1
|
Zeng Y, Wang R, Luo Z, Tang Z, Qiu J, Zou C, Li C, Xie G, Wang X. Robust Tertiary Amine Suspended HCIPs for Catalytic Conversion of CO 2 into Cyclic Carbonates under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16950-16962. [PMID: 40062721 DOI: 10.1021/acsami.5c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
A series of tertiary amine suspended hyper-cross-linked ionic polymers (HCIPs), characterized by a rich mesoporous structure, high ionic liquid (IL) density, and good CO2 adsorption capability, were readily prepared via a postsynthetic method. The self-polymerization of 1,3,5-tris(bromomethyl) benzene (TBB) or its copolymerization with 4,4'-bis(bromomethyl) biphenyl (BBP) in varying ratios, followed by grafting with N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), yielded the target TMPDA-HCIPs. These HCIPs constitute one of the limited categories of heterogeneous water-tolerant catalyst types ever developed for the cycloaddition reaction between CO2 and epoxides. Specifically, chloropropylene carbonate (CPC) was produced in 99.9% yield with 99% selectivity at 80 °C and 1 bar of CO2 pressure in the presence of 22 mol % water relative to the epoxide substrate. Furthermore, when simulated flue gas served as the CO2 source, the same ratio of water enhanced the CPC yield from 81.9% to 91.5% under 1 MPa pressure, with the selectivity only slightly decreasing from 99% to 94.1%. Additionally, the catalyst could be easily recovered and maintained a high catalytic performance after six cycles. In conclusion, this study presents a robust water-tolerant heterogeneous catalyst for the efficient synthesis of cyclic carbonates from CO2 under mild conditions, potentially reducing the high costs of purifying real flue gas that contains water vapor.
Collapse
Affiliation(s)
- Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Rui Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zijun Luo
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Zhenzhu Tang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chao Zou
- Functional Coordination Material Group, Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Chunshan Li
- Institute of Process Engineering, CAS, Beijing 100049, P. R. China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
2
|
Wang Y, Liu L, Ren C, Ma J, Shen B, Zhao P, Zhang Z. A novel amine functionalized porous geopolymer spheres from municipal solid waste incineration fly ash for CO 2 capture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119540. [PMID: 37972491 DOI: 10.1016/j.jenvman.2023.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Municipal solid waste (MSW) incineration fly ash (FA) is classified as hazardous waste, and strategies for recycling FA have attracted attention. In this study, the porous geopolymer spheres (PGS) were prepared from FA by the foaming-suspension-solidification method, and then the PGS were functionalized with tetraethylenepentamine (TEPA) to capture CO2. The results showed that washing pretreatment and the addition of H2O2 foaming agent enhanced the pore volume and specific surface area of PGS. The CO2 adsorption capacity of amine-functionalized PGS exhibited a trend of increasing and then decreasing in the range of 35-80 °C. The maximum adsorption capacity of TEPA-WPGS3 was 2.55 mmol/g at 65 °C higher than expected for the average of TEPA and PGS. This was because PGS improved the dispersion of TEPA, thus exposing more active sites of TEPA and making it more likely to interact with CO2. The adsorption efficiency of amine-functionalized PGS decreased by only 2.4% after 10 cycles, indicating that it has excellent regeneration performance. In addition, amine-functionalized PGS, which showed excellent CO2 adsorption capacity, had a significant ability to selectively adsorb CO2 and the adsorption capacity of the rapid stage accounted for approximately 80% of the saturated adsorption capacity. This study shows that FA-derived geopolymers have excellent CO2 adsorption properties and provides a new method for the resource utilization of FA.
Collapse
Affiliation(s)
- Yanli Wang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lina Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Changzai Ren
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiao Ma
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Zhao
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhikun Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
3
|
Mahenthiran AV, Jawad ZA, Chin BLF. Development of blend PEG-PES/NMP-DMF mixed matrix membrane for CO 2/N 2 separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124654-124676. [PMID: 35655021 PMCID: PMC10754754 DOI: 10.1007/s11356-022-20168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The carbon dioxide (CO2) separation technology has become a focus recently, and a developed example is the membrane technology. It is an alternative form of enhanced gas separation performance above the Robeson upper bound line resulting in the idea of mixed matrix membranes (MMMs). With attention given to membrane technologies, the MMMs were fabricated to have the most desirable gas separation performance. In this work, blend MMMs were synthesised by using two polymers, namely, poly(ether sulfone) (PES) and poly (ethylene glycol) (PEG). These polymers were dissolved in blend N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents with the functionalised multi-walled carbon nanotubes (MWCNTs-F) fillers by using the mixing solution method. The embedding of the pristine MWCNTs and MWCNTs-F within the new synthesised MMM was then studied towards CO2/N2 separation. In addition, the optimisation of the loading of MWCNTs-F for blend MMM for CO2/N2 separation was also studied. The experimental results showed that the functionalised MWCNTs (MWCNTs-F) were a better choice at enhancing gas separation compared to the pristine MWCNTs (MWCNTs-P). Additionally, the effects of MWCNTs-F at loadings 0.01 to 0.05% were studied along with the polymer compositions for PES:PEG of 10:20, 20:20 and 30:10. Both these parameters of study affect the manner of gas separation performance in the blend MMMs. Overall, the best performing membrane showed a selectivity value of 1.01 + 0.05 for a blend MMM (MMM-0.03F) fabricated with 20 wt% of PES, 20 wt% of PEG and 0.03 wt% of MWCNTs-F. The MMM-0.03F was able to withstand a pressure of 2 bar, illustrating its mechanical strength and ability to be used in the post combustion carbon capture application industries where the flue gas pressure is at 1.01 bar.
Collapse
Affiliation(s)
- Ashvin Viknesh Mahenthiran
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, 250 CDT, 98009, Miri, Sarawak, Malaysia
| | - Zeinab Abbas Jawad
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, 250 CDT, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
4
|
Parbat D, Jana N, Dhar M, Manna U. Reactive Multilayer Coating As Versatile Nanoarchitectonics for Customizing Various Bioinspired Liquid Wettabilities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25232-25247. [PMID: 35730600 DOI: 10.1021/acsami.2c04759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In last few decades, multilayer coatings have achieved enormous attention owing to their unique ability to tune thickness, topography, and chemical composition for developing various functional materials. Such multilayer coatings were mostly and conventionally derived by following a simple layer-by-layer (LbL) deposition process through the strategic use of electrostatic interactions, hydrogen bonding, host-guest interactions, covalent bonding, etc. In the conventional design of multilayer coatings, the chemical composition and morphology of coatings are modulated during the process of multilayer constructions. In such an approach, the postmodulations of the porous multilayers with different and desired chemistries are challenging to achieve due to the lack of availability of readily and selectively reactive moieties. Recently, the design of readily and selectively reactive multilayer coatings (RMLCs) provided a facile basis for postmodulating the prepared coating with various desired chemistries. In fact, by taking advantage of the inherent ability of co-optimizing the topography and various chemistries in porous RMLCs, different durable bioinspired liquid wettabilities (i.e., superhydrophobicity, underwater superoleophobicity, underwater superoleophilicity, slippery property, etc.) were successfully derived. Such interfaces have enormous potential in various prospective applications. In this review, we intend to give an overview of the evolution of LbL multilayer coatings and their synthetic strategies and discuss the key advantages of porous RMLCs in terms of achieving and controlling wettability properties. Recent attempts toward various applications of such multilayer coatings that are strategically embedded with different desired liquid wettabilities will be emphasized.
Collapse
Affiliation(s)
- Dibyangana Parbat
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Nirban Jana
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
- School of Health Science and Technology, Indian Institute of Technology─Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
5
|
Ghobadi Moghadam A, Hemmati A. Improved water purification by PVDF ultrafiltration membrane modified with GO-PVA-NaAlg hydrogel. Sci Rep 2023; 13:8076. [PMID: 37202452 DOI: 10.1038/s41598-023-35027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
This work presents a modified polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with graphene oxide-polyvinyl alcohol-sodium alginate (GO-PVA-NaAlg) hydrogel (HG) and polyvinylpyrrolidone (PVP) prepared by the immersion precipitation induced phase inversion approach. Characteristics of the membranes with different HG and PVP concentrations were analyzed by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), contact angle measurement (CA), and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images showed an asymmetric structure of the fabricated membranes, and possessing a thin dense layer over the top and a layer finger-like. With increasing HG content, membrane surface roughness increases so that highest surface roughness for the membrane containing 1wt% HG is with a Ra value of 281.4 nm. Also, the contact angle of the membrane reaches from 82.5° in bare PVDF membrane to 65.1° in the membrane containing 1wt% HG. The influences of adding HG and PVP to the casting solution on pure water flux (PWF), hydrophilicity, anti-fouling ability, and dye rejection efficiency were evaluated. The highest water flux reached 103.2 L/m2 h at 3 bar for the modified PVDF membranes containing 0.3 wt% HG and 1.0wt% PVP. This membrane exhibited a rejection efficiency of higher than 92%, 95%, and 98% for Methyl Orange (MO), Conge Red (CR), and Bovine Serum Albumin (BSA), respectively. All nanocomposite membranes possessed a flux recovery ratio (FRR) higher than bare PVDF membranes, and the best anti-fouling performance of 90.1% was relevant to the membrane containing 0.3 wt% HG. The improved filtration performance of the HG-modified membranes was due to the enhanced hydrophilicity, porosity, mean pore size, and surface roughness after introducing HG.
Collapse
Affiliation(s)
- Armin Ghobadi Moghadam
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Zhu X, Du C, Gao B, He B. Strategies to improve the mass transfer in the CO 2 capture process using immobilized carbonic anhydrase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117370. [PMID: 36716546 DOI: 10.1016/j.jenvman.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
High carbon dioxide (CO2) concentration in the atmosphere urgently requires eco-friendly mitigation strategies. Carbonic anhydrase (CA) is a high-quality enzyme protein, available from a wide range of sources, which has an extremely high catalytic efficiency for the hydration of CO2 compared with other catalytic CO2 conversion systems. While free CA is costly and weakly stable, CA immobilization can significantly improve its stability and allow enzyme recycling. However, gaseous CO2 is significantly different from traditional liquid substrates. Additionally, due to the presence of enzyme carriers, there is limited mass transfer between CO2 and the active center of immobilized CA. Most of the available reviews provide an overview of the improvement in catalytic activity and stability of CA by different immobilization methods and substrates. However, they do not address the limited mass transfer between CO2 and the active center of immobilized CA. Therefore, by focusing on the mass transfer process, this review presents CA immobilization strategies that are more efficient and of greater environmental tolerance by categorizing the methods of enhancing the mass transfer process at each stage of the enzymatic CO2 capture reaction. Such improvements in this green and environmentally friendly biological carbon capture process can increase its efficiency for industrial applications.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenxi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Bo Gao
- School of Chemical Engineering, Northwest University, Xi'an, 710021, China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
7
|
Polyethylene oxide-intercalated nanoporous graphene membranes for ultrafast H2/CO2 separation: Role of graphene confinement effect on gas molecule binding. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
9
|
|
10
|
Han U, Kang T, Im J, Hong J. A small data-driven predictive model for adsorption properties in polymeric thin film. Chem Commun (Camb) 2022; 58:10953-10956. [DOI: 10.1039/d2cc03567g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial intelligence allowing data-driven prediction of physicochemical properties of polymer is rapidly emerging as a powerful tool for advancing material science. Here, we provide a methodology to perceive polymer adsorption...
Collapse
|
11
|
A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Singh S, Varghese AM, Reinalda D, Karanikolos GN. Graphene - based membranes for carbon dioxide separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Jeong H, Kim T, Earmme T, Hong J. Acceleration of Nitric Oxide Release in Multilayer Nanofilms through Cu(II) Ion Intercalation for Antibacterial Applications. Biomacromolecules 2021; 22:1312-1322. [PMID: 33617240 DOI: 10.1021/acs.biomac.0c01821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Implant-derived bacterial infection is a prevalent cause of diseases, and no antibacterial coating currently exists that is biocompatible and that does not induce multidrug resistance. To this end, nitric oxide (NO) has been emerging as an effective antimicrobial agent that acts on a broad range of bacteria and elicits no known resistance. Here, a method for accelerating NO release from multilayered nanofilms has been developed for facilitating antibacterial activity. A previously reported multilayered nanofilm (nbi film) was fabricated by alternative deposition of branched polyethyleneimine (BPEI) and alginate via the layer-by-layer assembly method. N-Diazeniumdiolate, a chemical NO donor, was synthesized at the secondary amine moiety of BPEI within the film (nbi/NO film). Cu(II) ions can be incorporated into the film by forming chelating compounds with unreacted amines that have not been converted to NO donors. The increase of the amine protonation state in the chelate caused destabilization of the NO donor by reducing hydrogen bonding between the deprotonated amine and the NO donor. Thus, the Cu(II) ion-embedding film presented accelerated NO release and was further subjected to antibacterial testing to demonstrate the correlation between the NO release rate and the antibacterial activity. This study aimed to establish a novel paradigm for NO-releasing material design based on multilayered nanofilms by presenting the correlation between the NO release rate and the antibacterial effect.
Collapse
Affiliation(s)
- Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|