecule level and physically suppressing Na dendrite puncture at a mechanical structure level. Remarkably, unprecedented long-term cycling performances at high current densities (≥1000 h at 1 and 3 mA cm-2 , ≥700 h at 5 mA cm-2 ) of symmetric cells are achieved in additive-free carbonate electrolytes. Moreover, the corresponding sodium-organic battery demonstrates a high energy density and prolonged cyclability over 1000 cycles. This work opens up a new and facile avenue for the development of stable, low-cost, and safe-credible SMBs, which could be readily extended to other alkali-metal batteries.
Collapse
Affiliation(s)
- Jing Wang
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Zhen Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Qicheng Zhang
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Xin Song
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Xuekun Lu
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, UK
| | - Zhenyu Zhang
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Amaka J Onyianta
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Mengnan Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| |
Collapse
|
6
|
Ding L, Li D, Du F, Zhang D, Zhang S, Wu T. Crafty preparation of lithium‐ion battery wet‐processed separator based on the synergistic effect of porous skeleton
nano‐Al
2
O
3
in‐situ blending and synchro‐draw. POLYM INT 2022. [DOI: 10.1002/pi.6447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Ding
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Dandan Li
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Fanghui Du
- Shandong key laboratory of chemical energy storage and new battery technology School of chemistry and chemical engineering, Liaocheng University (No. 1, Hunan Road) Liaocheng 252000 China
| | - Daoxin Zhang
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| | - Sihang Zhang
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| | - Tong Wu
- State key laboratory of polymer materials engineering College of polymer science and engineering, Sichuan University (No.24 South Section 1, Yihuan Road) Chengdu 610065 China
| |
Collapse
|
7
|
Zhang S, Luo J, Du M, Hui H, Sun Z. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Xu K, Zhan L, Yan R, Ke Q, Yin A, Huang C. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. NANOSCALE 2022; 14:419-427. [PMID: 34937077 DOI: 10.1039/d1nr06159c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanofibre membranes with a small diameter and a large specific surface area are widely used in the filtration field due to their small pore size and high porosity. To date, aramid nanofibres (ANFs) have received extensive research interest because of their high stiffness and excellent temperature resistance. However, the preparation of ANFs usually takes a long time, which greatly hampers the practical application of these fibres. Herein, we report the preparation of ANFs by a modified deprotonation method at elevated temperature. Owing to the increase of temperature, the preparation cycle of ANFs was shortened to 8 hours. The resulting ANF dispersion was further coated on a polypropylene melt-blown nonwoven to form a composite nonwoven filter. With the submicron porous structure, the filtration efficiency, pressure drop and quality factor of the filter were 95.61%, 38.22 Pa and 0.082 Pa-1, respectively. Compared to the pristine nonwoven, the filtration, mechanical, and heat insulation properties of the composite filter were also significantly improved. This work may offer a simple and efficient way for enhancing the air filtration performances of current filters.
Collapse
Affiliation(s)
- Kangli Xu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Lei Zhan
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Rui Yan
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Qinfei Ke
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Anlin Yin
- College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Crosslinked polyimide asymmetric membranes as thermally-stable separators with self-protective layers and inhibition of lithium dendrite growth for lithium metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zheng P, Qiu J, Wang X, Yu Z, Ma Y, Li T. Poly(vinylidene‐
co
‐hexafluoropropylene) membrane modified with glass fibers and polyvinyl pyrrolidone: Mechanical and electrochemical properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengxuan Zheng
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao China
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Jiye Qiu
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao China
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Xiangwei Wang
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Zhiwei Yu
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Yong Ma
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao China
| | - Tingxi Li
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao China
| |
Collapse
|
11
|
Zhou P, Yao D, Zuo K, Xia Y, Yin J, Liang H, Zeng YP. Highly dispersible silicon nitride whiskers in asymmetric porous separators for high-performance lithium-ion battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Yang F, Sun W, Bai Y, Xu T, Cai K, Cai H, Sun K, Wang Z. Rational Design of Sandwich-Like “Gel–Liquid–Gel” Electrolytes for Dendrite-Free Lithium Metal Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Yang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Wang Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yu Bai
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Tianye Xu
- Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou 121013, People’s Republic of China
| | - Kedi Cai
- Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou 121013, People’s Republic of China
| | - Huiqun Cai
- Yinlong Energy Co., Ltd., No. 16 Jinhu Road, Sanzao Town, Jinwan District, Zhuhai 519000, People’s Republic of China
| | - Kening Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
13
|
Shang W, Niu C, Chen G, Chen Y, Du J. Anion-inhibited solid framework polymer electrolyte for dendrite-free lithium metal batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kong F, Chang M, Wang Z. Analysis of Thermal-Mechanical Properties of Silicon Dioxide/Polyvinylidene Fluoride Reinforced Non-Woven Fabric (Polypropylene) Composites. Polymers (Basel) 2020; 12:polym12020481. [PMID: 32098031 PMCID: PMC7077718 DOI: 10.3390/polym12020481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/15/2023] Open
Abstract
In this paper, solution casting method is used to prepare the PP (polypropylene) non-woven fabric based composite film filled with silicon dioxide/polyvinylidene fluoride (SiO2/PVDF). The mechanical and thermodynamic properties of PP/SiO2/PVDF composites were studied by a uniaxial tensile test under different temperature and combustion experiment. It is found that the stress of PP/SiO2/PVDF composite film with 4 wt % SiO2 is the maximum value, reaching 18.314 MPa, 244.42% higher than that of pure PP non-woven. Meanwhile, the thermal–mechanical coupling tests indicate that with the increase of temperature, the ultimate stress and strain of the composite decrease. At the same time, the thermal shrinkage property of the composite during the heating process is studied. The modified composite has good thermal stability under 180 °C. Scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric (TG) were used to characterize the pore shape, distribution and crystal phase change of the composite. The modified PP/SiO2/PVDF composite film structure shows high strength and good thermal stability, and can better meet the requirements of strength and thermal performance of lithium-ion battery during the charging and discharging process.
Collapse
Affiliation(s)
- Fangyun Kong
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Mengzhou Chang
- College of Equipment Engineering, Shenyang Ligong University, Shenyang 110000, China;
| | - Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
- Correspondence: ; Tel.: +86-0451-8258-9364
| |
Collapse
|
15
|
Yang G, Cai H, Li X, Wu M, Yin X, Zhang H, Tang H. Enhancement of the electrochemical performance of lithium-ion batteries by SiO 2@poly(2-acrylamido-2-methylpropanesulfonic acid) nanosphere addition into a polypropylene membrane. RSC Adv 2020; 10:5077-5087. [PMID: 35498328 PMCID: PMC9049167 DOI: 10.1039/c9ra08273e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Employing electrostatic self-assembly and free radical polymerization, the surface of SiO2 nanospheres was coated with poly(2-acrylamido-2-methylpropanesulfonic acid) (SiO2@PAMPS) bearing strong electron withdrawing sulfonic and amide groups, enhancing the dissociation ability of the lithium salt of the liquid electrolyte and absorbing anions via hydrogen bonds. After SiO2@PAMPS nanospheres were introduced into the polypropylene (PP) membrane (SiO2@PAMPS/PP), the electrolyte affinity and electrolyte uptake of the composite separators were significantly improved. The ionic conductivity of SiO2@PAMPS/PP-18% (where 18% represents the concentration of the solution used for coating) soaked in liquid electrolyte was even 0.728 mS cm-1 at 30 °C, much higher than that of the pristine PP membrane. The LiFePO4/Li half-cell with SiO2@PAMPS/PP-18% had a discharge capacity of 148.10 mA h g-1 and retained 98.67% of the original capacity even after 120 cycles at 0.5C. Even at a rate of 1.0C, the cell capacity could be maintained above 120 mA h g-1. Therefore, a coating formula was developed that could considerably improve the cycling ability and high rate charge-discharge performance of lithium ion batteries.
Collapse
Affiliation(s)
- Guoping Yang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Haopeng Cai
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China .,Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology Wuhan 430070 People's Republic of China
| | - Xiangyu Li
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Mengjun Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Xue Yin
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|