1
|
Simatupang CA, Strezov V, Boontanon SK, Pongkiatkul P, Boontanon N, Jindal R. Numerical Analysis of Indoor Air Characteristics and Window Screen Influence on Particulate Matter Dispersion in a Childcare Center Using Computational Fluid Dynamics. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241259352. [PMID: 38868365 PMCID: PMC11168052 DOI: 10.1177/11786302241259352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Indoor exposure to outdoor pollutants adversely affects health, varying with building dimensions and particularly ventilation that have critical role on their indoor dispersion. This study assesses the impact of outdoor air on indoor air quality in a child care center. Computational fluid dynamics was utilized to analyze the dispersion of particulate matter, with a specific focus on window screens featuring 6 distinct pore sizes ranging from 0.8 mm to 2 mm and 2 different thicknesses of 0.5 mm and 0.1 mm. Results indicate that the presence of a window screen offers significant advantages in controlling particle infiltration compared to scenarios without a screen, as larger particles tend to pass directly through the window within the breathing zone. The scenario without window screens minimizes pressure drop but lacks enhanced particle capture capabilities. However, for effective particle reduction, the window screen with a pore size of 0.8 mm (R0.8T2) and a thickness of 0.5 mm proves to be the most beneficial, achieving the particle filtering efficiency of approximately 54.16%, while the larger window screen with a pore size of 2 mm and a thickness of 1 mm exhibits the lowest efficiency at about 23.85%. Nonetheless, screens with very small sizes are associated with a high-pressure drop, impacting energy efficiency, and overall window performance. Larger pores with smaller thicknesses (0.5 mm) reduced particle count by approximately 45.97%. Therefore, the significance of window screen thickness beyond pore size for particle reduction efficiency is highlighted, emphasizing screens' role in indoor air quality and health protection.
Collapse
Affiliation(s)
- Cathleen Ariella Simatupang
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Vladimir Strezov
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Suwanna Kitpati Boontanon
- Graduate Program in Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan
| | - Prapat Pongkiatkul
- Department of Environmental Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Ranjna Jindal
- Environmental Engineering and Management Program, Department of Energy, Environment and Climate Change, School of Environment and Resources Development, Asian Institute of Technology, Pathumthani, Thailand
| |
Collapse
|
2
|
Li Y, Hua Y, Ji Z, Wu Z, Fan J, Liu Y. Dual-bionic nano-groove structured nanofibers for breathable and moisture-wicking protective respirators. J Memb Sci 2023; 672:121257. [PMID: 36593802 PMCID: PMC9797220 DOI: 10.1016/j.memsci.2022.121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuezhen Hua
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zekai Ji
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Zheng Wu
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Porous mullite-bonded SiC filters prepared by foaming-sol-gel-tape casting for high-efficiency hot flue gas filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Luo R, Zeng Y, Ju S, Feng S, Zhang F, Zhong Z, Xing W. Flowerlike FeO X–MnO X Amorphous Oxides Anchored on PTFE/PPS Membrane for Efficient Dust Filtration and Low-Temperature No Reduction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rong Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
| | - Yiqing Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Shengui Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
| | - Feng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
5
|
Kim KY, Srivastava RP, Khang DY. Oleophilic to oleophobic wettability switching of isoporous through-hole membranes by surface structure control for low-voltage electrowetting-based oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Hu S, Tian H, Zhang S, Wang D, Gong G, Yue W, Liu K, Hong S, Wang R, Yuan Q, Lu Y, Wang D, Zhang L, Chen J. Fabrication of a High-Performance and Reusable Planar Face Mask in Response to the COVID-19 Pandemic. ENGINEERING (BEIJING, CHINA) 2022; 9:101-110. [PMID: 34745685 PMCID: PMC8563499 DOI: 10.1016/j.eng.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused a surge in demand for face masks, with the massive consumption of masks leading to an increase in resource-related and environmental concerns. In this work, we fabricated meltblown polypropylene (mb-PP)-based high-performance planar face masks and investigated the effects of six commonly used disinfection methods and various mask-wearing periods on the reusability of these masks. The results show that, after three cycles of treatment using hot water at 70 °C for 30 min, which is one of the most scalable, user-friendly methods for viral disinfection, the particle filtration efficiency (PFE) of the mask remained almost unchanged. After mask wearing for 24 h and subsequent disinfection using the same treatment procedures, the PFE decreased to 91.3%; the average number of bacterial and fungal colonies was assessed to be 9.2 and 51.6 colony-forming units per gram (CFU∙g- 1), respectively; and coliform and pyogenic bacteria were not detected. Both the PFE and the microbial indicators are well above the standard for reusable masks after disinfection. Schlieren photography was then used to assess the capabilities of used and disinfected masks during use; it showed that the masks exhibit a high performance in suppressing the spread of breathed air.
Collapse
Affiliation(s)
- Shui Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongchi Tian
- Dawn Polymer (Beijing) Technology Co., Ltd., Beijing 101599, China
| | - Shijia Zhang
- Dawn Polymer (Beijing) Technology Co., Ltd., Beijing 101599, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guozhuo Gong
- Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Weihua Yue
- Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Keyang Liu
- Beijing Institute of Medical Device Testing, Beijing 101111, China
| | - Song Hong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Qingqing Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Choi YH, Kim MJ, Lee J, Pyun JC, Khang DY. Recyclable, Antibacterial, Isoporous Through-Hole Membrane Air Filters with Hydrothermally Grown ZnO Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3381. [PMID: 34947729 PMCID: PMC8707457 DOI: 10.3390/nano11123381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022]
Abstract
Reusable, antibacterial, and photocatalytic isoporous through-hole air filtration membranes have been demonstrated based on hydrothermally grown ZnO nanorods (NRs). High-temperature (300~375 °C) stability of thermoset-based isoporous through-hole membranes has enabled concurrent control of porosity and seed formation via high-temperature annealing of the membranes. The following hydrothermal growth has led to densely populated ZnO NRs on both the membrane surface and pore sidewall. Thanks to the nanofibrous shape of the grown ZnO NRs on the pore sidewall, the membrane filters have shown a high (>97%) filtration efficiency for PM2.5 with a rather low-pressure (~80 Pa) drop. The membrane filters could easily be cleaned and reused many times by simple spray cleaning with a water/ethanol mixture solution. Further, the grown ZnO NRs have also endowed excellent bactericidal performance for both Gram-positive S. aureus and Gram-negative S. enteritidis bacteria. Owing to the wide bandgap semiconductor nature of ZnO NRs, organic decomposition by photocatalytic activity under UV illumination has been successfully demonstrated. The reusable, multifunctional membrane filters can find wide applications in air filtration and purification.
Collapse
Affiliation(s)
| | | | | | | | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (Y.H.C.); (M.-J.K.); (J.L.); (J.-C.P.)
| |
Collapse
|
8
|
Jeon S, Park R, Jeong J, Heo G, Lee J, Shin MC, Kwon YW, Yang JC, Park WI, Kim KS, Park J, Hong SW. Rotating Cylinder-Assisted Nanoimprint Lithography for Enhanced Chemisorbable Filtration Complemented by Molecularly Imprinted Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105733. [PMID: 34854553 DOI: 10.1002/smll.202105733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Rotating cylindrical stamp-based nanoimprint technique has many advantages, including the continuous fabrication of intriguing micro/nanostructures and rapid pattern transfer on a large scale. Despite these advantages, the previous nanoimprint lithography has rarely been used for producing sophisticated nanoscale patterns on a non-planar substrate that has many extended applications. Here, the simple integration of nanoimprinting process with a help of a transparent stamp wrapped on the cylindrical roll and UV optical source in the core to enable high-throughput pattern transfer, particularly on a fabric substrate is demonstrated. Moreover, as a functional resin material, this innovative strategy involves a synergistic approach on the synthesis of molecularly imprinted polymer, which are spatially organized free-standing perforated nanostructures such as nano/microscale lines, posts, and holes patterns on various woven or nonwoven blank substrates. The proposed materials can serve as a self-encoded filtration medium for selective separation of formaldehyde molecules. It is envisioned that the combinatorial fabrication process and attractive material paves the way for designing next-generation separation systems in use to capture industrial or household toxic substances.
Collapse
Affiliation(s)
- Sangheon Jeon
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Rowoon Park
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeonghwa Jeong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihye Lee
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Chan Shin
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin Chul Yang
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinyoung Park
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
9
|
Ong SK, Birgersson E, Low HY. Tuning Pressure Drop in Isoporous Membranes: Design with Fabrication Variability. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shi Ke Ong
- Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Erik Birgersson
- Department of Mechanical Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117574 Singapore
| | - Hong Yee Low
- Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
10
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|