1
|
Díaz O, González E, Vera L, Fernández LJ, Díaz-Marrero AR, Fernández JJ. Recirculating packed-bed biofilm photobioreactor combined with membrane ultrafiltration as advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27309-2. [PMID: 37140860 DOI: 10.1007/s11356-023-27309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Packed-bed biofilm photobioreactor combined with ultrafiltration membrane was investigated for intensifying the process for secondary wastewater effluent treatment. Cylindrical glass carriers were used as supporting material for the microalgal-bacterial biofilm, which developed from indigenous microbial consortium. Glass carriers allowed adequate growth of the biofilm with limited suspended biomass. Stable operation was achieved after a start-up period of 1000 h, where supernatant biopolymer clusters were minimized and complete nitrification was observed. After that time, biomass productivity was 54 ± 18 mg·L-1·day-1. Green microalgae Tetradesmus obliquus and several strains of heterotrophic nitrification-aerobic denitrification bacteria and fungi were identified. Combined process exhibited COD, nitrogen and phosphorus removal rates of 56 ± 5%, 12 ± 2% and 20 ± 6%, respectively. Membrane fouling was mainly caused by biofilm formation, which was not effectively mitigated by air-scouring aided backwashing.
Collapse
Affiliation(s)
- Oliver Díaz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain.
| | - Enrique González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luis Javier Fernández
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA)-CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
- Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| |
Collapse
|
2
|
Kawashima K, Shirzadi M, Fukasawa T, Fukui K, Tsuru T, Ishigami T. Numerical modeling for particulate flow through realistic microporous structure of microfiltration membrane: Direct numerical simulation coordinated with focused ion beam scanning electron microscopy. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Song S, Wang S, Le-Clech P, Shen Y. LBM-DEM simulation of particle deposition and resuspension of pre-deposited dynamic membrane. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dincau B, Tang C, Dressaire E, Sauret A. Clog mitigation in a microfluidic array via pulsatile flows. SOFT MATTER 2022; 18:1767-1778. [PMID: 35080574 DOI: 10.1039/d2sm00013j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clogging is a common obstacle encountered during the transport of suspensions and represents a significant energy and material cost across applications, including water purification, irrigation, biopharmaceutical processing, and aquifer recharge. Pulsatile pressure-driven flows can help mitigate clogging when compared to steady flows. Here, we study experimentally the influence of the amplitude of pulsation 0.25P0 ≤ δP ≤ 1.25P0, where P0 is the mean pressure, and of the frequency of pulsation 10-3 Hz ≤ f ≤ 10-1 Hz on clog mitigation in a microfluidic array of parallel channels using a dilute suspension of colloidal particles. The array geometry is representative of a classical filter, with parallel pores that clog over time, yielding a filter cake that continues to grow and can interact with other pores. We combine flow rate measurements with direct visualizations at the pore scale to correlate the observed clogging dynamics with the changes in flow rate. We observe that all pulsatile amplitudes at 0.1 Hz yield increased throughput compared to steady flows. The rearrangement of particles when subject to a dynamic shear environment can delay the clogging of a pore or even remove an existing clog. However, this benefit is drastically reduced at 10-2 Hz and disappears at 10-3 Hz as the pulsatile timescale becomes too large compared to the timescale associated with the clogging and the growth of the filter cakes in this system. The present study demonstrates that pulsatile flows are a promising method to delay clogging at both the pore and system scale.
Collapse
Affiliation(s)
- Brian Dincau
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Connor Tang
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Emilie Dressaire
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
5
|
Interplay between particulate fouling and its flow disturbance: Numerical and experimental studies. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
How does porosity heterogeneity affect the transport properties of multibore filtration membranes? J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Enfrin M, Lee J, Fane AG, Dumée LF. Mitigation of membrane particulate fouling by nano/microplastics via physical cleaning strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147689. [PMID: 34022574 DOI: 10.1016/j.scitotenv.2021.147689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Membrane fouling by nano/microplastics (NP/MPs) is an emerging concern threatening the performance of water and wastewater treatment facilities. The NP/MPs can lead to surface adsorption, fouling and potential mechanical abrasion of the membranes. In this work, periodic gas scouring was applied during the filtration of nano/microplastics across ultrafiltration membranes to investigate the impact of shear forces on the adsorption of nano/microplastics. A series of surface energy and chemistry-modified membranes were also used including acrylic acid, cyclopropylamine and hexamethyldisiloxane plasma-modified membranes, allowing for a set of materials with controlled hydrophilicity, roughness and surface charge. Bubbling gas within the system at a gas flow rate of 0.5 to 1 L·min-1 and a water flow rate of 2 L·min-1 was found to limit the water flux decline across the pristine and hydrophobic membranes compared to the filtration experiments performed without cleaning from 38 to 22 and 23%, respectively. The adsorption of nano/microplastics onto the surface of the membranes was also simultaneously decreased from 40 to 25 and 19%, respectively. Interestingly, for the hydrophilised membranes no enhancement in permeance was observed when performing gas scouring due to the already low tendency for selective adsorption of the nano/microplastics onto their surface. The correlation of a dimensionless fouling number to the shear stress number suggested that the shear forces induced by gas scouring reduced nano/microplastics adsorption up to a gas injection ratio (volume fraction of gas) of 0.3, where the wall shear stress at the surface of the membrane was limited. This work offers an advanced physical strategy to reduce and control membrane fouling by nano/microplastics, with potential for this strategy to be adapted for more complex water matrices and plastic particles.
Collapse
Affiliation(s)
- Marie Enfrin
- University of Surrey, Chemical and Process Engineering, Guildford, Surrey, GU2 7XH, United Kingdom; Deakin University, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia.
| | - Judy Lee
- University of Surrey, Chemical and Process Engineering, Guildford, Surrey, GU2 7XH, United Kingdom.
| | - Anthony G Fane
- University of New South Wales, UNESCO Centre for Membranes, School of Chemical Engineering, Sydney 2052, New South Wales, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Particle movements provoke avalanche-like compaction in soft colloid filter cakes. Sci Rep 2021; 11:12836. [PMID: 34145324 PMCID: PMC8213765 DOI: 10.1038/s41598-021-92119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.
Collapse
|
9
|
Vroman T, Beaume F, Armanges V, Gout E, Remigy JC. Critical backwash flux for high backwash efficiency: Case of ultrafiltration of bentonite suspensions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Linkhorst J, Lölsberg J, Thill S, Lohaus J, Lüken A, Naegele G, Wessling M. Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane. Sci Rep 2021; 11:812. [PMID: 33436943 PMCID: PMC7804001 DOI: 10.1038/s41598-020-80324-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.
Collapse
Affiliation(s)
- John Linkhorst
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Jonas Lölsberg
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Sebastian Thill
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Johannes Lohaus
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Arne Lüken
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Gerhard Naegele
- Biological Information Processing (IBI-4), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Matthias Wessling
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany. .,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Delouche N, Schofield AB, Tabuteau H. Dynamics of progressive pore clogging by colloidal aggregates. SOFT MATTER 2020; 16:9899-9907. [PMID: 33026373 DOI: 10.1039/d0sm01403f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The flow of a suspension through a bottleneck often leads to its obstruction. Such a continuous flow to clogging transition has been well characterized when the constriction width to particle size ratio, W/D, is smaller than 3-4. In such cases, the constriction is either blocked by a single particle that is larger than the constriction width (W/D < 1), or there is an arch formed by several particles that try to enter it together (2 < W/D < 4). For larger W/D ratios, 4 < W/D < 10, the blockage of the constriction is presumed to be due to the successive accumulations of particles. Such a clogging mechanism may also apply to wider pores. The dynamics of this progressive obstruction remains largely unexplored since it is difficult to see through the forming clog and we still do not know how particles accumulate inside the constriction. In this paper, we use particle tracking and image analysis to study the clogging of a constriction/pore by stable colloidal particles. These techniques allow us to determine the shape and the size of all the objects, be they single particles or aggregates, captured inside the pore. We show that even with the rather monodisperse colloidal suspension we used individual particles cannot clog a pore alone. These individual particles can only partially cover the pore surface whilst it is the very small fraction of aggregates present in the suspension that can pile up and clog the pore. We analyzed the dynamics of aggregate motion up to the point of capture within the pore, which helps us to elucidate why the probability of aggregate capture inside the pore is high.
Collapse
Affiliation(s)
- N Delouche
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France.
| | | | | |
Collapse
|
12
|
Lüken A, Linkhorst J, Fröhlingsdorf R, Lippert L, Rommel D, De Laporte L, Wessling M. Unravelling colloid filter cake motions in membrane cleaning procedures. Sci Rep 2020; 10:20043. [PMID: 33208808 PMCID: PMC7674421 DOI: 10.1038/s41598-020-76970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022] Open
Abstract
The filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes. Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake's unique behaviour exposed to shear-stress.
Collapse
Affiliation(s)
- Arne Lüken
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - John Linkhorst
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robin Fröhlingsdorf
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Laura Lippert
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Dirk Rommel
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- RWTH Aachen University, ITMC - Polymeric Biomaterials, Forckenbeckstraße 50, 52074, Aachen, Germany
- RWTH Aachen University, AME - Advanced Materials for Biomedicine, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Bouhid de Aguiar I, Schroën K. Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes. MEMBRANES 2020; 10:E316. [PMID: 33138236 PMCID: PMC7692330 DOI: 10.3390/membranes10110316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Membrane filtration processes are best known for their application in the water, oil, and gas sectors, but also in food production they play an eminent role. Filtration processes are known to suffer from a decrease in efficiency in time due to e.g., particle deposition, also known as fouling and pore blocking. Although these processes are not very well understood at a small scale, smart engineering approaches have been used to keep membrane processes running. Microfluidic devices have been increasingly applied to study membrane filtration processes and accommodate observation and understanding of the filtration process at different scales, from nanometer to millimeter and more. In combination with microscopes and high-speed imaging, microfluidic devices allow real time observation of filtration processes. In this review we will give a general introduction on microfluidic devices used to study membrane filtration behavior, followed by a discussion of how microfluidic devices can be used to understand current challenges. We will then discuss how increased knowledge on fundamental aspects of membrane filtration can help optimize existing processes, before wrapping up with an outlook on future prospects on the use of microfluidics within the field of membrane separation.
Collapse
Affiliation(s)
- Izabella Bouhid de Aguiar
- Membrane Science and Technology—Membrane Processes for Food, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | | |
Collapse
|
14
|
Hakami MW, Alkhudhiri A, Al-Batty S, Zacharof MP, Maddy J, Hilal N. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. MEMBRANES 2020; 10:E248. [PMID: 32971963 PMCID: PMC7558661 DOI: 10.3390/membranes10090248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought out, designed and implemented use of membranes can decrease capital cost, reduce chemical usage, and require little maintenance. Due to their resistance to extreme operating conditions and cleaning protocols, ceramic MF membranes are gradually becoming more employed in the drinking water and wastewater treatment industries when compared with organic and polymeric membranes. Regardless of their many advantages, during continuous operation these membranes are susceptible to a fouling process that can be detrimental for successful and continuous plant operations. Chemical and microbial agents including suspended particles, organic matter particulates, microorganisms and heavy metals mainly contribute to fouling, a complex multifactorial phenomenon. Several strategies, such as chemical cleaning protocols, turbulence promoters and backwashing with air or liquids are currently used in the industry, mainly focusing around early prevention and treatment, so that the separation efficiency of MF membranes will not decrease over time. Other strategies include combining coagulation with either inorganic or organic coagulants, with membrane treatment which can potentially enhance pollutants retention and reduce membrane fouling.
Collapse
Affiliation(s)
- Mohammed Wali Hakami
- Chemical Engineering Technology Department, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (M.W.H.); (S.A.-B.)
| | - Abdullah Alkhudhiri
- King Abdulaziz City for Science and Technology (KACST), National Center for Desalination & Water Treatment Technology, Riyadh 12354, Saudi Arabia;
| | - Sirhan Al-Batty
- Chemical Engineering Technology Department, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (M.W.H.); (S.A.-B.)
| | - Myrto-Panagiota Zacharof
- Sustainable Environment Research Centre (SERC), Faculty of Engineering, Computing and Science, University of South Wales, Pontypridd CF37 1DL, UK;
| | - Jon Maddy
- Sustainable Environment Research Centre (SERC), Faculty of Engineering, Computing and Science, University of South Wales, Pontypridd CF37 1DL, UK;
| | - Nidal Hilal
- NYUAD Water Research Center, New York University, Abu Dhabi 129188, UAE;
| |
Collapse
|