1
|
Yu Z, Sun Y, Zhang Z, Geng C, Qiao Z. Rational Matching of Metal-Organic Frameworks and Polymers in Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Polymers (Basel) 2024; 16:2545. [PMID: 39274177 PMCID: PMC11398130 DOI: 10.3390/polym16172545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
The exploitation of high-performance membranes selective for propylene is important for developing energy-efficient propylene/propane (C3H6/C3H8) separation technologies. Although metal-organic frameworks with a molecular sieving property have been considered promising filler materials in mixed-matrix membranes (MMMs), their use in practical applications has been challenging due to a lack of interface compatibility. Herein, we adopted a surface coordination strategy that involved rationally utilizing carboxyl-functionalized PIM-1 (cPIM) and ZIF-8 to prepare a mixed-matrix membrane for efficient propylene/propane separation. The interfacial coordination between the polymer and the MOF improves their compatibility and eliminates the need for additional modification of the MOF, thereby maximizing the inherent screening performance of the MOF filler. Additionally, the utilization of porous PIM-1 guaranteed the high permeability of the MMMs. The obtained MMMs exhibited excellent separation performance. The 30 wt% ZIF-8/cPIM-1 membrane performed the best, exhibiting a high C3H6 permeability of 1023 Barrer with a moderate C3H6/C3H8 selectivity of 13.97 under 2 bars of pressure. This work presents a method that can feasibly be used for the preparation of defect-free MOF-based MMMs for specific gas separations.
Collapse
Affiliation(s)
- Zijun Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Chenxu Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Poloneeva D, Datta SJ, Sicat R, Khairova R, Garzon-Tovar L, Bavykina A, Eddaoudi M, Gascon J. Advancing Membrane Technology: Ordered Macroporous ZIF-67 as a Filler in Mixed Matrix Membranes for Enhanced Propylene/Propane Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309127. [PMID: 38554016 DOI: 10.1002/smll.202309127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/13/2024] [Indexed: 04/01/2024]
Abstract
Conventional separation technologies for valuable commodities require substantial energy, accounting for 10%-15% of global consumption. Mixed-matrix membranes (MMMs) offer a promising solution by combining processable polymers with selective inorganic fillers. Here, the potential of using ordered microporous structured materials is demonstrated as MMM fillers. The use of ordered macroporous ZIF-67 in combination with the well-known 6FDA-DAM polymer leads to superior performance in the important separation of propylene from propane. The enhanced performance can be rationalized with the help of advanced microscopy, which demonstrates that the polymer is able to penetrate the macroporous network around which the MOF (Metal-Organic Framework) is synthesized, resulting in a much better interphase between the two components and the homogeneous distribution of the filler, even at high loadings.
Collapse
Affiliation(s)
- Daria Poloneeva
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shuvo Jit Datta
- Functional Materials Design Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ronell Sicat
- KAUST Visualization Core Lab (KVL), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rushana Khairova
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luis Garzon-Tovar
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Anastasiya Bavykina
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
3
|
Merugu S, Kearney LT, Keum JK, Naskar AK, Ansary J, Herbert A, Islam M, Mondal K, Gupta A. Investigating Permselectivity in PVDF Mixed Matrix Membranes Using Experimental Optimization, Machine Learning Segmentation, and Statistical Forecasting. ACS OMEGA 2024; 9:28764-28775. [PMID: 38973877 PMCID: PMC11223206 DOI: 10.1021/acsomega.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
This research examines the correlation between interfacial characteristics and membrane distillation (MD) performance of copper oxide (Cu) nanoparticle-decorated electrospun carbon nanofibers (CNFs) polyvinylidene fluoride (PVDF) mixed matrix membranes. The membranes were fabricated by a bottom-up phase inversion method to incorporate a range of concentrations of CNF and Cu + CNF particles in the polymer matrix to tune the porosity, crystallinity, and wettability of the membranes. The resultant membranes were tested for their application in desalination by comparing the water vapor transport and salt rejection rates in the presence of Cu and CNF. Our results demonstrated a 64% increase in water vapor flux and a salt rejection rate of over 99.8% with just 1 wt % loading of Cu + CNF in the PVDF matrix. This was attributed to enhanced chemical heterogeneity, porosity, hydrophobicity, and crystallinity that was confirmed by electron microscopy, tensiometry, and scattering techniques. A machine learning segmentation model was trained on electron microscopy images to obtain the spatial distribution of pores in the membrane. An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) statistical time series model was trained on MD experimental data obtained for various membranes to forecast the membrane performance over an extended duration.
Collapse
Affiliation(s)
- Saketh Merugu
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Logan T. Kearney
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jong K. Keum
- Center
for Nanophase Materials Science, Oak Ridge
National Laboratory, Bethel Valley Rd, Oak Ridge, Tennessee 37830, United States
| | - Amit K. Naskar
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jamal Ansary
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Aidan Herbert
- DigiM
Solution LLC, 500 West
Cummings Park, Suite 3650, Woburn, Massachusetts 01801, United States
| | - Monsur Islam
- IMDEA
Materials Institute, Tecnogetafe, Calle Eric Kandel 2, Getafe, Madrid 28906, Spain
| | - Kunal Mondal
- Nuclear Energy
and Fuel Cycle Division, Oak Ridge National
Laboratory, Bethel Valley
Rd, Oak Ridge, Tennessee 37830, United States
| | - Anju Gupta
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, Ibnaouf KH, Ahmad NM, Binzowaimil AM, Lim JW, Bhattu M, Ramesh MD. A review on titanium oxide nanoparticles modified metal-organic frameworks for effective CO 2 conversion and efficient wastewater remediation. ENVIRONMENTAL RESEARCH 2024; 252:119024. [PMID: 38692419 DOI: 10.1016/j.envres.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria
| | - Zaharaddeen N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria. Nigeria, India
| | | | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia.
| | - Nasir M Ahmad
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; Laser and Optoelectronics Engineering Department, Dijlah University College, Baghdad, Iraq
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| |
Collapse
|
5
|
Dehghan F, Rashidi A, Parvizian F, Moghadassi A. Pore size engineering of cost-effective all-nanoporous multilayer membranes for propane/propylene separation. Sci Rep 2023; 13:21419. [PMID: 38049544 PMCID: PMC10695959 DOI: 10.1038/s41598-023-48841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
In this study, a new multi-layer hybrid nanocomposite membrane named MFI/GO/ZIF-8 has been synthesized. This membrane combines three nanoporous materials with different morphologies in one membrane without using polymer materials. This allows access to a previously accessible region of very high permeability and selectivity properties. In addition to introducing a new and efficient MFI/GO/ZIF-8 membrane in this work, controlling the pore size of the zeolite layer has been investigated to increase the selectivity and permeability of propylene. The membrane was made using a solvent-free hydrothermal method and a layer-by-layer deposition method. To control the pore size of the MFI layer, a two-step synthesis strategy has been implemented. In the first step, three key parameters, including crystallization time, NaOH concentration and aging time of initial suspension, are controlled. In the second step, the effect of three additional parameters including hydrothermal time, hydrothermal temperature and NH4F concentration has been investigated. The results show that the optimal pore size has decreased from 177.8 nm to 120.53 nm (i.e., 32.2%). The MFI/GO/ZIF-8 membrane with fine-tuned crystal size in the zeolite layer was subjected to detailed tests for propylene selectivity and permeability. The structural characteristics of the membrane were also performed using FT-IR, XRD, FESEM and EDS techniques. The results show that the synergistic interaction between the three layers in the nanocomposite membrane significantly improves the selectivity and permeability of propylene. The permeability and selectivity of propylene increased from 50 to 60 GPU and from 136 to 177, respectively, before and after precise crystal size control. MFI/GO/ZIF-8 membrane by controlling the pore size of the zeolite layer shows a significant increase of 23.1% in selectivity and 16.7% in propylene permeability compared to the initial state. Also, due to the precise synthesis method, the absence of solvent and the use of cheap support, the prepared membrane is considered an environmentally friendly and low-cost membrane. This study emphasizes the potential of increasing the selectivity and permeability of propylene in the MFI/GO/ZIF-8 hybrid membrane by controlling the crystal size of the zeolite layer.
Collapse
Affiliation(s)
- Fahime Dehghan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Alimorad Rashidi
- Carbon and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, P.O. Box 14857-33111, Tehran, Iran.
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
6
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
7
|
Alharbi A, Almutairi D, Hussain H, Alfihed S. Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV-NIR Optical Transmission/Photoluminescence Spectroscopy. Polymers (Basel) 2023; 15:3866. [PMID: 37835915 PMCID: PMC10575346 DOI: 10.3390/polym15193866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
SU-8 polymers are promising materials for various applications due to their low cost, excellent thermal stability, and outstanding mechanical properties. Cross-linking of SU-8 is a crucial process that determines the properties of the materials. This study investigates the effect of cross-linking of free-standing SU-8 films on optical transmission and PL emission under various curing conditions. Our findings show that an increase in the cross-linking density reduces optical transmission and causes a red shift of the PL emission band peaks. By directly measuring the optical response of the isolated SU-8, we remove any uncertainty due to the substrate's presence. Moreover, we show that optical transmission and PL spectroscopy are two non-distractive techniques that can be employed to monitor the curing of the SU-8. This finding enhances our understanding of the cross-linking process in SU-8 and paves the way to further enhance the properties of the SU-8 polymer for various electronics and optoelectronics applications.
Collapse
Affiliation(s)
| | | | | | - Salman Alfihed
- Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Peng D, Duan S, Feng X, Liu Z, Wang J, Li D, Zhang Y. Mixed-matrix membranes containing zero-dimension porphyrin-based complex for propylene/propane separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
9
|
Cheng Z, Zhang P, Wang Z, Jiang H, Wang W, Liu D, Wang L, Zhu G, Zou X. A Bipyridyl Covalent Organic Framework with Coordinated Cu(I) for Membrane C 3 H 6 /C 3 H 8 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300438. [PMID: 37029586 DOI: 10.1002/smll.202300438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic frameworks (COFs) mixed matrix membranes (MMMs) combining individual attributes of COFs and polymers are promising for gas separation. However, applying COF MMMs for propylene/propane (C3 H6 /C3 H8 ) separation remains a big challenge due to COF inert pores and C3 H6 /C3 H8 similar molecular sizes. Herein, the designed synthesis of a Cu(I) coordinated COF for membrane C3 H6 /C3 H8 separation is reported. A platform COF is synthesized from 5,5'-diamino-2,2'-bipyridine and 2-hydroxybenzene-1,3,5-tricarbaldehyde. This COF possesses a porous 2D structure with high crystallinity. Cu(I) is coordinated to bipyridyl moieties in the COF framework, acting as recognizable sites for C3 H6 gas, as shown by the adsorption measurements. Cu(I) COF is blended with 6FDA-DAM polymer to yield MMMs. This COF MMM exhibits selective and permeable separation of C3 H6 from C3 H8 (C3 H6 permeability of 44.7 barrer, C3 H6 /C3 H8 selectivity of 28.1). The high porosity and Cu(I) species contribute to the great improvement of separation performance by virtue of 2.3-fold increase in permeability and 2.2-fold increase in selectivity compared to pure 6FDA-DAM. The superior performance to those of most relevant reported MMMs demonstrates that the Cu(I) coordinated COF is an excellent candidate material for C3 H6 separation membranes.
Collapse
Affiliation(s)
- Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Pinyue Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dandan Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lina Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
10
|
Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Shen Q, Cong S, Zhu J, Zhang Y, He R, Yi S, Zhang Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Park S, Jeong HK. Cross-Linked Polyimide/ZIF-8 Mixed-Matrix Membranes by In Situ Formation of ZIF-8: Effect of Cross-Linking on Their Propylene/Propane Separation. MEMBRANES 2022; 12:964. [PMID: 36295723 PMCID: PMC9609502 DOI: 10.3390/membranes12100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Despite their potential for the scalable production of mixed-matrix membranes (MMMs), the MMMs prepared by the polymer-modification-enabled in situ metal-organic framework formation (PMMOF) process showed a considerable reduction in gas permeability as the filler loading increased. It was hypothesized that a correlation existed between the decrease in permeability and the change in the properties of the polymer, such as free volume and chain flexibility, upon in situ MOF formation. Herein, we aim to address the permeability reduction by using a cross-linked polyimide (6FDA-DAM:DABA (3:2)). It was found the degree of cross-linking affected not only the properties of the polymer, but also the in situ formation of the ZIF-8 filler particles in the cross-linked polymer. The proper degree of cross-linking resulted in suppressing C3H6 permeability reduction, suggesting a possible strategy to overcome the issue of PMMOF. The swelling of the polymer followed by chain rearrangement during the PMMOF, as well as the structural rigidity of the polymer, were found to be critical in mitigating permeability reduction.
Collapse
Affiliation(s)
- Sunghwan Park
- School of Energy Materials & Chemical Engineering, Kyungpook National University, Sangju-si 37224, Korea
- Department of Advanced Science and Technology Convergence, Kyungpook National University, Sangju-si 37224, Korea
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, USA
- Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, USA
| |
Collapse
|
13
|
Loloei M, Kaliaguine S, Rodrigue D. Postsynthetic Modification of Zn/Co-ZIF by 3,5-Diamino-1,2,4-triazole for Improved MOF/Polyimide Interface in CO 2–Selective Mixed Matrix Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahsa Loloei
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| | - Serge Kaliaguine
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| | - Denis Rodrigue
- Department of Chemical Engineering, Université Laval, Québec, Québec G1 V 0A6, Canada
| |
Collapse
|
14
|
Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Feng X, Peng D, Shan M, Niu X, Zhang Y. Facilitated propylene transport in mixed matrix membranes containing
ZIF
‐8@Agmim core‐shell hybrid material. AIChE J 2022. [DOI: 10.1002/aic.17707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoquan Feng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Donglai Peng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
- School of Material & Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Meixia Shan
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Xinpu Niu
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Yatao Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
16
|
Wang Z, Wang W, Zeng T, Ma D, Zhang P, Zhao S, Yang L, Zou X, Zhu G. Covalent-Linking-Enabled Superior Compatibility of ZIF-8 Hybrid Membrane for Efficient Propylene Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104606. [PMID: 34784648 DOI: 10.1002/adma.202104606] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The interface is a critical issue for metal-organic-framework hybrid membranes in propylene separation. Here, a covalent-linking strategy is reported for strikingly reinforcing the interfacial compatibility in a ZIF-8-based membrane. A functionalized ZIF-8 material named ZIF-8-CN is synthesized using the mixed-ligand approach. ZIF-8-CN has an identical crystalline structure to ZIF-8, and the 4,5-dicyanoimidazole ligand is available for further functionalization. Covalent linkage of ZIF-8-CN with PIM-1 is driven by the thermal reaction of the cyano groups on both entities, which strengthens the filler-polymer connection in the ZIF-8-CN@tPIM-1 membrane. ZIF-8-CN@tPIM-1 exhibits remarkably enhanced propylene permeation property with C3 H6 /C3 H8 selectivity of ≈28, which is 350% and 180% higher than those on non-treated ZIF-8-CN/PIM-1 and non-functionalized ZIF-8@tPIM-1, respectively. Additionally, ZIF-8-CN@tPIM-1 shows the highest C3 H6 permeability of ≈370 Barrer among all relevant ZIF-8 membranes. This strategy opens an avenue for precise interface engineering in membranes and the resultant high performance is appealing in the propylene separation industry.
Collapse
Affiliation(s)
- Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Zeng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dan Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Siqi Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
17
|
Kwon O, Kim M, Choi E, Bae JH, Yoo S, Won JC, Kim YH, Shin JH, Lee JS, Kim DW. High-aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes. SCIENCE ADVANCES 2022; 8:eabl6841. [PMID: 34985959 PMCID: PMC8730619 DOI: 10.1126/sciadv.abl6841] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic frameworks with high aspect ratios have the potential to yield high-performance gas separation membranes. We demonstrate the scalable synthesis of high–aspect ratio zeolitic imidazolate framework (ZIF)–8 nanoplates via a direct template conversion method in which high aspect ratio–layered Zn hydroxide sheets [Zn5(NO3)2(OH)8] were used as the sacrificial precursor. Successful phase conversion occurs as a result of the collaboration of low template stability and delayed delivery of 2-methylimidazole in weakly interacting solvents, particularly using acetone. When the ZIF-8 nanoplates with an average aspect ratio of 20 were shear aligned in the 6FDA-DAM polymer matrix by bar coating, the separation performance for propylene/propane far surpassed that of the previously reported mixed matrix and polymeric membranes, showing a propylene permeability of 164 Barrer and selectivity of 33.4 at 40 weight % loadings.
Collapse
Affiliation(s)
- Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minsu Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eunji Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jun Hyuk Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sungmi Yoo
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Chan Won
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yun Ho Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ju Ho Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
18
|
Yang K, Ban Y, Yang W. Layered MOF membranes modified with ionic liquid/AgBF4 composite for olefin/paraffin separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Wei Y, Yang Z, Wang L, Yu Y, Yang H, Jin H, Lu P, Wang Y, Wu D, Li Y, Tang CY. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|
21
|
Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Wan Abdul Karim Ghani WA, Sutrisna PD, Jeong HK. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Dangwal S, Ronte A, Lin H, Liu R, Zhu J, Lee JS, Gappa-Fahlenkamp H, Kim SJ. ZIF-8 membranes supported on silicalite-seeded substrates for propylene/propane separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Guo M, Kanezashi M. Recent Progress in a Membrane-Based Technique for Propylene/Propane Separation. MEMBRANES 2021; 11:membranes11050310. [PMID: 33922617 PMCID: PMC8145504 DOI: 10.3390/membranes11050310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
The similar physico-chemical properties of propylene and propane molecules have made the separation process of propylene/propane challenging. Membrane separation techniques show substantial prospects in propylene/propane separation due to their low energy consumption and investment costs, and they have been proposed to replace or to be combined with the conventional cryogenic distillation process. Over the past decade, organosilica membranes have attracted considerable attention due to their significant features, such as their good molecular sieving properties and high hydrothermal stability. In the present review, holistic insight is provided to summarize the recent progress in propylene/propane separation using polymeric, inorganic, and hybrid membranes, and a particular inspection of organosilica membranes is conducted. The importance of the pore subnano-environment of organosilica membranes is highlighted, and future directions and perspectives for propylene/propane separation are also provided.
Collapse
Affiliation(s)
- Meng Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
| | - Masakoto Kanezashi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
- Correspondence: ; Tel.: +81-82-424-2035
| |
Collapse
|
24
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
25
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021; 60:5864-5870. [DOI: 10.1002/anie.202014893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
26
|
Liu Y, Kita H, Tanaka K, Imawaka K, Tanaka S, Takewaki T. Mechanochemically synthesized
ZIF
‐8 nanoparticles blended into
6FDA‐TrMPD
membranes for
C
3
H
6
/
C
3
H
8
separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yongsheng Liu
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Hidetoshi Kita
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kazuhiro Tanaka
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kota Imawaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Takahiko Takewaki
- Yokohama Research Center Mitsubishi Chemical Corporation Yokohama Japan
| |
Collapse
|
27
|
Zhang Q, Li H, Chen S, Duan J, Jin W. Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Transforming polymer hollow fiber membrane modules to mixed-matrix hollow fiber membrane modules for propylene/propane separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Multifunctional ternary deep eutectic solvent-based membranes for the cost-effective ethylene/ethane separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118243] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|