1
|
Cao M, Chu J, Fan X, Wang F, Wang J, Cheng F, Xu Z, Hu F, Liu H, Gong C. Poly (ionic liquid) filled and cross-linked bacterial cellulose-based organic-inorganic composite anion exchange membrane with significantly improved ionic conductivity and mechanical strength. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Shen X, Liang X, Xu Y, Yu W, Li Q, Ge X, Wu L, Xu T. In-situ growth of PPy/MnOx radical quenching layer for durability enhancement of proton exchange membrane in PEMFCs. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Zhao X, Wang Q, Kunthom R, Liu H. Sulfonic Acid-Grafted Hybrid Porous Polymer Based on Double-Decker Silsesquioxane as Highly Efficient Acidic Heterogeneous Catalysts for the Alcoholysis of Styrene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6657-6665. [PMID: 36588472 DOI: 10.1021/acsami.2c17732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
β-Alkoxyalcohols generated from epoxide ring-opening reactions are significant due to their enormous value as pharmaceutical intermediates and fine chemicals. Using a phenyl-substituted double-decker-type silsesquioxane as the precursor, a hybrid porous material (PCS-DDSQ) was synthesized through a Scholl coupling reaction with an AlCl3 catalyst. Then, novel excellent Brønsted acid-derived silsesquioxane solid catalysts (PCS-DDSQ-SO3H-x) were successfully obtained through an electrophilic aromatic substitution reaction of chlorosulfonic acid on phenyl rings of PCS-DDSQ, fully characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction, temperature-programmed desorption, water contact angle, Brunauer-Emmett-Teller model, thermogravimetric analysis, and solid-state 13C and 29Si nuclear magnetic resonance techniques. The catalytic behavior of the PCS-DDSQ-SO3H-x with different SO3H loadings for the methanolysis of styrene oxide was compared and evaluated. The presence of SO3H groups endows them with excellent catalytic abilities, achieving the highest values from PCS-DDSQ-SO3H-1 (the acid site of its catalyst is 1.84 mmol/g) as 99% conversion and 100% selectivity for the methanolysis of styrene oxide in 30 min, which shows superior catalytic properties of low dosage and high efficiency. Furthermore, the PCS-DDSQ-SO3H-1 catalyst can maintain high activity and selectivity after three cycles. This study provides a feasible method for the preparation of Brønsted solid acid catalysts with different acid loadings by introducing the sulfonic group into PCS-DDSQ.
Collapse
Affiliation(s)
- Xiaohan Zhao
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qingzheng Wang
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
4
|
Effect of Crosslinking Agent on Mesoporous Spherical POSS Hybrid Particles: Synthesis, Characterization and Thermal Stability. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Experimental Investigation of Electro-Mechanical Behavior of Silver-Coated Teflon Fabric-Reinforced Nafion Ionic Polymer Metal Composite with Carbon Nanotubes and Graphene Nanoparticles. Polymers (Basel) 2022; 14:polym14245497. [PMID: 36559862 PMCID: PMC9781045 DOI: 10.3390/polym14245497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Ionic Polymer Metal Composites (IPMCs) are in high demand owing to the ongoing advancements in technology for various applications. New fabrication techniques and a quick retort towards the applied load are the significant reasons for considering IPMCs in smart devices. Here, a Teflon fabric-reinforced Nafion (TFRN) membrane is used to create an IPMC. The materials employed as electrodes are silver and nanofillers. The basement membrane, Nafion 438 (N-438), is sandwiched between the electrodes using a chemical decomposition technique. Subsequently, the electromechanical properties (actuation) of the membrane are tested. The micro and molecular structure of the IPMC membrane coated with Silver (Ag), Ag-Carbon nanotubes (CNTs), and Ag-Graphene nanoparticles samples are examined with the help of SEM and X-ray diffraction (XRD). The membrane scratch test is carried out to evaluate the abrasion and wear resistance of the membrane. The lowest coefficient of friction is shown by N438 + Ag + Graphene (0.05), which increased by 300% when compared to a pure N438 membrane. The hydration and tip deflection test were also performed to understand the water uptake percentage. At 90 °C, the highest water uptake was observed for N438 + Ag + Graphene (0.05), which decreased by 60, 42, 23, 14 and 26% when compared to N438, N438 + Ag, N438 + Ag + CNT (0.01), N438 + Ag + CNT (0.05) and N438 + Ag + Graphene (0.01), respectively. A proportional relationship between hydration level and tip deflection is observed and the highest bending performance is observed for the N438 + Ag + Graphene (0.05) membrane.
Collapse
|
6
|
Wang S, Zhu T, Shi B, Fan C, Liu Y, Yin Z, Gao Z, Zhang Z, Wu H, Jiang Z. Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Jia J, Liu K, Zuo T, Song D, Wang N, Hu S, Wei X, Che Q. Enhancing proton conductivity at subzero temperature through constructing the well-ordered structure based on carbon dots. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Mayadevi TS, Goo BH, Paek SY, Choi O, Kim Y, Kwon OJ, Lee SY, Kim HJ, Kim TH. Nafion Composite Membranes Impregnated with Polydopamine and Poly(Sulfonated Dopamine) for High-Performance Proton Exchange Membranes. ACS OMEGA 2022; 7:12956-12970. [PMID: 35474770 PMCID: PMC9026075 DOI: 10.1021/acsomega.2c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
We prepared Nafion composite membranes by impregnating Nafion-212 with polydopamine, poly(sulfonated dopamine), and poly(dopamine-co-sulfonated dopamine) using the swelling-filling method to generate nanopores in the Nafion framework that were filled with these polymers. Compared to the pristine Nafion-212 membrane, these composite membranes showed improved thermal and mechanical stabilities due to the strong interactions between the catecholamine of the polydopamine derivatives and the Nafion matrix. For the composite membrane filled with poly(sulfonated dopamine) (N-PSDA), further interactions were induced between the Nafion and the sulfonic acid side chain, resulting in enhanced water uptake and ion conductivity. In addition, filling the nanopores in the Nafion matrix with polymer fillers containing aromatic hydrocarbon-based dopamine units led to an increase in the degree of crystallinity and resulted in a significant decrease in the hydrogen permeability of the composite membranes compared to Nafion-212. Hydrogen crossovers 26.8% lower than Nafion-212 at 95% relative humidity (RH) (fuel cell operating conditions) and 27.3% lower at 100% RH (water electrolysis operating conditions) were obtained. When applied to proton exchange membrane-based fuel cells, N-PSDA exhibited a peak power density of 966 mW cm-2, whereas N-PSDA showed a current density of 4785 mA cm-2, which is 12.4% higher than Nafion-212 at 2.0 V and 80 °C.
Collapse
Affiliation(s)
- T. S. Mayadevi
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Bon-Hyuk Goo
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Sae Yane Paek
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Ook Choi
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| | - Youngkwang Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Oh Joong Kwon
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Innovation
Center for Chemical Engineering, Incheon
National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - So Young Lee
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Hyoung-Juhn Kim
- Hydrogen
and Fuel Cell Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
- Hydrogen
Energy Technology Laboratory, Korea Institute
of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Tae-Hyun Kim
- Organic
Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Research
Institute of Basic Sciences, Incheon National
University, 119 Academy-ro, Incheon 22012, Republic of Korea
| |
Collapse
|
9
|
Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
An H, Zhang R, Li W, Li P, Qian H, Yang H. Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7845-7855. [PMID: 35104405 DOI: 10.1021/acsami.1c20627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An aminopropyl isobutyl polyhedral oligosilsesquioxane (NH2-POSS) surface-modified Nafion membrane has been designed by chemical grafting for vanadium redox flow batteries (VRFBs). NH2-POSS is a cage-like macromer consisting of an inorganic Si8O12 core surrounded by seven inert isobutyl groups and one active aminopropyl group. The sulfonic acid groups on the surface of Nafion can be activated by 1,1-carbonyldiimidazole for further modification with NH2-POSS. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) prove that NH2-POSS has been successfully grafted on the surface of a Nafion 115 membrane. Although the proton conductivity decreases slightly, the organic-inorganic hybrid membranes display enhanced ion selectivity and excellent dimensional stability with lower water uptake and swelling ratio than Nafion 115. Moreover, two-dimensional-grazing incidence X-ray diffraction (2D-GIXRD) reveals that the introduction of NH2-POSS forms a POSS layer on the surface of the membrane and narrows the space of Nafion clusters, which helps to block VO2+ permeation. A VRFB with the surface-modified Nafion membrane displays an outstanding performance with an average Coulombic efficiency (CE) of 98.7% and energy efficiency (EE) of 84.5% at a current density of 80 mA cm-2, superior to those of the Nafion 115 membrane (CE = 95.7%, EE = 81.7%). Furthermore, the cell holds a high capacity retention of 49.2% after 1000 charge-discharge cycles, in contrast to that of 41.9% for the cell with Nafion 115 after only 200 cycles. The results suggest that the surface-modified hybrid membrane is a promising strategy to overcome the vanadium ion crossover in VRFBs.
Collapse
Affiliation(s)
- Hongli An
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pan Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huidong Qian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Guo H, Li Z, Pei H, Sun P, Zhang L, Li P, Yin X. Stable branched polybenzimidazole high temperature proton exchange membrane: Crosslinking and pentaphosphonic-acid doping lower fuel permeability and enhanced proton transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Liu L, Lu Y, Pu Y, Li N, Hu Z, Chen S. Highly sulfonated carbon nano-onions as an excellent nanofiller for the fabrication of composite proton exchange membranes with enhanced water retention and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Li Z, Hao X, Cheng G, Huang S, Han D, Xiao M, Wang S, Meng Y. In situ implantation of cross-linked functional POSS blocks in Nafion® for high performance direct methanol fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Esmaeilzadeh Z, Karimi M, Shoushtari AM, Javanbakht M. Linking interfacial energies with proton conductivity in sulfonated poly (ether ether ketone) nanocomposite. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119288] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Novel sulfonated polyimide-nafion nanocomposite membranes: Fabrication, morphology and physiochemical investigations for fuel cell applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
|
19
|
Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Liu L, Pu Y, Lu Y, Li N, Hu Z, Chen S. Superacid sulfated SnO2 doped with CeO2: A novel inorganic filler to simultaneously enhance conductivity and stabilities of proton exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Effect of Polyhedral Silsesquioxane Functionalized Sulfonic Acid Groups Incorporated Into Highly Sulfonated Polyphenylsulfone as Proton-Conducting Membrane. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chen W, Chen M, Zhen D, Li T, Wu X, Tang S, Wan L, Zhang S, He G. SO 42-/SnO 2 Solid Superacid Granular Stacked One-Dimensional Hollow Nanofiber for a Highly Conductive Proton-Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40740-40748. [PMID: 32805848 DOI: 10.1021/acsami.0c09122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel sulfated tin oxide solid superacid granular stacked one-dimensional (1D) hollow nanofiber (SO42-/FSnO2) is proposed as a nanofiller in sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) to manipulate a highly conductive proton nanochannel. It has unique microstructures with an open-end hollow nanofibric morphology and grain-stacked single-layer mesoporous fiber wall, which greatly enlarge the specific surface area and aspect ratio. The diverse acid sites, that is, SO42-, Sn-OH Brönsted, and Sn4+ Lewis superacids, provide a high concentration of strong acidic proton carriers on the nanofiber surface and dynamically abundant hydrogen bonds for rapid proton transfer and interfacial interactions with -SO3H groups in the SPPESK along the 1D hollow nanofiber. As a result, long-range orientated ionic clusters are observed in the SO42-/FSnO2 incorporated membrane, leading to simultaneous enhancement of proton conductivity (226.7 mS/cm at 80 °C), mechanical stability (31.4 MPa for the hydrated membrane), fuel permeation resistance, and single-cell performance (936.5 and 147.3 mW/cm2 for H2/O2 and direct methanol fuel cells, respectively). The superior performance, as compared with that of the zero-dimensional nanoparticle-incorporated membrane, Nafion 115, and previously reported SPPESK-based membranes, suggests a great potential of elaborating superstructural 1D hollow nanofillers for highly conductive proton-exchange membranes.
Collapse
Affiliation(s)
- Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Musen Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Dongxing Zhen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Tang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Wan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Calabrese C, Aprile C, Gruttadauria M, Giacalone F. POSS nanostructures in catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01407a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we highlight the use of appealing POSS-based nanostructures for both homogeneous and heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Carla Calabrese
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| | | | - Michelangelo Gruttadauria
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| | - Francesco Giacalone
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| |
Collapse
|