1
|
Lee J, Shin H, Sadeghi K, Seo J. Chlorine Dioxide (ClO 2)-Releasing Sachet for Preservation of Cherry Tomatoes. Molecules 2025; 30:2041. [PMID: 40363846 PMCID: PMC12073356 DOI: 10.3390/molecules30092041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Chlorine dioxide (ClO2) is a powerful sterilizing agent that is widely used to prevent the spoilage of fresh foods during delivery and storage. However, its practical applications are hindered by a short sterilization duration, complex deployment processes, and high treatment costs. To address these challenges, an innovative ClO2 self-releasing sachet was developed, which was specifically designed for use in retail and wholesale markets. The sachet utilizes polyether block amide (PEBAX®) as a hydrophilic polymer to facilitate the dissociation of sodium chlorite (NaClO2) and citric acid (CA), which generates ClO2. A PEBAX/CA composite film was coated onto kraft paper to construct the sachet. This design extended the ClO2 release period to over 3 d, with a controllable release rate being achieved by adjusting the concentrations of NaClO2 and CA. In practical tests, the sachets inhibited fungal growth by >50% over 14 d at 20 °C within a corrugated box. Furthermore, they preserved the quality of the cherry tomatoes for 16 d during storage. These results demonstrate that the newly developed sachet offers an economical and user-friendly solution for fresh-food packaging, effectively preserving product quality.
Collapse
Affiliation(s)
- Junseok Lee
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| | - Hojun Shin
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ 85287, USA;
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| |
Collapse
|
2
|
Hernik A, Radford McGovern F, Naydenova I. Optical Response of PDMS Surface Diffraction Gratings under Exposure to Volatile Organic Compounds. ACS APPLIED OPTICAL MATERIALS 2024; 2:1188-1197. [PMID: 38962564 PMCID: PMC11220723 DOI: 10.1021/acsaom.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
Monitoring volatile organic compounds (VOCs) in indoor air is significantly gaining importance due to their adverse effects on human health. Among the diverse detection methods is optical sensing, which employs materials sensitive to the presence of gases in the environment. In this work, we investigate polydimethylsiloxane (PDMS), one of the materials utilized for gas sensing, in a novel transducer: a surface relief diffraction grating. Upon adsorption of the volatile analyte, the PDMS grating swells, and its refractive index changes; both effects lead to increased diffraction efficiency in the first diffraction order. Hence, the possibility of VOC detection emerges from the measurement of the optical power transmitted or diffracted by the grating. Here, we investigated responses of PDMS gratings with varying surface profile properties upon exposure to VOCs with different polarities, i.e., ethanol, n-butanol, toluene, chloroform, and m-xylene, and compared their response in the context of the Hansen theory of solubility. We also studied the response of the grating with a 530 nm deep surface profile to different concentrations of m-xylene, showing a sensitivity and limit of detection of 0.017 μW/ppm and 186 ppm, respectively. Structures in the PDMS were obtained as copies of sinusoidal surface gratings fabricated holographically in acrylamide photopolymer and revealed good sensing repeatability, reversibility, and a fast response time. The proposed sensing technique can be directly adopted as a simple method for VOC detection or can be further improved by implementing a functional coating to significantly enhance the sensitivity and selectivity of the device.
Collapse
Affiliation(s)
- Aleksandra Hernik
- Centre for Industrial &
Engineering Optics, School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Faolan Radford McGovern
- Centre for Industrial &
Engineering Optics, School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Izabela Naydenova
- Centre for Industrial &
Engineering Optics, School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
| |
Collapse
|
3
|
Trindade ACM, Enzweiler H, Salau NPG. Modeling and optimizing the synthesis of isopropyl acetate over niobium pentoxide using experimental design methodology coupled with artificial neural network. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2174861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Aline C. M. Trindade
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Heveline Enzweiler
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Florianopolis, Brazil
| | - Nina P. G. Salau
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
4
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation. MEMBRANES 2022; 12:membranes12101007. [PMID: 36295765 PMCID: PMC9610642 DOI: 10.3390/membranes12101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/02/2023]
Abstract
The growing interest in the production of biofuels has motivated numerous studies on separation techniques that allow the separation/concentration of organics produced by fermentation, improving productivity and performance. In this work, the preparation and characterization of new butanol-selective membranes was reported. The prepared membranes had a hollow fiber configuration and consisted of two dense selective layers: a first layer of PEBA and a second (outer) layer of PDMS. The membranes were tested to evaluate their separation performance in the selective removal of organics from a synthetic ABE solution. Membranes with various thicknesses were prepared in order to evaluate the effect of the PDMS protective layer on permeant fluxes and membrane selectivity. The mass transport phenomena in the pervaporation process were characterized using a resistances-in-series model. The experimental results showed that PEBA as the material of the dense separating layer is the most favorable in terms of selectivity towards butanol with respect to the other components of the feed stream. The addition of a protective layer of PDMS allows the sealing of possible pinholes; however, its thickness should be kept as small as possible since permeation fluxes decrease with increasing thickness of PDMS and this material also has greater selectivity towards acetone compared to other feed components.
Collapse
|
5
|
Low-temperature cross-linking fabrication of sub-nanoporous SiC-based membranes for application to the pervaporation removal of methanol. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Baek J, Jiang Y, Demko AR, Jimenez-Thomas AR, Vallez L, Ka D, Xia Y, Zheng X. Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20190-20196. [PMID: 35467848 DOI: 10.1021/acsami.2c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Boron has been regarded as a promising high-energy fuel due to its high volumetric and gravimetric heating values. However, it remains challenging for boron to attain its theoretical heat of combustion because of the existence of its native boron oxide layer and its high melting and boiling temperatures that delay ignition and inhibit complete combustion. Boron combustion is known to be enhanced by physically adding fluorine-containing chemicals, such as fluoropolymer or metal fluorides, to remove surface boron oxides. Herein, we chemically functionalize the surface of boron particles with three different fluoroalkylsilanes: FPTS-B (F3-B), FOTS-B (F13-B), and FDTS-B (F17-B). We evaluated the ignition and combustion properties of those three functionalized boron particles as well as pristine ones. The boron particles functionalized with the longest fluorocarbon chain (F17) exhibit the most powerful energetic performance, the highest heat of combustion, and the strongest BO2 emission among all samples. These results suggest that the surface functionalization with fluoroalkylsilanes is an efficient strategy to enhance boron ignition and combustion.
Collapse
Affiliation(s)
- Jihyun Baek
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yue Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Andrew R Demko
- Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, California 93555, United States
| | - Alexander R Jimenez-Thomas
- Naval Air Warfare Center Weapons Division, 1 Administration Circle, China Lake, California 93555, United States
| | - Lauren Vallez
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dongwon Ka
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Han J, Liang Y, He C, Tong Y, Li W. Porous PVA- g-SPA/PVA-SA Catalytic Composite Membrane via Lyophilization for Esterification Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2660-2667. [PMID: 35175780 DOI: 10.1021/acs.langmuir.1c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic composite membrane was developed for the enhancement of esterification by lyophilization for the first time. The catalytic composite membrane was composed of a poly(vinyl alcohol) (PVA)-sodium alginate (SA) separation layer and a spongy porous catalytic layer cross-linked by PVA and 4-sulfophthalic acid (SPA). Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) results indicated the successful synthesis of the catalytic composite membrane. The membrane properties were evaluated by ethanol dehydration and esterification. The conversion rate of acetic acid reached 95.9% after 12 h. Compared with batch reactions, the conversion rate increased by 24.4%. After five cycles, the membrane still maintained outstanding catalytic activity. The resistance of mass transfer was analyzed, and the results showed that the porous structure reduced the catalytic layer resistance to total resistance from 70.27 to 32.88%. The composite membrane with a spongy porous catalytic layer exhibited superior dehydration and catalytic performance.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengxiu He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|
9
|
CO 2/N 2 Gas Separation Using Pebax/ZIF-7-PSf Composite Membranes. MEMBRANES 2021; 11:membranes11090708. [PMID: 34564525 PMCID: PMC8466813 DOI: 10.3390/membranes11090708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
In this study, we mixed the zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide)® 2533 (Pebax-2533) and used it as a selective layer for a composite membrane. We prepared the composite membrane’s substrate using polysulfone (PSf), adjusted its pore size using polyethylene glycol (PEG), and applied polydimethylsiloxane (PDMS) to the gutter layer and the coating layer. Then, we investigated the membrane’s properties of gases by penetrating a single gas (N2, CO2) into the membrane. We identified the peaks and geometry of ZIF-7 to determine if it had been successfully synthesized. We confirmed that ZIF-7 had a BET surface area of 303 m2/g, a significantly high Langmuir surface area of 511 m2/g, and a high CO2/N2 adsorption selectivity of approximately 50. Considering the gas permeation, with ZIF-7 mixed into Pebax-2533, N2 permeation decreased from 2.68 GPU in a pure membrane to 0.43 GPU in the membrane with ZIF-7 25 wt%. CO2 permeation increased from 18.43 GPU in the pure membrane to 26.22 GPU in the ZIF-7 35 wt%. The CO2/N2 ideal selectivity increased from 6.88 in the pure membrane to 50.43 in the ZIF-7 25 wt%. Among the membranes, Pebax-2533/ZIF-7 25 wt% showed the highest permeation properties and the characteristics of CO2-friendly ZIF-7.
Collapse
|
10
|
Hsieh CW, Li BX, Suen SY. Alicyclic Polyimide/SiO 2 Mixed Matrix Membranes for Water/n-Butanol Pervaporation. MEMBRANES 2021; 11:membranes11080564. [PMID: 34436327 PMCID: PMC8398008 DOI: 10.3390/membranes11080564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Alicyclic polyimides (PIs) have excellent properties in solubility, mechanical strength, thermal property, etc. This study developed two types of alicyclic PI-based mixed matrix membranes (MMMs) for water/n-butanol pervaporation application, which have never been investigated previously. The fillers were hydrophilic SiO2 nanoparticles. The synthesized PI was mixed with SiO2 nanoparticles in DMAc to make the casting solution, and a liquid film was formed over PET substrate using doctor blade. A dense MMM was fabricated at 80 °C and further treated via multi-stage curing (100–170 °C). The prepared membranes were characterized by FTIR, TGA, FE-SEM, water contact angle, and solvent swelling. The trends of pure solvent swelling effects agree well with the water contact angle results. Moreover, the pervaporation efficiencies of alicyclic PI/SiO2 MMMs for 85 wt% n-butanol aqueous solution at 40 °C were investigated. The results showed that BCDA-3,4′-ODA/SiO2 MMMs had a larger permeation flux and higher separation factor than BCDA-1,3,3-APB/SiO2 MMMs. For both types of MMMs, the separation factor increased first and then decreased, with increasing SiO2 loading. Based on the PSI performance, the optimal SiO2 content was 0.5 wt% for BCDA-3,4′-ODA/SiO2 MMMs and 5 wt% for BCDA-1,3,3-APB/SiO2 MMMs. The overall separation efficiency of BCDA-3,4′-ODA-based membranes was 10–30-fold higher.
Collapse
Affiliation(s)
- Ching-Wen Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Bo-Xian Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Ren D, Ren SP, Lin Y, Xu J, Wang XL. Stitch and copolymerization of thin-film composite membranes to enhance hydrophilicity and organics resistance for the separation of glycerol-based wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125446. [PMID: 33930966 DOI: 10.1016/j.jhazmat.2021.125446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/24/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Many industries produce large amounts of glycerol-based wastewater, which always contains hazardous organic chlorides. Compared with complicated biological treatments or physical adsorption, membrane separation decreases the cost and saves energy. Strong swelling of traditional thin-film composite (TFC) membranes influence the performance in the separation of organic molecules. Here we prepared TFC membranes with an acrylamide-grafted PAN support layer to copolymerize with m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The link of separative layer and support layer was created like a zipper stitching to enhance the stability and resistance for the removal of organic molecules. An aquatic grass-like layer of acrylamide enlarges the surface area and hydrophilicity with superior separation performances (15.8 LMH bar-1 flux, 72.0% rejection of dichloropropanol (DCP) and 64.6% rejection of glycerol (Gl)). The trade-off upper bound was improved to a high level. We also established the simulations of evaporation using Aspen Plus and mathematical models of reverse osmosis to calculate the energy consumption corresponding to the recycle of glycerol-based wastewater. The experimental and theoretical results illustrate the advantages of acrylamide-grafted TFC membranes in the ap-plications to concentrate organic solutes and treat wastewater.
Collapse
Affiliation(s)
- Dan Ren
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Shu-Ping Ren
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yakai Lin
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Xiao-Lin Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Prihatiningtyas I, Hartanto Y, Van der Bruggen B. Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Li G, Kujawski W, Knozowska K, Kujawa J. The Effects of PEI Hollow Fiber Substrate Characteristics on PDMS/PEI Hollow Fiber Membranes for CO 2/N 2 Separation. MEMBRANES 2021; 11:56. [PMID: 33466687 PMCID: PMC7828792 DOI: 10.3390/membranes11010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
The CO2 separation from flue gas based on membrane technology has drawn great attention in the last few decades. In this work, polyetherimide (PEI) hollow fibers were fabricated by using a dry-jet-wet spinning technique. Subsequently, the composite hollow fiber membranes were prepared by dip coating of polydimethylsiloxane (PDMS) selective layer on the outer surface of PEI hollow fibers. The hollow fibers spun from various spinning conditions were fully characterized. The influence of hollow fiber substrates on the CO2/N2 separation performance of PDMS/PEI composite membranes was estimated by gas permeance and ideal selectivity. The prepared composite membrane where the hollow fiber substrate was spun from 20 wt% of dope solution, 12 mL/min of bore fluid (water) flow rate exhibited the highest ideal selectivity equal to 21.3 with CO2 permeance of 59 GPU. It was found that the dope concentration, bore fluid flow rate and bore fluid composition affect the porous structure, surface morphology and dimension of hollow fibers. The bore fluid composition significantly influenced the gas permeance and ideal selectivity of the PDMS/PEI composite membrane. The prepared PDMS/PEI composite membranes possess comparable CO2/N2 separation performance to literature ones.
Collapse
Affiliation(s)
- Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
- National Research Nuclear University MEPhI, 31, Kashira Hwy, 115409 Moscow, Russia
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| |
Collapse
|
15
|
Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization-Material Approach. MATERIALS 2021; 14:ma14010201. [PMID: 33401646 PMCID: PMC7794798 DOI: 10.3390/ma14010201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023]
Abstract
A highly effective method was developed to functionalize ceramic supports (Al2O3 powders and membranes) using newly synthesized spacer molecules. The functionalized materials were subsequently utilized for Candida antarctica lipase B enzyme immobilization. The objective is to systematically evaluate the impact of various spacer molecules grafted onto the alumina materials will affect both the immobilization of the enzymes and specific material surface properties, critical to enzymatic reactors performance. The enzyme loading was significantly improved for the supports modified with shorter spacer molecules, which possessed higher grafting effectiveness on the order of 90%. The specific enzyme activity was found to be much higher for samples functionalized with longer modifiers yielding excellent enantioselectivity >97%. However, the enantiomeric ratio of the immobilized lipase was slightly lower in the case of shorter spacer molecules.
Collapse
|
16
|
Knozowska K, Kujawa J, Lagzdins R, Figoli A, Kujawski W. A New Type of Composite Membrane PVA-NaY/PA-6 for Separation of Industrially Valuable Mixture Ethanol/Ethyl Tert-Butyl Ether by Pervaporation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3676. [PMID: 32825354 PMCID: PMC7504003 DOI: 10.3390/ma13173676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Pervaporation is a membrane technique used to separate azeotropic and close boiling solvents. Heterogenous PVA composite membranes with NaY zeolite supported on polyamide-6 were fabricated and utilized in organic-organic pervaporation. The efficiency of prepared membranes was evaluated in the separation of ethanol/ethyl tert-butyl ether (EtOH/ETBE) using separation factor (β) and the thickness normalized pervaporation separation index (PSIN). Implementation of the fringe projection phase-shifting method allowed to the determined contact angle corrected by roughness. The influence of the presence of water traces in the feed on the overall separation efficiency was also discussed using the enrichment factor for water (EFwater). The incorporation of NaY into PVA matrix increases surface roughness and hydrophilicity of the composite membrane. It was found that membranes selectively transport ethanol from the binary EtOH/ETBE mixture. The values of β (2.3) and PSIN (288 μm g m-2 h-1) for PVA-NaY/PA6 membrane were improved by 143% and 160% in comparison to the values for the pristine PVA/PA6 membrane. It was found that membranes showed EFwater > 1, thus revealing the preferential transport of water molecules across membranes. These results are also significant for the design of membranes for the removal of water excess from the mixtures of organic solvents.
Collapse
Affiliation(s)
- Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
| | - Renars Lagzdins
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
- Faculty of Nature Sciences and Mathematics, Daugavpils University, 1 Parādes Street, LV-5401 Daugavpils, Latvia
| | - Alberto Figoli
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17c, 87030 Rende, Italy;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
- National Research Nuclear University MEPhI, 31 Kashirskoe Hwy, Moscow 115409, Russia
| |
Collapse
|
17
|
Specific Structure and Properties of Composite Membranes Based on the Torlon® (Polyamide-imide)/Layered Perovskite Oxide. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of perovskite-type layered oxide K2La2Ti3O10 (Per) as a modifier of the Torlon® polyamide-imide (PAI) membrane has led to the formation of an specific structure of a dense nonsymmetrical film, namely, a thin perovskite-enriched layer (3–5 μm) combined with the polymer matrix (~30 μm). The PAI/Per membrane structure was studied by SEM in combination with energy dispersive microanalysis of the elemental composition which illustrated different compositions of top and bottom surfaces of the perovskite-containing membranes. Measurement of water and alcohol contact angles and calculation of surface tension revealed hydrophilization of the membrane surface enriched with perovskite. The transport properties of the nonsymmetrical PAI/Per membranes were studied in the pervaporation of ethanol‒ethyl acetate mixture. The inclusion of 2 wt.% Per in the PAI gives a membrane with a high separation factor and increased total flux.
Collapse
|