1
|
Zhai M, Moghadam F, Gosiamemang T, Heng JYY, Li K. Facile orientation control of MOF-303 hollow fiber membranes by a dual-source seeding method. Nat Commun 2024; 15:10264. [PMID: 39592589 PMCID: PMC11599905 DOI: 10.1038/s41467-024-54730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024] Open
Abstract
Metal‒organic frameworks (MOFs) are nanoporous crystalline materials with enormous potential for further development into a new class of high-performance membranes. However, the preparation of defect-free and water-stable MOF membranes with high permselectivity and good structural integrity remains a challenge. Herein, we demonstrate a dual-source seeding (DS) approach to produce high-performance, water-stable MOF-303 membranes with hollow fiber (HF) geometry and preferentially tailored crystallographic orientation. By controlling the nucleation site density during secondary growth, MOF-303 membranes with a preferred crystallographic orientation (CPO) on the (011) plane were fabricated. The MOF-303 membrane with CPO on (011) provides straight one-dimensional permeation channels with a superior water flux of 18 kg m-2 h-1 in pervaporative water/ethanol separation, which is higher than that of most of the reported zeolite membranes and 1-2 orders of magnitude greater than that of previously reported MOF membranes. The straight water permeation channels also offer a promising water permeance of 15 L m-2 h-1 bar-1 and a molecular weight cut-off (MWCO ≈ 269) for dye nanofiltration. These results provide a concept for developing ultrapermeable MOF membranes with good selectivity and structural integrity for pervaporation and nanofiltration.
Collapse
Affiliation(s)
- Mengjiao Zhai
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Farhad Moghadam
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Kang Li
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
2
|
Wang Y, Ban Y, Hu Z, Yang W. Adaptive healing of stress-induced dynamic cracks in a metal-organic framework membrane using nanoparticles. SCIENCE ADVANCES 2024; 10:eado7331. [PMID: 39083613 PMCID: PMC11290526 DOI: 10.1126/sciadv.ado7331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Dewatering of aqueous azeotropes is crucial and pervasive in raw chemical refineries and solvent recovery in the chemical industry but is recognized as one of the most energy-intensive processes. Pervaporation using crystalline molecular sieve membranes provides an energy-efficient solution, but stress loads stemming from thermal and mechanical risks of pervaporation are most likely to cause membrane cracks, which greatly reduces reliability of membranes in real-world applications. Here, we propose adaptive healing of stress-induced dynamic cracks (AHSDC) in the membrane in a risk-responding manner before separation by using in situ-formed nanoparticles in the same chemical environment. These nanoparticles naturally filled in fissure gaps once cracks formed in the membrane, forming adaptive healing zones. Without loss of dewatering capacity, the separation durability of the membrane after AHSDC was improved by at least two orders of magnitude. The membrane also exhibited tolerance to industrial-grade azeotropes that epitomize industrial multisource nature and complexity.
Collapse
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Ziyi Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Hsu CH, Yu HY, Lee HJ, Wu PH, Huang SJ, Lee JS, Yu TY, Li YP, Kang DY. Fast Water Transport in UTSA-280 via a Knock-Off Mechanism. Angew Chem Int Ed Engl 2023; 62:e202309874. [PMID: 37574451 DOI: 10.1002/anie.202309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Water and other small molecules frequently coordinate within metal-organic frameworks (MOFs). These coordinated molecules may actively engage in mass transfer, moving together with the transport molecules, but this phenomenon has yet to be examined. In this study, we explore a unique water transfer mechanism in UTSA-280, where an incoming water molecule can displace a coordinated molecule for mass transfer. We refer to this process as the "knock-off" mechanism. Despite UTSA-280 possessing one-dimensional channels, the knock-off transport enables water movement along the other two axes, effectively simulating a pseudo-three-dimensional mass transfer. Even with a relatively narrow pore width, the knock-off mechanism enables a high water flux in the UTSA-280 membrane. The knock-off mechanism also renders UTSA-280 superior water/ethanol diffusion selectivity for pervaporation. To validate this unique mechanism, we conducted 1 H and 2 H solid-state NMR on UTSA-280 after the adsorption of deuterated water. We also derived potential energy diagrams from the density functional theory to gain atomic-level insight into the knock-off and the direct-hopping mechanisms. The simulation findings reveal that the energy barrier of the knock-off mechanism is marginally lower than the direct-hopping pathway, implying its potential role in enhancing water diffusion in UTSA-280.
Collapse
Affiliation(s)
- Cheng-Hsun Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsin-Yu Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho Jun Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Xu X, Hartanto Y, Zheng J, Luis P. Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. MEMBRANES 2022; 12:1205. [PMID: 36557112 PMCID: PMC9785445 DOI: 10.3390/membranes12121205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), a sub-group of porous crystalline materials, have been receiving increasing attention for gas separation and pervaporation because of their high thermal and chemical stability, narrow window sizes, as well as tuneable structural, physical, and chemical properties. In this review, we comprehensively discuss developments in the formation of continuous MOF membranes for gas separation and pervaporation. Additionally, the application performance of continuous MOF membranes in gas separation and pervaporation are analysed. Lastly, some perspectives for the future application of continuous MOF membranes for gas separation and pervaporation are given.
Collapse
Affiliation(s)
- Xiao Xu
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Yusak Hartanto
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing 401331, China
| | - Patricia Luis
- Materials and Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research and Innovation Centre for Process Engineering (ReCIPE), Place Sainte Barbe 2, bte L5.02.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Highly-selective MOF-303 membrane for alcohol dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Christian M, Fritzsching KJ, Harvey JA, Sava Gallis DF, Nenoff TM, Rimsza JM. Dramatic Enhancement of Rare-Earth Metal-Organic Framework Stability Via Metal Cluster Fluorination. JACS AU 2022; 2:1889-1898. [PMID: 36032529 PMCID: PMC9400048 DOI: 10.1021/jacsau.2c00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/15/2023]
Abstract
Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.
Collapse
Affiliation(s)
- Matthew
S. Christian
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Keith J. Fritzsching
- Organic
Materials Science Department, Sandia National
Laboratories, Albuquerque, New Mexico 87123, United States
| | - Jacob A. Harvey
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Dorina F. Sava Gallis
- Nanoscale
Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Tina M. Nenoff
- Material,
Physical, and Chemical Sciences, Sandia
National Laboratories, Albuquerque, New Mexico 87123, United States
- Tina
M. Nenoff:
| | - Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Jessica M. Rimsza:
| |
Collapse
|
8
|
|
9
|
Acid-reinforced ionic cross-linking of sodium alginate/polyamidoamine dendrimer blended composite membranes for isopropanol dehydration through pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Polycrystalline Iron(III) metal-organic framework membranes for organic solvent nanofiltration with high permeance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
|
12
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Wang X, Zhou T, Zhang P, Yan W, Li Y, Peng L, Veerman D, Shi M, Gu X, Kapteijn F. High-Silica CHA Zeolite Membrane with Ultra-High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angew Chem Int Ed Engl 2021; 60:9032-9037. [PMID: 33529488 PMCID: PMC8048931 DOI: 10.1002/anie.202100172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/16/2022]
Abstract
Capture and storage of the long‐lived 85Kr is an efficient approach to mitigate the emission of volatile radionuclides from the spent nuclear fuel reprocessing facilities. However, it is challenging to separate krypton (Kr) from xenon (Xe) because of the chemical inertness and similar physical properties. Herein we prepared high‐silica CHA zeolite membranes with ultra‐high selectivity and irradiation stability for Kr/Xe separation. The suitable aperture size and rigid framework endures the membrane a strong size‐exclusion effect. The ultrahigh selectivity of 51–152 together with the Kr permeance of 0.7–1.3×10−8 mol m−2 s−1 Pa−1 of high‐silica CHA zeolite membranes far surpass the state‐of‐the‐art polymeric membranes. The membrane is among the most stable polycrystalline membranes for separation of humid Kr/Xe mixtures. Together with the excellent irradiation stability, high‐silica CHA zeolite membranes pave the way to separate radioactive Kr from Xe for a notable reduction of the volatile nuclear waste storage volume.
Collapse
Affiliation(s)
- Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Tao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Ping Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yongguo Li
- Environment Engineering Department, China Institute for Radiation Protection, Taiyuan, 030006, P. R. China
| | - Li Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Dylan Veerman
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mengyang Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
14
|
Wang X, Zhou T, Zhang P, Yan W, Li Y, Peng L, Veerman D, Shi M, Gu X, Kapteijn F. High‐Silica CHA Zeolite Membrane with Ultra‐High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Tao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Ping Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yongguo Li
- Environment Engineering Department China Institute for Radiation Protection Taiyuan 030006 P. R. China
| | - Li Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Dylan Veerman
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Mengyang Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Freek Kapteijn
- Chemical Engineering Department Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
15
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
16
|
Cao W, Xia T, Cui Y, Yu Y, Qian G. Lanthanide metal–organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH. Chem Commun (Camb) 2020; 56:10851-10854. [DOI: 10.1039/d0cc04152a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of isostructural fluorescent Ln-MOF [Ln(BPDC-xN)] (Ln = Eu/Tb, x = 0, 1, 2] probes was prepared using a nitrogen modification strategy to achieve the improved selective detection of NADPH.
Collapse
Affiliation(s)
- Wenqian Cao
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Tifeng Xia
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Yang Yu
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Guodong Qian
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|