1
|
Ye F, Wang Z, Li M, Zhang J, Wang D, Liu M, Liu A, Lin H, Kim HT, Wang J. High-Entropy Polymer Electrolytes Derived from Multivalent Polymeric Ligands for Solid-State Lithium Metal Batteries with Accelerated Li + Transport. NANO LETTERS 2024; 24:6850-6857. [PMID: 38721815 DOI: 10.1021/acs.nanolett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Solid-state polymer-based electrolytes (SSPEs) exhibit great possibilities in realizing high-energy-density solid-state lithium metal batteries (SSLMBs). However, current SSPEs suffer from low ionic conductivity and unsatisfactory interfacial compatibility with metallic Li because of the high crystallinity of polymers and sluggish Li+ movement in SSPEs. Herein, differing from common strategies of copolymerization, a new strategy of constructing a high-entropy SSPE from multivariant polymeric ligands is proposed. As a protocol, poly(vinylidene fluoride-co-hexafluoropropylene) (PH) chains are grafted to the demoed polyethylene imine (PEI) with abundant -NH2 groups via a click-like reaction (HE-PEIgPHE). Compared to a PH-based SSPE, our HE-PEIgPHE shows a higher modulus (6.75 vs 5.18 MPa), a higher ionic conductivity (2.14 × 10-4 vs 1.03 × 10-4 S cm-1), and a higher Li+ transference number (0.55 vs 0.42). A Li|HE-PEIgPHE|Li cell exhibits a long lifetime (1500 h), and a Li|HE-PEIgPHE|LiFePO4 cell delivers an initial capacity of 160 mAh g-1 and a capacity retention of 98.7%, demonstrating the potential of our HE-PEIgPHE for the SSLMBs.
Collapse
Affiliation(s)
- Fangmin Ye
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhixin Wang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Mengcheng Li
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jing Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Dong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Meinan Liu
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hongzhen Lin
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jian Wang
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- Helmholtz Institute Ulm (HIU), Ulm D89081, Germany
- Karlsruhe Institute of Technology (KIT) D76021 Karlsruhe, Germany
| |
Collapse
|
2
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
3
|
Hemin-Modified Multi-Walled Carbon Nanotube-Incorporated PVDF Membranes: Computational and Experimental Studies on Oil-Water Emulsion Separations. Molecules 2023; 28:molecules28010391. [PMID: 36615584 PMCID: PMC9824685 DOI: 10.3390/molecules28010391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline. Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM, and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62° ± 0.5 and excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine PVDF, which recorded a CA of 82° ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure range of 0.5−2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of advanced membranes for oil/water separation.
Collapse
|
4
|
Liu H, Sun Y, Xu H, Qin Y, Huang Q, Chen K, Shu W, Xiao C. Dual-functional design of tubular polyvinyl chloride hybrid nanofiber membranes for the simultaneous oil/water separation and in-situ catalytic degradation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Yan J, Xiao C, Wang C. Robust preparation of braid-reinforced hollow fiber membrane covered by PVDF nanofibers and PVDF/SiO2 micro/nanospheres for highly efficient emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Asadi A, Gholami F, Zinatizadeh AA. Enhanced oil removal from a real polymer production plant by cellulose nanocrystals-serine incorporated polyethersulfone ultrafiltration membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37144-37158. [PMID: 35031989 DOI: 10.1007/s11356-021-18055-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
As discharging oily wastewater from industries to the environment is a potential threat for the aquatic ecosystem, in this research, oil removal from a real case of Kermanshah polymer production plant wastewater was investigated. The focus of this study was on improving the oil rejection performance of polyethersulfone (PES) ultrafiltration membrane due to adding cellulose nanocrystals (CNC) and modified CNC with serine amino acid (CNC-Ser) in PES mix matrix. From the results, the membranes embedded with CNC-Ser showed better performance in terms of water flux, flux recovery ratio, and oil rejection (higher than 97%) compared to the modified membranes with CNC. The lowest water contact angle (41.37°), smoother surface, and higher negative surface potential (- 24 mV) were achieved for the optimum loading of CNC-Ser. Besides, long-term performance of the membranes with optimum loading of CNC and CNC-Ser were compared in both dead-end and cross-flow setups.
Collapse
Affiliation(s)
- Azar Asadi
- Department of Gas and Petroleum, Yasouj University, 75918-74831, Gachsaran, Iran.
| | - Foad Gholami
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Ali Akbar Zinatizadeh
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P. O. Box 392, Florida, 1710, South Africa
| |
Collapse
|
7
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers (Basel) 2022; 14:1594. [PMID: 35458343 PMCID: PMC9025395 DOI: 10.3390/polym14081594] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Baig U, Waheed A, Abussaud B, Aljundi IH. A Simple Approach to Fabricate Composite Ceramic Membranes Decorated with Functionalized Carbide-Derived Carbon for Oily Wastewater Treatment. MEMBRANES 2022; 12:membranes12040394. [PMID: 35448363 PMCID: PMC9027112 DOI: 10.3390/membranes12040394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
Membrane-based oil−water separation has shown huge potential as a remedy to challenge oily wastewater with ease and low energy consumption compared to conventional purification techniques. A set of new composite ceramic membranes was fabricated to separate surfactant-stabilized oil/water (O/W) emulsion. Carbide-derived carbon (CDC) was functionalized by 3-aminopropyltriethoxy silane (APTES) and subsequently deposited on a ceramic alumina support and impregnated with piperazine as an additional amine. The APTES functionalized CDC-loaded membrane was then crosslinked using terephthalyol chloride (TPC). Different loadings of functionalized CDC (50 mg, 100 mg and 200 mg) were employed on the ceramic support resulting in three versions of ceramic membranes (M-50, M-100 and M-200). The fabricated membranes were thoroughly characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Attenuated total teflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Energy dispersive x-ray spectroscopy (EDX) and elemental mapping. The highest permeate flux of 76.05 LMH (L m−2 h−1) at 1 bar using 67.5 ppm oil-in-water emulsion (as feed) was achieved by the M-50 membrane, while an oil separation efficiency of >99% was achieved by using the M-200 membrane. The tested emulsions and their respective permeates were also characterized by optical microscopy to validate the O/W separation performance of the best membrane (M-100). The effect of feed concentration and pressure on permeate flux and oil−water separation efficiency was also studied. A long-term stability test revealed that the M-100 membrane retained its performance for 720 min of continuous operation with a minor decrease in permeate flux, but the O/W separation efficiency remained intact.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
| | - Basim Abussaud
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Isam H. Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.B.); (A.W.)
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence: ; Tel.: +9-66-138-602-210
| |
Collapse
|
9
|
Baig N, Arshad Z, Ali SA. Synthesis of a biomimetic zwitterionic pentapolymer to fabricate high-performance PVDF membranes for efficient separation of oil-in-water nano-emulsions. Sci Rep 2022; 12:5028. [PMID: 35322114 PMCID: PMC8943177 DOI: 10.1038/s41598-022-09046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Oily wastewater from industries has an adverse impact on the environment, human and aquatic life. Poly(vinylidene fluoride) (PVDF) membrane modified with a zwitterionic/hydrophobic pentapolymer (PP) with controlled pore size has been utilized to separate oil from water from their nano-emulsions. The PP has been synthesized in 91% yield via pentapolymerization of four different diallylamine salts [(CH2=CHCH2)2NH+(CH2)x A-], bearing CO2-, PO3H-, SO3-, (CH2)12NH2 pendants, and SO2 in a respective mol ratio of 25:36:25:14:100. Incorporating PP into PVDF has shown a substantially reduced membrane hydrophobicity; the contact angle decreased from 92.5° to 47.4°. The PP-PVDF membranes have demonstrated an excellent capability to deal with the high concentrations of nano-emulsions with a separation efficiency of greater than 97.5%. The flux recovery ratio (FRR) of PP-5 incorporated PVDF membrane was about 82%, which was substantially higher than the pristine PVDF.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
10
|
Zheng L, Li H, Lai X, Huang W, Lin Z, Zeng X. Superwettable Janus nylon membrane for multifunctional emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
13
|
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. MEMBRANES 2021; 11:995. [PMID: 34940495 PMCID: PMC8709222 DOI: 10.3390/membranes11120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials have emerged as the new future generation materials for high-performance water treatment membranes with potential for solving the worldwide water pollution issue. The incorporation of nanomaterials in membranes increases water permeability, mechanical strength, separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new pathway for ultra-fast and extremely selective water purification membranes. Membrane enhancements after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are discussed in this review. Furthermore, the applications of these membranes with nanomaterials in water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate the significance of nanomaterials in the membrane industry for water treatment applications. It was found that nanomaterials and nanotechnology offer great potential for the advancement of sustainable water and wastewater treatment.
Collapse
Affiliation(s)
- Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | | | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| |
Collapse
|
14
|
Teixeira J, Cardoso VF, Botelho G, Morão AM, Nunes-Pereira J, Lanceros-Mendez S. Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation. Polymers (Basel) 2021; 13:4062. [PMID: 34883566 PMCID: PMC8659276 DOI: 10.3390/polym13234062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
This work reports on the production of poly(vinylidene fluoride) (PVDF) membranes by non-solvent induced phase separation (NIPS) using N,N-dimethylformamide (DMF) as solvent and water as non-solvent. The influence of the processing conditions in the morphology, surface characteristics, structure, thermal and mechanical properties were evaluated for polymer dissolution temperatures between 25 and 150 °C and conditioning time between 0 and 10 min. Finger-like pore morphology was obtained for all membranes and increasing the polymer dissolution temperature led to an increase in the average pore size (≈0.9 and 2.1 µm), porosity (≈50 to 90%) and water contact angle (up to 80°), in turn decreasing the β PVDF content (≈67 to 20%) with the degree of crystallinity remaining approximately constant (≈56%). The conditioning time did not significantly affect the polymer properties studied. Thus, the control of NIPS parameters proved to be suitable for tailoring PVDF membrane properties.
Collapse
Affiliation(s)
- João Teixeira
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
| | - Vanessa Fernandes Cardoso
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
- CMEMS-UMinho, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Gabriela Botelho
- Department of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - António Miguel Morão
- CICS-UBI, The Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - João Nunes-Pereira
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
- C-MAST-UBI, Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
16
|
Zamel D, Khan AU. New trends in nanofibers functionalization and recent applications in wastewater treatment. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Doaa Zamel
- Department of Chemistry, Faculty of Science Helwan University Helwan Egypt
| | - Atta Ullah Khan
- Department of Biotechnology University of Malakand Chakdara Pakistan
| |
Collapse
|
17
|
Liao XL, Sun DX, Cao S, Zhang N, Huang T, Lei YZ, Wang Y. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125926. [PMID: 34492858 DOI: 10.1016/j.jhazmat.2021.125926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient oil/water separation ability is a prerequisite for the actual application of the membranes in oily sewage treatment, which is closely related to the surface feature and the porous structure of the membranes. In this work, the electrospun poly(vinylidene fluoride) (PVDF) porous fibers were firstly fabricated through blend-electrospinning with poly(vinyl pyrrolidone) (PVP) and then treating in distilled water. The results showed that the fibers exhibited the sponge-like porous structure, and a few PVP was reserved in the fibers due to the relatively good interaction between PVDF and PVP. The fibrous membrane exhibited high porosity, super-wettability with freely switchable super-lipophilicity and super-hydrophilicity. The oil adsorption capacities as well as the oil and water fluxes were measured, and the oil adsorption capacities were varied in the range of 22.7-76.0 g/g, and oil and water fluxes were 54,737.3 and 56,869.9 L/(m2h), respectively. Specifically, the PVDF porous fibrous membranes showed excellent separation abilities and they could highly efficiently separate oil from oil-in-water emulsions or separate water from water-in-oil emulsions, accompanied with the extremely high water or oil flux. This work confirms that the PVDF membranes composed of the porous fibers can be used in wastewater treatment.
Collapse
Affiliation(s)
- Xiao-Lei Liao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - De-Xiang Sun
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Cao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
18
|
Imtiaz B, Shepelin NA, Sherrell PC, Kentish SE, Ellis AV. Direct ink writing of dehydrofluorinated Poly(Vinylidene Difluoride) for microfiltration membrane fabrication. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Synthesis of Si-Based High-Efficiency and High-Durability Superhydrophilic-Underwater Superoleophobic Membrane of Oil-Water Separation. MATERIALS 2021; 14:ma14102628. [PMID: 34069760 PMCID: PMC8156734 DOI: 10.3390/ma14102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Oil pollution is caused by the frequent discharge of contaminated industrial wastewater and accidental oil spills and is a severe environmental and health concern. Therefore, efficient materials and processes for effective oil–water separation are being developed. Herein, SiO2-Na2SiO3-coated stainless steel fibers (SSF) with underwater superoleophobic and low-adhesion properties were successfully prepared via a one-step hydrothermal process. The modified surfaces were characterized with scanning electron microscopy (SEM), and contact angle measurements to observe the surface morphology, confirm the successful incorporation of SiO2, and evaluate the wettability, as well as with X-ray diffraction (XRD). The results revealed that SiO2 nanoparticles were successfully grown on the stainless-steel fiber surface through the facile hydrothermal synthesis, and the formation of sodium silicate was detected with XRD. The SiO2-Na2SiO3-coated SSF surface exhibited superior underwater superoleophobic properties (153–162°), super-hydrophilicity and high separation efficiency for dichloromethane–water, n-hexane–water, tetrachloromethane–water, paroline–water, and hexadecane–water mixtures. In addition, the as-prepared SiO2-Na2SiO3-coated SSF demonstrated superior wear resistance, long-term stability, and re-usability. We suggest that the improved durability may be due to the presence of sodium silicate that enhanced the membrane strength. The SiO2-Na2SiO3-coated SSF also exhibited desirable corrosion resistance in salty and acidic environments; however, further optimization is needed for their use in basic media. The current study presents a novel approach to fabricate high-performance oil–water separation membranes.
Collapse
|
20
|
Robust and switchable superwetting sponge-like membrane: Towards on-demand emulsion separation and aqueous pollutant degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Mohseni M, S A AR, H Shirazi F, Nemati NH. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Int J Biol Macromol 2021; 167:881-893. [PMID: 33186646 DOI: 10.1016/j.ijbiomac.2020.11.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023]
Abstract
Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite precipitation polymerization method in presence of graphene nanoparticles and sodium dodecyl sulfate. All intermediate and final products including spun PVDF/MCM41 nanofibers, PAG nanoparticles, and gellan-gelatin gel scaffolds containing PVDF/MCM41 nano spun fibers and PAG nanoparticles are characterized using different analysis methods. Chemical and structural analyses of PAG nanoparticles and PVDF/MCM41 nanofibers have been done using FTIR and XRD methods. The morphological structure of different samples is investigated using SEM. Morphological investigation and DLS results confirm fabrication of MCM41 nanoparticle with a completely spherical shape and the average size of 50 nm of which have been dispersed in electrospun PVDF nanofibers very well. Also, the preparation of PAG nanoparticle with high conductivity is verified with morphological and conductivity tests. MTT easy and biocompatibility test results indicate potential applicability of the prepared conductive self -stimuli nano-scaffold for nerve regeneration applications.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Ramazani S A
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Chen M, Wei L, Zhang W, Wang C, Xiao C. Fabrication and catalytic performance of a novel tubular PMIA/Ag@RGO nanocomposite nanofiber membrane. RSC Adv 2021; 11:22287-22296. [PMID: 35480820 PMCID: PMC9034193 DOI: 10.1039/d1ra03707b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
A novel tubular PMIA/Ag@RGO composite nanofiber membrane, which could be used in continuous catalysis process was fabricated via a facile and effective method.
Collapse
Affiliation(s)
- Mingxing Chen
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Lianying Wei
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Wei Zhang
- School of Textile and Garment
- Hebei Province Technology Innovation Center of Textile and Garment
- Hebei Key Laboratory of Flexible Functional Materials
- Hebei University of Science and Technology
- Shijiazhuang
| | - Chun Wang
- School of Textiles and Fashion
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Changfa Xiao
- School of Textiles and Fashion
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
23
|
Zhou Y, Zhang J, Wang Z, He F, Peng S, Li Y. A modified TA-APTES coating: Endowing porous membranes with uniform, durable superhydrophilicity and outstanding anti-crude oil-adhesion property via one-step process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Superhydrophilic carbonaceous-silver nanofibrous membrane for complex oil/water separation and removal of heavy metal ions, organic dyes and bacteria. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118491] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Meng H, Xu T, Gao M, Bai J, Li C. An oil‐contamination‐resistant
PVP
/
PAN
electrospinning membrane for high‐efficient oil–water mixture and emulsion separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Haitao Meng
- Chemical Engineering College Inner Mongolia University of Technology Hohhot Inner Mongolia China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot Inner Mongolia China
| | - Tong Xu
- Chemical Engineering College Inner Mongolia University of Technology Hohhot Inner Mongolia China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot Inner Mongolia China
| | - Mingyuan Gao
- Chemical Engineering College Inner Mongolia University of Technology Hohhot Inner Mongolia China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot Inner Mongolia China
| | - Jie Bai
- Chemical Engineering College Inner Mongolia University of Technology Hohhot Inner Mongolia China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot Inner Mongolia China
| | - Chunping Li
- Chemical Engineering College Inner Mongolia University of Technology Hohhot Inner Mongolia China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot Inner Mongolia China
| |
Collapse
|
26
|
Quartz Sand Filter Media with Special Wettability for Continuous and Efficient Oil/Water Separation and Dye Adsorption. Processes (Basel) 2020. [DOI: 10.3390/pr8091083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For continuous and efficient oil/water separation and adsorption of dyes, coconut shell powder was grafted onto the surface of quartz sand by dip-coating method to make coconut shell powder-covered quartz sand filter media (CSQS) with superhydrophilic and underwater superoleophobic properties and superoleophilic and underoil highly hydrophobic properties. The contact angles of the underwater oil and underoil water with CSQS were more than 151.2° and 134.2°, respectively. A continuous oil/water separation device was designed. The separation device filled with CSQS can separate oil/water mixture (whether heavy or light oil) into water and oil at the same time with a separation efficiency of above 99.92%. The filter layer can be recovered through reverse extrusion even after lyophobic liquid penetrated the filter layer; hence, the separation efficiency of the filter layer was still above 99.99% for diesel and water mixture. Simultaneously, CSQS can effectively adsorb methylene blue with the highest removal rate as 98.94%. CSQS can maintain stable wettability under harsh environment conditions. This paper provides a new idea on continuous and efficient oil/water separation and simultaneous dye adsorption.
Collapse
|
27
|
Micro/Nanoscale Structured Superhydrophilic and Underwater Superoleophobic Hybrid-Coated Mesh for High-Efficiency Oil/Water Separation. Polymers (Basel) 2020; 12:polym12061378. [PMID: 32575503 PMCID: PMC7361680 DOI: 10.3390/polym12061378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
A novel micro/nanoscale rough structured superhydrophilic hybrid-coated mesh that shows underwater superoleophobic behavior is fabricated by spray casting or dipping nanoparticle–polymer suspensions on stainless steel mesh substrates. Water droplets can spread over the mesh completely; meanwhile, oil droplets can roll off the mesh at low tilt angles without any penetration. Besides overcoming the oil-fouling problem of many superhydrophilic coatings, this superhydrophilic and underwater superoleophobic mesh can be used to separate oil and water. The simple method used here to prepare the organic–inorganic hybrid coatings successfully produced controllable micro-nano binary roughness and also achieved a rough topography of micro-nano binary structure by controlling the content of inorganic particles. The mechanism of oil–water separation by the superhydrophilic and superoleophobic membrane is rationalized by considering capillary mechanics. Tetraethyl orathosilicate (TEOS) as a base was used to prepare the nano-SiO2 solution as a nano-dopant through a sol-gel process, while polyvinyl alcohol (PVA) was used as the film binder and glutaraldehyde as the cross-linking agent; the mixture was dip-coated on the surface of 300-mesh stainless steel mesh to form superhydrophilic and underwater superoleophobic film. Properties of nano-SiO2 represented by infrared spectroscopy and surface topography of the film observed under scanning electron microscope (SEM) indicated that the film surface had a coarse micro–nano binary structure; the effect of nano-SiO2 doping amount on the film’s surface topography and the effect of such surface topography on hydrophilicity of the film were studied; contact angle of water on such surface was tested as 0° by the surface contact angle tester and spread quickly; the underwater contact angle to oil was 158°, showing superhydrophilic and underwater superoleophobic properties. The effect of the dosing amount of cross-linking agent to the waterproof swelling property and the permeate flux of the film were studied; the oil–water separation effect of the film to oil–water suspension and oil–water emulsion was studied too, and in both cases the separation efficiency reached 99%, which finally reduced the oil content to be lower than 50 mg/L. The effect of filtration times to permeate flux was studied, and it was found that the more hydrophilic the film was, the stronger the stain resistance would be, and the permeate flux would gradually decrease along with the increase of filtration times.
Collapse
|