1
|
Gálvez-Subiela A, Jiménez-Robles R, Badia-Valiente JD, Izquierdo M, Chafer A. Effect of Choline Chloride-Based DES on the Pore-Forming Ability and Properties of PVDF Membranes Prepared with Triethyl Phosphate as Green Solvent. Polymers (Basel) 2025; 17:984. [PMID: 40219371 PMCID: PMC11991192 DOI: 10.3390/polym17070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
This study explores the influence of various additives on the morphological, chemical, and thermal properties of poly(vinylidene fluoride) (PVDF) membranes prepared via the non-solvent induced phase separation (NIPS) technique. The use of a green solvent such as triethyl phosphate (TEP) was shown to be successful. A particular focus was dedicated to pore formers based on choline chloride-based deep eutectic solvents (DES) in combination with ethylene glycol and glycerol, i.e., ChCl/EG and ChCl/GLY, and its benchmark with traditional counterparts such as poly(ethylene glycol) (PEG) and glycerol (GLY). Comprehensive characterization was conducted using FESEM, FTIR, XRD, and DSC techniques to evaluate changes in membrane morphology, porosity, and crystallinity. PEG acted as a pore-forming agent, transitioning the internal structure from spherulitic to sponge-like with consistent pore sizes, while GLY produced a nodular morphology at higher concentrations due to increased dope solution viscosity. DES induced significant shifts in crystalline phase composition, decreasing α-phase fractions and promoting β-phase formation at higher concentrations. While the overall porosity remained unaffected by the addition of GLY or PEG, it was dependent on the DES concentration in the dope at lower values than those obtained by GLY and PEG. Membrane pore size with ChCl/GLY was lower than with ChCl/EG and GLY. All membranes showed performance at the hydrophobic regime. The findings demonstrate that ChCl/EG and ChCl/GLY can tailor the structural and thermal properties of TEP-driven PVDF membranes, providing a green and versatile approach to customize the membrane properties for specific applications.
Collapse
Affiliation(s)
| | | | | | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (A.G.-S.); (R.J.-R.); (J.D.B.-V.)
| | - Amparo Chafer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain; (A.G.-S.); (R.J.-R.); (J.D.B.-V.)
| |
Collapse
|
2
|
Wang S, Liu M, Bi W, Jin C, Chen DDY. Facile green treatment of mixed cellulose ester membranes by deep eutectic solvent to enhance dye removal and determination. Int J Biol Macromol 2025; 291:139100. [PMID: 39725107 DOI: 10.1016/j.ijbiomac.2024.139100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized. DES-treated membranes exhibited improved morphology, surface properties, and superior dye adsorption capabilities. Our study revealed that the adsorption process was chemically controlled and driven by electrostatic and hydrogen bond interactions. Thermodynamic analysis confirmed the endothermic and spontaneous nature of the adsorption process. Moreover, the treated membranes exhibited good separation performance for dye/salt mixtures. Additionally, we demonstrated selective adsorption of cationic dyes over anionic dyes using these treated membranes. This selectivity enabled the development of a membrane solid-phase extraction (MSPE) method for quantification of trace amount of dyes. Compared with other methods, DES-treated MCE membranes present a promising solution for efficient dye quantification and removal, offering a green and effective strategy to address water pollution stemming from synthetic dyes. Additionally, this study provides a novel strategy for green chemistry modification of cellulose-based materials.
Collapse
Affiliation(s)
- Simin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
3
|
Shahid M, Sahadevan SA, Ramani V, Sankarasubramanian S. Recommended Practices for the Electrochemical Recovery of Cobalt from Lithium Cobalt Oxide: A Case Study of the Choline Chloride:Ethylene Glycol Deep Eutectic Solvent. CHEMSUSCHEM 2025; 18:e202401205. [PMID: 39213259 DOI: 10.1002/cssc.202401205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
We recommend best practices for the recovery of cobalt from LiCoO2 (LCO) lithium-ion battery (LIB) cathodes by (i) leaching using green deep eutectic solvents (DES) and (ii) subsequent electrodeposition, through a case study of the choline chloride (ChCl):ethylene glycol (EG) DES. DES physical properties (conductivity, viscosity, and surface tension) were tailored by varying the composition between mole ratios of 1 : 2 and 1 : 5 (ChCl:EG). Examined along with leaching process parameters (temperature, duration), increasing the fraction of hydrogen bond donors (HBDs) decreased DES surface tension and enhanced leaching. Complete Co recovery was achieved using 1 : 5 ChCl:EG DES at 160 °C and 48 h. Leaching temperatures >160 °C are discouraged due to DES thermal degradation. The electrodeposition process was optimized for selective Co recovery with high faradaic efficiency. The leaching ability of the DES was antithetical to the stability of electrodeposition cell components and required operational parameter adjustment to minimize degradation. The optimized system (copper cathode and stainless-steel anode) employing 1 : 5 DES leachate exhibited a faradaic efficiency of ~80 %, specific Co recovery of ~0.8 mg hr
Collapse
Affiliation(s)
- Mohamed Shahid
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Suchithra Ashoka Sahadevan
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Vijay Ramani
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Shrihari Sankarasubramanian
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Gholami F, Asadi A, Dolatshah M, Nazari S. Modeling and optimization of surface modification process of ultrafiltration membranes by guanidine-based deep eutectic solvent. Heliyon 2025; 11:e41432. [PMID: 39811299 PMCID: PMC11732549 DOI: 10.1016/j.heliyon.2024.e41432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM). The effects of two effective variables, including the choline/guanidine (Ch/Gu) ratio (0.5-2) and modification time (12-48 h), were evaluated on four responses, i.e., pure water flux (PWF), flux recovery ratio (FRR), irreversible fouling ratio (Rir), and total resistance (Rt). The structural and chemical characteristics and filtration performance of the fabricated membranes were evaluated. The optimum condition was obtained at a 0.8 Ch/Gu ratio and 30 h of modification time to reach the best performance of the DES-PEI membrane. The industrial application of optimally modified DES/PEI membrane was investigated by filtering penicillin and cephalexin antibiotics. The rejection data showed higher performance of the modified membrane (>95 %) compared to the bare membrane (∼63 %). Furthermore, the long-term filtration evaluation in dead-end and cross-flow setups indicated stable flux and rejection of the DES/PEI-modified membrane. The DES, including Ch/Gu, can be viewed as an agent to enhance both PWF and antifouling properties while broadening membrane applications in separating antibiotics for PEI membranes through an eco-friendly and cost-effective method.
Collapse
Affiliation(s)
- Foad Gholami
- Environmental Group, Energy Department, Materials and Energy Research Centre, Alborz, Iran
| | - Azar Asadi
- Department of Applied Chemistry, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, 75918-74831, Iran
| | - Mina Dolatshah
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, 67144-14971, Kermanshah, Iran
| | - Safoora Nazari
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, 67144-14971, Kermanshah, Iran
| |
Collapse
|
5
|
Elhamarnah Y, Qiblawey H, Nasser M. Synergistic effects of deep eutectic solvents on the morphology and performance of polysulfone ultrafiltration membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122920. [PMID: 39418711 DOI: 10.1016/j.jenvman.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the synthesis of flat sheet asymmetric Polysulfone (PSF) membranes using the Non-Solvent Induced Phase Separation (NIPS) method, enhanced by incorporating Deep Eutectic Solvents (DES) composed of Choline Chloride (ChCl) and DL-Malic Acid (MA). The research explores the individual and combined effects of ChCl and MA on membrane morphology and performance. Comprehensive characterization techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy-Universal Attenuated Total Reflectance (FTIR-UATR), and Atomic Force Microscopy (AFM), were employed to analyze the structural and surface properties of the membranes. Key performance metrics such as Pure Water Permeability (PWP), protein and dye rejection, fouling behavior, porosity, surface hydrophilicity, and mechanical strength were evaluated. Results demonstrated that integrating DES into the PSF matrix significantly improved membrane properties. The 3% DES membrane exhibited the highest Pure Water Permeability (PWP) of 186.82 L/m2h/bar, the lowest water contact angle of 68.8°, and optimal balance in surface roughness parameters, leading to superior antifouling properties with high flux recovery ratio (FRR) and balanced reversible (Rr) and irreversible fouling (Rir) components. The ChCl (HBA) membrane displayed a notable PWP of 121.62 L/m2h/bar, large pore sizes (42.72 nm), and moderate surface roughness (Ra of 3.32 nm). In contrast, the MA (HBD) membrane demonstrated the highest hydrophilicity with the lowest contact angle (70.7°) and a compact, robust structure, despite its smallest pore sizes and lack of permeability. The findings underscore the synergistic effect of DES formation in the membrane, improving overall performance for ultrafiltration applications. This study provides valuable insights into the distinct roles of ChCl as an HBA and MA as an HBD in DES-modified PSF membranes, revealing their individual contributions and the importance of optimizing DES components and concentrations for specific filtration applications.
Collapse
Affiliation(s)
- Yousef Elhamarnah
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Mustafa Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Marco-Velasco G, Gálvez-Subiela A, Jiménez-Robles R, Izquierdo M, Cháfer A, Badia JD. A Review on the Application of Deep Eutectic Solvents in Polymer-Based Membrane Preparation for Environmental Separation Technologies. Polymers (Basel) 2024; 16:2604. [PMID: 39339067 PMCID: PMC11435313 DOI: 10.3390/polym16182604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production of the DESs, and a wide range of DESs' physicochemical characteristics, such as density, surface tension, viscosity, and melting temperature, are initially gathered. Furthermore, the most popular techniques for creating membranes have been demonstrated and discussed, with a focus on the non-solvent induced phase separation (NIPS) method. Additionally, a number of studies have been reported in which DESs were employed as pore formers, solvents, additives, or co-solvents, among other applications. The addition of DESs to the manufacturing process increased the presence of finger-like structures and macrovoids in the cross-section and, on numerous occasions, had a substantial impact on the overall porosity and pore size. Performance data were also gathered for membranes made for various separation technologies, such as ultrafiltration (UF) and nanofiltration (NF). Lastly, DESs provide various options for the functionalization of membranes, such as the creation of various liquid membrane types, with special focus on supported liquid membranes (SLMs) for decarbonization technologies, discussed in terms of permeability and selectivity of several gases, including CO2, N2, and CH4.
Collapse
Affiliation(s)
- Gorka Marco-Velasco
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Alejandro Gálvez-Subiela
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - José David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| |
Collapse
|
7
|
Vatanpour V, Naziri Mehrabani SA, Dehqan A, Arefi-Oskoui S, Orooji Y, Khataee A, Koyuncu I. Performance improvement of polyethersulfone membranes with Ti 3AlCN MAX phase in the treatment of organic and inorganic pollutants. CHEMOSPHERE 2024; 362:142583. [PMID: 38866342 DOI: 10.1016/j.chemosphere.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In this work, the hydrophobic polyethersulfone (PES) membrane was modified by incorporating Ti3AlCN MAX phase. Synthesis of Ti3AlCN MAX phase was performed using the reactive sintering method. The scanning electron microscopy (SEM) images showed a 3D compressed layered morphology for the synthesized MAX phase. The Ti3AlCN MAX phase was added to the casting solution, and the mixed-matrix membranes were fabricated by the non-solvent induced phase inversion method. The performance and antifouling features of bare and modified membranes were explored by pure water flux, flux recovery ratio (FRR), and fouling resistance parameters. Through the modification of membranes by introducing the Ti3AlCN MAX phase, the enhancement of these features was observed, in which the membrane containing 1 wt% of MAX phase showed 17.7 L/m2.h.bar of permeability and 98.6% for FRR. Also, the separation efficiency of all membranes was evaluated by rejecting organic and inorganic pollutants. The Ti3AlCN MAX membranes could reject 96%, 95%, and 88% of reactive blue 50, Rose Bengal, and azithromycin antibiotics, respectively, as well as 98%, 80%, 86%, and 36% of Pb2+, As5+, Na2SO4, and NaCl, respectively. Finally, the outcomes indicated the Ti3AlCN MAX phase was an excellent and efficient novel additive for modifying the PES membrane.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
8
|
Shabeeb KM, Noori WA, Abdulridha AA, Majdi HS, Al-Baiati MN, Yahya AA, Rashid KT, Németh Z, Hernadi K, Alsalhy QF. Novel partially cross-linked nanoparticles graft co-polymer as pore former for polyethersulfone membranes for dyes removal. Heliyon 2023; 9:e21958. [PMID: 38034800 PMCID: PMC10682142 DOI: 10.1016/j.heliyon.2023.e21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
A newly developed water-soluble polymeric nano-additive termed "partially cross-linked nanoparticles graft copolymer (PCLNPG)" has been successfully synthesized and harnessed as a pore former for modifying a polyethersulfone ultrafiltration membrane for dyes removal. The PCLNPG content was varied in the PES polymeric matrix aiming to scrutinize its impact on membrane surface characteristics, morphological structure, and overall performance. Proposed interaction mechanism between methylene blue (MB), methyle orange (MO), and malachite green (MG) dyes with PES membrane was presented as well. Hydrophilicity and porosity of the novel membrane increased by 18 and 17 %, respectively, when manufactured with a 3 Wt. % PCLNPG, according to the findings. Besides this, the disclosed increased porosity, rather than the hydrophilic properties of the water-soluble PCLNPG, was the principal cause of the diminished contact angle. Meanwhile, raising the PCLNPG content in the prepared membrane made worthy shifts in its structure. A sponge-like region was materialized near the bottom surface as well. The membrane's pure water flux (PWF) synthesized with 3 Wt.% PCLNPG recorded 628 LMH, which is estimated 3.95 fold the pristine membrane. MG, MB, and MO dyes were rejected by 90.6, 96.3, and 97.87 %, respectively. These findings showed that the performance characteristics of the PES/PCLNPG membrane make it a potentially advantageous option to treat the textile wastewater.
Collapse
Affiliation(s)
- Kadhum M. Shabeeb
- Department of Materials Engineering, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Wallaa A. Noori
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | | | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mohammad N. Al-Baiati
- Department of Chemistry, College of Education for Pure Sciences, University of Kerbala, 56001, Kerbala, Iraq
| | - Ali A. Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| | - Zoltán Németh
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Klara Hernadi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc, Hungary
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology- Iraq, Alsinaa Street 52, 10066 Baghdad, Iraq
| |
Collapse
|
9
|
Vatanpour V, Paziresh S, Behroozi AH, Karimi H, Esmaeili MS, Parvaz S, Imanian Ghazanlou S, Maleki A. Fe 3O 4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. CHEMOSPHERE 2023; 328:138586. [PMID: 37028725 DOI: 10.1016/j.chemosphere.2023.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nanofiltration (NF) membranes are promising media for water and wastewater treatment; however, they suffer from their hydrophobic nature and low permeability. For this reason, the polyvinyl chloride (PVC) NF membrane was modified by iron (III) oxide@Gum Arabic (Fe3O4@GA) nanocomposite. First, Fe3O4@GA nanocomposite was synthesized by the co-precipitation approach and then its morphology, elemental composition, thermal stability, and functional groups were characterized by various analyses. Next, the prepared nanocomposite was added to the casting solution of the PVC membrane. The bare and modified membranes were fabricated by a nonsolvent-induced phase separation (NIPS) method. The characteristics of fabricated membranes were assessed by mechanical strength, water contact angle, pore size, and porosity measurements. The optimum Fe3O4@GA/PVC membrane had a 52 L m-2. h-1. bar-1 water flux with a high flux recovery ratio (FRR) value (82%). Also, the filtration experiment exhibited that the Fe3O4@GA/PVC membrane could remarkably remove organic contaminants, achieving high rejection rates of 98% Reactive Red-195, 95% Reactive Blue-19, and 96% Rifampicin antibiotic by 0.25 wt% of Fe3O4@GA/PVC membrane. According to the results, adding Fe3O4@GA green nanocomposite to the membrane casting solution is a suitable and efficient procedure for modifying NF membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University 34469 Istanbul, Turkiye; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkiye.
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Karimi
- Central Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran; Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran; Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Sina Parvaz
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Siamak Imanian Ghazanlou
- Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
10
|
Wen H, Tang D, Lin Y, Zou J, Liu Z, Zhou P, Wang X. Enhancement of water barrier and antimicrobial properties of chitosan/gelatin films by hydrophobic deep eutectic solvent. Carbohydr Polym 2023; 303:120435. [PMID: 36657831 DOI: 10.1016/j.carbpol.2022.120435] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biodegradable chitosan/gelatin (CS/GEL) films have attracted attention as food packaging, but the poor water sensitivity and functional limitations of these films should be addressed. In this study, the hydrophobic deep eutectic solvent (DES, 0-15 %) consisting of thymol and octanoic acid was used to improve the water resistance and antibacterial performance of the CS/GEL composite films. FTIR and SEM analyses revealed a strong interaction between the CS/GEL matrix and DES. The films blended with DES showed increased water contact angle values and thermal stability. Furthermore, the addition of DES resulted in a significant increase in the elasticity and decrease water vapor transmission rate (WVTR). The CS/GEL films blended with 9% DES showed a 38.5% decrease in WVTR compared to those without DES. Additionally, the DES-containing film displayed good antibacterial activity against Staphylococcus aureus and Escherichia coli. Overall, the CS/GEL-DES composite films are expected to contribute an improvement to food packaging.
Collapse
Affiliation(s)
- Haitao Wen
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Jinhao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Zhongyi Liu
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China.
| |
Collapse
|
11
|
Vatanpour V, Naziri Mehrabani SA, Safarpour M, Ganjali MR, Habibzadeh S, Koyuncu I. Fabrication of the PES Membrane Embedded with Plasma-Modified Zeolite at Different O 2 Pressures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9892-9905. [PMID: 36776106 DOI: 10.1021/acsami.2c22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this research, the non-thermal glow discharge plasma process was implemented to modify the surface of natural clinoptilolite zeolite before incorporation into the polyethersulfone (PES) membrane. The influence of plasma gas pressure variation on the fouling resistance and separation performance of the prepared membranes was studied. Fourier transform infrared, field emission scanning electron microscopy, and X-ray diffraction analyses of the unmodified and modified clinoptilolites revealed the Si-OH-Al bond's development during plasma treatment and the change in surface characteristics. In terms of performance, increasing the plasma gas pressure during clinoptilolite treatment resulted in the twofold enhancement of water flux from 91.2 L/m2 h of bare PES to 188 L/m2 h of the membrane containing plasma-treated clinoptilolite at 1.0 Torr pressure. Meanwhile, the antifouling behavior of membranes was improved by introducing more hydrophilic functional groups derived from the plasma treatment process. Additionally, the enhanced dye separation of membranes was indicated by the separation of 99 and 94% of reactive green 19 and reactive red 195, respectively.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Mahdie Safarpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
12
|
Fattah IMR, Farhan ZA, Kontoleon KJ, kianfar E, Hadrawi SK. Hollow fiber membrane contactor based carbon dioxide absorption − stripping: a review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Intermolecular Interactions of Edaravone in Aqueous Solutions of Ethaline and Glyceline Inferred from Experiments and Quantum Chemistry Computations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020629. [PMID: 36677688 PMCID: PMC9863297 DOI: 10.3390/molecules28020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Edaravone, acting as a cerebral protective agent, is administered to treat acute brain infarction. Its poor solubility is addressed here by means of optimizing the composition of the aqueous choline chloride (ChCl)-based eutectic solvents prepared with ethylene glycol (EG) or glycerol (GL) in the three different designed solvents compositions. The slurry method was used for spectroscopic solubility determination in temperatures between 298.15 K and 313.15 K. Measurements confirmed that ethaline (ETA = ChCl:EG = 1:2) and glyceline (GLE = ChCl:GL = 1:2) are very effective solvents for edaravone. The solubility at 298.15 K in the optimal compositions was found to be equal xE = 0.158 (cE = 302.96 mg/mL) and xE = 0.105 (cE = 191.06 mg/mL) for glyceline and ethaline, respectively. In addition, it was documented that wetting of neat eutectic mixtures increases edaravone solubility which is a fortunate circumstance not only from the perspective of a solubility advantage but also addresses high hygroscopicity of eutectic mixtures. The aqueous mixture with 0.6 mole fraction of the optimal composition yielded solubility values at 298.15 K equal to xE = 0.193 (cE = 459.69 mg/mL) and xE = 0.145 (cE = 344.22 mg/mL) for glyceline and ethaline, respectively. Since GLE is a pharmaceutically acceptable solvent, it is possible to consider this as a potential new liquid form of this drug with a tunable dosage. In fact, the recommended amount of edaravone administered to patients can be easily achieved using the studied systems. The observed high solubility is interpreted in terms of intermolecular interactions computed using the Conductor-like Screening Model for Real Solvents (COSMO-RS) approach and corrected for accounting of electron correlation, zero-point vibrational energy and basis set superposition errors. Extensive conformational search allowed for identifying the most probable contacts, the thermodynamic and geometric features of which were collected and discussed. It was documented that edaravone can form stable dimers stabilized via stacking interactions between five-membered heterocyclic rings. In addition, edaravone can act as a hydrogen bond acceptor with all components of the studied systems with the highest affinities to ion pairs of ETA and GLE. Finally, the linear regression model was formulated, which can accurately estimate edaravone solubility utilizing molecular descriptors obtained from COSMO-RS computations. This enables the screening of new eutectic solvents for finding greener replacers of designed solvents. The theoretical analysis of tautomeric equilibria confirmed that keto-isomer edaravone is predominant in the bulk liquid phase of all considered deep eutectic solvents (DES).
Collapse
|
14
|
Emerging Trends in Porogens toward Material Fabrication: Recent Progresses and Challenges. Polymers (Basel) 2022; 14:polym14235209. [PMID: 36501604 PMCID: PMC9736489 DOI: 10.3390/polym14235209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Fabrication of tailor-made materials requires meticulous planning, use of technical equipments, major components and suitable additives that influence the end application. Most of the processes of separation/transport/adsorption have environmental applications that demands a material to be with measurable porous nature, stability (mechanical, thermal) and morphology. Researchers say that a vital role is played by porogens in this regard. Porogens (i.e., synthetic, natural, mixed) and their qualitative and quantitative influence on the substrate material (polymers (bio, synthetic), ceramic, metals, etc.) and their fabrication processes are summarized. In most cases, porogens critically influence the morphology, performance, surface and cross-section, which are directly linked to material efficiency, stability, reusability potential and its applications. However, currently there are no review articles exclusively focused on the porogen pores' role in material fabrication in general. Accordingly, this article comprises a review of the literature on various types of porogens, their efficiency in different host materials (organic, inorganic, etc.), pore size distribution (macro, micro and nano), their advantages and limitations, to a certain extent, and their critical applications. These include separation, transport of pollutants, stability improvement and much more. The progress made and the remaining challenges in porogens' role in the material fabrication process need to be summarized for researcher's attention.
Collapse
|
15
|
Wang Y, Bao C, Li D, Chen J, Xu X, Wen S, Guan Z, Zhang Q, Ding Y, Xin Y, Zou Y. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Zhou JY, Shen Y, Yin MJ, Wang ZP, Wang N, Qin Z, An QF. Polysulfate membrane prepared with a novel porogen for enhanced ultrafiltration performance. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
|
18
|
Vatanpour V, Mousavi Khadem SS, Dehqan A, Paziresh S, Ganjali MR, Mehrpooya M, Pourbasheer E, Badiei A, Esmaeili A, Koyuncu I, Naderi G, Rabiee N, Abida O, Habibzadeh S, Saeb MR. Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J Memb Sci 2022; 660:120893. [DOI: 10.1016/j.memsci.2022.120893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Majid H, Heidarzadeh N, Vatanpour V, Dehqan A. Surface modification of commercial reverse osmosis membranes using both hydrophilic polymer and graphene oxide to improve desalination efficiency. CHEMOSPHERE 2022; 302:134931. [PMID: 35568212 DOI: 10.1016/j.chemosphere.2022.134931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Various methods have been applied to modify the surface of reverse osmosis (RO) membranes to modify the membrane performance to enhance the flux, rejection, and resistance to various factors of fouling. Hence, the main objective of the current study is to modify the surface of commercial RO membranes using the synergistic effect of the hydrophilic polymer and graphene oxide (GO). GO nanosheets were firstly synthesized by the modified hummer method, then characterized by FTIR, XRD, and SEM analyses. Then, the polyacrylic acid (PAA) was grafted on the membrane surface for membrane fabrication. Furthermore, effective factors of grafting such as monomer concentration, time, and temperature of polymerization were optimized. After that, different amounts of GO nanosheets were loaded in PAA optimized layer. Then, the effect of GO loading on the RO membrane structure and performance was investigated. The outcomes of membrane characterization demonstrated that modified RO membranes had a smoother surface, more negative surface charge, a little better hydrophilicity, and more thickness. Moreover, the results of PAA and GO optimization were shown that grafting 1.5 mM of PAA and loading 0.1 wt% of GO nanosheets give the best membrane performance. This membrane (GO 0.1@1.5M PAA/RO) between all modified membranes has the most water flux (37.1 L/m2h), the highest NaCl rejection (98%), and the best antifouling efficiency. Ultimately, it was concluded that the grafting of GO@PAA on the surface of a commercial RO membrane is an efficient approach for the enhancement of desalination and antifouling performance of this kind of membrane.
Collapse
Affiliation(s)
- Haddadi Majid
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran
| | - Nima Heidarzadeh
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran
| |
Collapse
|
21
|
Gholami S, Llacuna JL, Vatanpour V, Dehqan A, Paziresh S, Cortina JL. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment. CHEMOSPHERE 2022; 294:133699. [PMID: 35090853 DOI: 10.1016/j.chemosphere.2022.133699] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Here, novel hydroxyl and carboxyl functionalized multiwalled carbon nanotubes (AHF-MWCNT and ACF-MWCNT) were successfully synthesized and introduced for modification and antifouling improvement of the PVDF membrane. The blending effect of AHF-MWCNT and ACF-MWCNT on the morphology and surface properties of the PVDF membrane was explored by SEM, AFM, water contact angle, and zeta potential analysis. The results indicated that the membrane surface has become more hydrophilic, smoother as well more negative. In addition, the overall porosity and mean pore radius are increased by MWCNTs embedding. The filtration performance, antifouling and dye separation of the nanocomposite membranes were improved by adding any amounts of AHF-MWCNT and ACF-MWCNT in the PVDF membrane matrix. The carboxylic modification presented better performance than the hydroxyl functionalization. The 0.1 wt% ACF-MWCNT blended membrane presented an optimum performance with 46 L m-2 h-1 bar-1 permeability, 93% FRR, and 97.3% dye rejection. Consequently, embedding functionalized MWCNT in the PVDF membrane matrix was led to improvement of membrane characteristics and enhancement of pure water flux, antifouling feature, and dye separation. So, the functionalized MWCNT could be a promising additive for the PVDF membrane modification.
Collapse
Affiliation(s)
- Sina Gholami
- University of Barcelona, Faculty of Chemistry, Department of Chemical Engineering and Analytical Chemistry, Martí i Franquès Street 1, 6th Floor, 08028, Barcelona, Spain; OdirLab Co, Carrer de Loreto, 44, 08029, Barcelona, Spain.
| | - Joan Llorens Llacuna
- University of Barcelona, Faculty of Chemistry, Department of Chemical Engineering and Analytical Chemistry, Martí i Franquès Street 1, 6th Floor, 08028, Barcelona, Spain
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department and Barcelona Research Center for Multiscale Science and Engineering, UPC-BarcelonaTECH, C/Eduard Maristany, 10-14 Campus Diagonal-Besòs, 08930, Barcelona, Spain
| |
Collapse
|
22
|
Unfunctionalized and Functionalized Multiwalled Carbon Nanotubes/Polyamide Nanocomposites as Selective-Layer Polysulfone Membranes. Polymers (Basel) 2022; 14:polym14081544. [PMID: 35458294 PMCID: PMC9024911 DOI: 10.3390/polym14081544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, reverse osmosis is the most widely utilized strategy in membrane technology due to its continuous improvement. Recent studies have highlighted the importance of the surface characteristics of support layers in thin-film membranes to improve their reverse osmosis performance. In this study, interfacial polymerization was used to generate the membranes by employing polyamide as a selective layer on top of the polysulfone supporting sheet. Different membranes, varying in terms of the concentrations of unfunctionalized and functionalized multiwalled carbon nanotubes (MWCNTs), as well as ethanol, have been fabricated. The efficiency of the membrane has been increased by increasing its permeability towards water with high salt rejection. Different characterization techniques were applied to examine all of the fabricated membranes. PA-EtOH 30% (v/v), as a selective layer on polysulfone sheets to enhance the membrane’s salt rejection, was shown to be the most efficient of the suggested membranes, improving the membrane’s salt rejection. The water permeability of the polyamide membrane with EtOH 30% (v/v) was 56.18 L/m2 h bar, which was more than twice the average permeability of the polyamide membrane (23.63 L/m2 h bar). The salt rejection was also improved (from 97.73% for NaCl to 99.29% and from 97.39% for MgSO4 to 99.62% in the same condition). The PA-MWCNTs 0.15% membrane, on the other hand, had a reduced surface roughness, higher hydrophobicity, and higher water contact angle readings, according to SEM. These characteristics led to the lowest salt rejection, resulting from the hydrophobic nature of MWCNTs.
Collapse
|
23
|
Lieberzeit P, Bekchanov D, Mukhamediev M. Polyvinyl chloride modifications, properties, and applications: Review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry University of Vienna Vienna Austria
| | - Davron Bekchanov
- Faculty for Chemistry, Department of Polymer Chemistry National University of Uzbekistan Tashkent Uzbekistan
- Department of General education sciences University of Geological Sciences Tashkent Uzbekistan
| | - Mukhtar Mukhamediev
- Faculty for Chemistry, Department of Polymer Chemistry National University of Uzbekistan Tashkent Uzbekistan
| |
Collapse
|
24
|
Khosravi MJ, Hosseini SM, Vatanpour V. Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal. CHEMOSPHERE 2022; 290:133335. [PMID: 34922974 DOI: 10.1016/j.chemosphere.2021.133335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Mil-125(Ti)-CS nanocomposite was successfully synthesized and characterized by using scanning electron microscopy (SEM) images, Fourier-transform infrared (FTIR) analysis and X-ray diffraction (XRD). Then, to improve the membrane performance, the synthesized Mil-125(Ti)-CS nanocomposite was embedded into the polyethersulfone (PES) membrane matrix. The nanofiltration membranes were fabricated via phase inversion method. Presence of chitosan in the structure of Mil-125(Ti) has increased the compatibility of nanoparticles with the polymer and also improved the hydrophilicity of the resulted membranes. The water contact angle of bare membrane (58°) was reduced to 40° by blending of 1 wt% nanocomposite led to increasing the pure water flux. However, the incorporation of more than 1 wt% of the nanocomposite caused the accumulation of nanocomposites and this was reduced the pore radius and permeability. The membrane containing 1 wt% nanocomposite was displayed the highest flux recovery ratio (FRR) ∼ 98% in bovine serum albumin (BSA) filtration. The membranes containing Mil-125(Ti)-CS also showed good performance against fouling. The performance of membranes was evaluated by treatment of six reactive dyes, antibiotic (cefixime), heavy metal, NaCl and Na2SO4 solutions. Addition of Mil-125(Ti)-CS NPs at low concentrations resulted in membranes with high pure water flux, higher separation efficiency, and remarkable anti-fouling behavior.
Collapse
Affiliation(s)
- Mohammad Javad Khosravi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| |
Collapse
|
25
|
Ismail N, Pan J, Rahmati M, Wang Q, Bouyer D, Khayet M, Cui Z, Tavajohi N. Non-ionic deep eutectic solvents for membrane formation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Ho CC, Su JF. Boosting permeation and separation characteristics of polyethersulfone ultrafiltration membranes by structure modification via dual-PVP pore formers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Khajavian M, Vatanpour V, Castro-Muñoz R, Boczkaj G. Chitin and derivative chitosan-based structures - Preparation strategies aided by deep eutectic solvents: A review. Carbohydr Polym 2022; 275:118702. [PMID: 34742428 DOI: 10.1016/j.carbpol.2021.118702] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
The high molecular weight of chitin, as a biopolymer, challenges its extraction due to its insolubility in the solvents. Also, chitosan, as the N-deacetylated form of chitin, can be employed as a primary material for different industries. The low mechanical stability and poor plasticity of chitosan films, as a result of incompatible interaction between chitosan and the used solvent, have limited its industrialization. Deep eutectic solvents (DESs), as novel solvents, can solve the extraction difficulties of chitin, and the low mechanical stability and weak plasticity of chitosan films. Also, DESs can be considered for the different chitosan and chitin productions, including chitin nanocrystal and nanofiber, N,N,N-trimethyl-chitosan, chitosan-based imprinted structures, and DES-chitosan-based beads and monoliths. This review aims to focus on the preparation and characterization (chemistry and morphology) of DES-chitin-based and DES-chitosan-based structures to understand the influence of the incorporation of DESs into the chitin and chitosan structure.
Collapse
Affiliation(s)
- Mohammad Khajavian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran.
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; EcoTech Center, Gdańsk University of Technology, Gdańsk 80-233, Poland
| |
Collapse
|
29
|
Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
He S, Tang W, Row KH. Determination of Thiophanate-Methyl and Carbendazim from Environmental Water by Liquid-Liquid Microextraction (LLME) Using a Terpenoid-Based Hydrophobic Deep Eutectic Solvent and High-Performance Liquid Chromatography (HPLC). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1993237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sile He
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| | - Weiyang Tang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| |
Collapse
|
31
|
Xu T, Zhang J, Guo H, Zhao W, Li Q, Zhu Y, Yang J, Bai J, Zhang L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49254-49265. [PMID: 34633173 DOI: 10.1021/acsami.1c11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane biofouling has long been a major obstacle to highly efficient water treatment. The modification of the membrane surface with hydrophilic materials can effectively enhance biofouling resistance. However, the water flux of the membranes is often compromised for the improvement of antifouling properties. In this work, a composite membrane composed of a zwitterionic hydrogel and electrospinning fibers was prepared by a spin-coating and UV cross-linking process. At the optimum conditions, the composite membrane could effectively resist the biofouling contaminations, as well as purify polluted water containing bacteria or diatoms with a high flux (1349.2 ± 85.5 L m-2 h-1 for 106 CFU mL-1 of an Escherichia coli solution). Moreover, compared with the commercial poly(ether sulfone) (PES) membrane, the membrane displayed an outstanding long-term filtration performance with a lower water flux decline. Therefore, findings in this work provide an effective antifouling modification strategy for microfiltration membranes and hold great potential for developing antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Tong Xu
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jie Bai
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
32
|
Lei J, Guo Z. PES asymmetric membrane for oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Amiri S, Asghari A, Vatanpour V, Rajabi M. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112918. [PMID: 34139646 DOI: 10.1016/j.jenvman.2021.112918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study chitosan-aminopropylsilane graphene oxide (CS-APSGO) nanocomposite hydrogel was synthesized and utilized as a hydrophilic additive in different dosages (0.5, 1, 2 and 5 wt%) in fabrication of porous polyethersulfone (PES) membranes via the phase inversion induced process by immersion precipitation method for heavy metal ion and dye removal. The modified membranes were characterized using ATR-FTIR, AFM, SEM, water contact angle, overall porosity and mean pore radius evaluations and zeta potential measurement. The addition of CS-APSGO nanocomposite hydrogel to PES doping solutions enhanced membranes hydrophilicity and consequently pure water flux permeability. Filtration performance of the CS-APSGO embedded membranes showed promising antifouling properties during BSA filtration test (FRR> 90%) and 1 wt% membranes showed the highest pure water flux of 123.8 L/m2 h with BSA rejection more than 98% and removal capability more than 82% for lead (II) ion, 90.5% and 98.5% for C.I. Reactive Blue 50 and C.I. Reactive Green 19, respectively. Therefore, the CS-APSGO nanocomposite hydrogel blending in order to modification of PES-based membranes have a noticeable potential in improving filtration performance of blended membranes.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan, 2333383-193, Iran
| |
Collapse
|
34
|
Vatanpour V, Paziresh S, Dehqan A, Asadzadeh-Khaneghah S, Habibi-Yangjeh A. Hydrogen peroxide treated g-C 3N 4 as an effective hydrophilic nanosheet for modification of polyethersulfone membranes with enhanced permeability and antifouling characteristics. CHEMOSPHERE 2021; 279:130616. [PMID: 34134415 DOI: 10.1016/j.chemosphere.2021.130616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, first, graphitic carbon nitride was treated with hydrogen peroxide (abbreviated as H2O2-g-C3N4), then was used as a new hydrophilic nanomaterial in the fabrication of polyethersulfone (PES) mixed matrix membrane (MMM) for improving flux, protein and dye separation efficiency and antifouling properties. The H2O2-g-C3N4 nanosheet was inserted into the doping solution to fabricate PES/H2O2-g-C3N4 nanocomposite membrane with the non-solvent induced phase inversion procedure. The results of the SEM and AFM images and also porosity and contact angle analysis were indicated that the modified membranes with H2O2-g-C3N4 had more porosity, smoother surface and more hydrophilic. Also, the influence of various weight percentage of H2O2-g-C3N4 was investigated systematically on the membrane performance. By blending of H2O2-g-C3N4 nanosheet in the membrane matrix, the permeability was raised from 4.1 (for bare membrane) to 30.1 L m-2 h-1 bar-1. Additionally, the effect of the H2O2-g-C3N4 material on the antifouling features indicated that the flux recover ratio of the H2O2-g-C3N4 MMMs was improved and the resistance parameters were reduced. Also, the effect of the H2O2-g-C3N4 material on the antifouling features indicated that the flux recover ratio of the H2O2-g-C3N4 MMMs was improved and the resistance parameters were reduced. Finally, the dye rejection efficiency of the nanocomposite membranes for Orange II and Reactive Yellow 168 was improved. As a result, it could be mentioned that the mixing low amount of H2O2-g-C3N4 in the membrane structure could significantly improve the membrane flux and antifouling properties without reduction in membrane rejection efficiency.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | | | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
35
|
Vatanpour V, Paziresh S. A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.51428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
- Research Institute of Green Chemistry Kharazmi University Tehran Iran
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| |
Collapse
|
36
|
Kuttiani Ali J, Abi Jaoude M, Alhseinat E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation. Molecules 2021; 26:molecules26040990. [PMID: 33668455 PMCID: PMC7917730 DOI: 10.3390/molecules26040990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Novel polymer composites based on polyamide–imide Torlon and deep eutectic solvent (DES) were fabricated and adapted for separation processes. DES composed of zinc chloride and acetamide in a ratio of 1:3 M was first chosen as a Torlon-modifier due to the possibility of creating composites with a uniform filling of the DES through the formation of hydrogen bonds. The structure of the membranes was investigated by scanning electron microscopy and X-ray diffraction analysis; thermal stability was determined by thermogravimetric analysis and mass spectrometry. The surface of the composites was studied by determining the contact angles and calculating the surface tension. The transport properties were investigated by such membrane methods as pervaporation and gas separation. It was found that the inclusion of DES in the polymer matrix leads to a significant change in the structure and surface character of composites. It was also shown that DES plays the role of a plasticizer and increases the separation performance in the separation of liquids and gases. Torlon/DES composites with a small amount of modifier were effective in alcohol dehydration, and were permeable predominantly to water impurities in isopropanol. Torlon/DES-5 demonstrates high selectivity in the gas separation of O2/N2 mixture.
Collapse
|
39
|
Nahar Y, Thickett SC. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polymers (Basel) 2021; 13:447. [PMID: 33573280 PMCID: PMC7866798 DOI: 10.3390/polym13030447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield solvents with appealing properties (negligible volatility, non-flammability and high solvation capacity). In the context of polymer science, DES systems not only offer an appealing route towards replacing hazardous volatile organic solvents (VOCs), but can serve multiple roles including those of solvent, monomer and templating agent-so called "polymerizable eutectics." In this review, we look at DES systems and polymerizable eutectics and their application in polymer materials synthesis, including various mechanisms of polymer formation, hydrogel design, porous monoliths, and molecularly imprinted polymers. We provide a comparative study of these systems alongside traditional synthetic approaches, highlighting not only the benefit of replacing VOCs from the perspective of environmental sustainability, but also the materials advantage with respect to mechanical and thermal properties of the polymers formed.
Collapse
Affiliation(s)
| | - Stuart C. Thickett
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, TAS 7001, Australia;
| |
Collapse
|