1
|
Shi D, Liu T. Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges. ACS ENVIRONMENTAL AU 2025; 5:152-164. [PMID: 40125285 PMCID: PMC11926753 DOI: 10.1021/acsenvironau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
Collapse
Affiliation(s)
- Danting Shi
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Tao Liu
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| |
Collapse
|
2
|
Siagian UWR, Friatnasary DL, Khoiruddin K, Reynard R, Qiu G, Ting YP, Wenten IG. Membrane-aerated biofilm reactor (MABR): recent advances and challenges. REV CHEM ENG 2023. [DOI: 10.1515/revce-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
Collapse
Affiliation(s)
- Utjok W. R. Siagian
- Department of Petroleum Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Dwi L. Friatnasary
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Reynard Reynard
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology , B4-405, Daxuecheng, 510006 Guangzhou , China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, 117576 Singapore , Singapore
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
- Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| |
Collapse
|
3
|
Saeid Hosseini S, Azadi Tabar M, F. J. Vankelecom I, F. M. Denayer J. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Centeno Mora E, de Lemos Chernicharo CA. Simultaneous removal of dissolved sulphide and dissolved methane from anaerobic effluents with hollow fibre membrane contactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90549-90566. [PMID: 35871195 DOI: 10.1007/s11356-022-22074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- School of Civil Engineering, University of Costa Rica (UCR), San José, Costa Rica.
| | | |
Collapse
|
5
|
Visnyei M, Bakonyi P, Bélafi-Bakó K, Nemestóthy N. Integration of gas-liquid membrane contactors into anaerobic digestion as a promising route to reduce uncontrolled greenhouse gas (CH 4/CO 2) emissions. BIORESOURCE TECHNOLOGY 2022; 364:128072. [PMID: 36229009 DOI: 10.1016/j.biortech.2022.128072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.
Collapse
Affiliation(s)
- Merve Visnyei
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Péter Bakonyi
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.
| | - Nándor Nemestóthy
- Research Group on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| |
Collapse
|
6
|
Centeno Mora E, Chernicharo CADL. Modelling and optimization of transverse flow hollow fibre membrane contactors for the recovery of dissolved methane from anaerobic effluents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Jiménez-Robles R, Moreno-Torralbo BM, Badia JD, Martínez-Soria V, Izquierdo M. Flat PVDF Membrane with Enhanced Hydrophobicity through Alkali Activation and Organofluorosilanisation for Dissolved Methane Recovery. MEMBRANES 2022; 12:membranes12040426. [PMID: 35448396 PMCID: PMC9027404 DOI: 10.3390/membranes12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
A three-step surface modification consisting of activation with NaOH, functionalisation with a silica precursor and organofluorosilane mixture (FSiT), and curing was applied to a poly(vinylidene fluoride) (PVDF) membrane for the recovery of dissolved methane (D-CH4) from aqueous streams. Based on the results of a statistical experimental design, the main variables affecting the water contact angle (WCA) were the NaOH concentration and the FSiT ratio and concentration used. The maximum WCA of the modified PVDF (mPVDFmax) was >140° at a NaOH concentration of 5%, an FSiT ratio of 0.55 and an FSiT concentration of 7.2%. The presence of clusters and a lower surface porosity of mPVDF was detected by FESEM analysis. In long-term stability tests with deionised water at 21 L h−1, the WCA of the mPVDF decreased rapidly to around 105°, similar to that of pristine nmPVDF. In contrast, the WCA of the mPVDF was always higher than that of nmPVDF in long-term operation with an anaerobic effluent at 3.5 L h−1 and showed greater mechanical stability, since water breakthrough was detected only with the nmPVDF membrane. D-CH4 degassing tests showed that the increase in hydrophobicity induced by the modification procedure increased the D-CH4 removal efficiency but seemed to promote fouling.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Beatriz María Moreno-Torralbo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Jose David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (B.M.M.-T.); (J.D.B.)
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (R.J.-R.); (V.M.-S.)
- Correspondence: ; Tel.: +34-963-543-737; Fax: +34-963-544-898
| |
Collapse
|
8
|
Jiménez-Robles R, Gabaldón C, Badia J, Izquierdo M, Martínez-Soria V. Recovery of dissolved methane through a flat sheet module with PDMS, PP, and PVDF membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the specific energy consumption (SEC) required for reverse osmosis (RO) desalination has been steeply reduced over the past few decades, there is an increasing demand for high-selectivity membranes. However, it is still hard to find research papers empirically dealing with increasing the salt rejection of RO membranes and addressing the SEC change possibly occurring while increasing salt rejection. Herein, we examined the feasibility of the process and material approaches to increase the salt rejection of RO membranes from the perspective of the SEC and weighed up a better approach to increase salt rejection between the two approaches. A process approach was confirmed to have some inherent limitations in terms of the trade-off between water permeability and salt rejection. Furthermore, a process approach is inappropriate to alter the intrinsic salt permeability of RO membranes, such that it should be far from a fundamental improvement in the selectivity of RO membranes. Thus, we could conclude that a material approach is necessary to make a fundamental improvement in the selectivity of RO membranes. This paper also provides discussion on the specific demands for RO membranes featuring superior mechanical properties and excellent water/salt permselectivity to minimize membrane compaction while maximizing the selectivity.
Collapse
|
10
|
Lim YJ, Lee SM, Wang R, Lee J. Emerging Materials to Prepare Mixed Matrix Membranes for Pollutant Removal in Water. MEMBRANES 2021; 11:508. [PMID: 34357158 PMCID: PMC8304803 DOI: 10.3390/membranes11070508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023]
Abstract
Various pollutants of different sizes are directly (e.g., water-borne diseases) and indirectly (e.g., accumulation via trophic transfer) threatening our water health and safety. To cope with this matter, multifaceted approaches are required for advanced wastewater treatment more efficiently. Wastewater treatment using mixed matrix membranes (MMMs) could provide an excellent alternative since it could play two roles in pollutant removal by covering adsorption and size exclusion of water contaminants simultaneously. This paper provides an overview of the research progresses and trends on the emerging materials used to prepare MMMs for pollutant removal from water in the recent five years. The transition of the research trend was investigated, and the most preferred materials to prepare MMMs were weighed up based on the research trend. Various application examples where each emerging material was used have been introduced along with specific mechanisms underlying how the better performance was realized. Lastly, the perspective section addresses how to further improve the removal efficiency of pollutants in an aqueous phase, where we could find a niche to spot new materials to develop environmentally friendly MMMs, and where we could further apply MMMs.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, Singapore 637553, Singapore
| | - So Min Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea;
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea;
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
| |
Collapse
|
11
|
Chavan SR, Perré P, Pozzobon V, Lemaire J. CO 2 Absorption Using Hollow Fiber Membrane Contactors: Introducing pH Swing Absorption (pHSA) to Overcome Purity Limitation. MEMBRANES 2021; 11:membranes11070496. [PMID: 34209036 PMCID: PMC8304617 DOI: 10.3390/membranes11070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Recently, membrane contactors have gained more popularity in the field of CO2 removal; however, achieving high purity and competitive recovery for poor soluble gas (H2, N2, or CH4) remains elusive. Hence, a novel process for CO2 removal from a mixture of gases using hollow fiber membrane contactors is investigated theoretically and experimentally. A theoretical model is constructed to show that the dissolved residual CO2 hinders the capacity of the absorbent when it is regenerated. This model, backed up by experimental investigation, proves that achieving a purity > 99% without consuming excessive chemicals or energy remains challenging in a closed-loop system. As a solution, a novel strategy is proposed: the pH Swing Absorption which consists of manipulating the acido–basic equilibrium of CO2 in the absorption and desorption stages by injecting moderate acid and base amount. It aims at decreasing CO2 residual content in the regenerated absorbent, by converting CO2 into its ionic counterparts (HCO3− or CO32−) before absorption and improving CO2 degassing before desorption. Therefore, this strategy unlocks the theoretical limitation due to equilibrium with CO2 residual content in the absorbent and increases considerably the maximum achievable purity. Results also show the dependency of the performance on operating conditions such as total gas pressure and liquid flowrate. For N2/CO2 mixture, this process achieved a nitrogen purity of 99.97% with a N2 recovery rate of 94.13%. Similarly, for H2/CO2 mixture, a maximum H2 purity of 99.96% and recovery rate of 93.96% was obtained using this process. Moreover, the proposed patented process could potentially reduce energy or chemicals consumption.
Collapse
Affiliation(s)
- Sayali Ramdas Chavan
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Patrick Perré
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Victor Pozzobon
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| | - Julien Lemaire
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| |
Collapse
|
12
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|