1
|
Lee SY, Kang DR, Oh JG, Chae IS, Kim JH. Dumbbell-Shaped, Block-Graft Copolymer with Aligned Domains for High-Performance Hydrocarbon Polymer Electrolyte Membranes. Angew Chem Int Ed Engl 2024; 63:e202406796. [PMID: 38730495 DOI: 10.1002/anie.202406796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024]
Abstract
Given the environmental concerns surrounding fluoromaterials, the use of high-cost perfluorinated sulfonic acids (PFSAs) in fuel cells and water electrolysis contradicts the pursuit of clean energy systems. Herein, we present a fluorine-free dumbbell-shaped block-graft copolymer, derived from the cost-effective triblock copolymer, poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS), for polymer electrolyte membranes (PEMs). This unique polymer shape led to the alignment of the hydrophobic-hydrophilic domains along a preferred orientation, resulting in the construction of interconnected proton channels across the membrane. A bicontinuous network allowed efficient proton transport with reduced tortuosity, leading to an exceptional ionic conductivity (249 mS cm-1 at 80 °C and 90 % relative humidity (RH)), despite a low ion exchange capacity (IEC; 1.41). Furthermore, membrane electrode assembly (MEA) prepared with our membrane exhibited stable performance over a period of 150 h at 80 °C and 30 % RH. This study demonstrates a novel polymer structure design and highlights a promising outlook for hydrocarbon PEMs as alternatives to PFSAs.
Collapse
Affiliation(s)
- So Youn Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du Ru Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Gil Oh
- Advanced Fuel Cell Technology Development Team, CTO, Hyundai Motor Company, Yongin-si, Gyeonggi-do, 16891, Republic of Korea
| | - Il Seok Chae
- Advanced Fuel Cell Technology Development Team, CTO, Hyundai Motor Company, Yongin-si, Gyeonggi-do, 16891, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Wang H, Yang L. Analysis of proton exchange membranes for fuel cells based on statistical theory and data mining. iScience 2024; 27:109360. [PMID: 38510152 PMCID: PMC10951991 DOI: 10.1016/j.isci.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Fuel cells (FCs) have attracted widespread attention as a highly efficient, clean, and renewable energy conversion technology. Proton exchange membrane (PEM), as one of the core components of FCs, plays a crucial role, and a comprehensive summary of its development is essential for promoting rapid progress in the field of sustainable energy. This article provides a comprehensive review of the development status and research trends of PEMs over the past twenty-eight years, based on statistical analysis and data mining techniques. Price, sustainability, stability, and compatibility issues are the main challenges faced by current PEMs used in FCs research. The current research focuses mainly on the characterization, performance optimization, enhancement mechanisms, and applications of PEMs in FCs. This review provides a systematic summary of PEM materials, serving as a valuable reference for the development, application, and promotion of new PEM materials in FCs.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China
| |
Collapse
|
3
|
Xie Y, Liu D, Ringuette A, Théato P. Branched Poly(arylene ether ketone sulfone)s with Ultradensely Sulfonated Branched Centers for Proton Exchange Membranes: Effect of the Positions of the Sulfonic Acid Groups. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24517-24527. [PMID: 37186810 DOI: 10.1021/acsami.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Branched sulfonated polymers present considerable potential for application as proton exchange membranes, yet investigation of branched polymers containing sulfonated branched centers remains to be advanced. Herein, we report a series of polymers with ultradensely sulfonated branched centers, namely, B-x-SPAEKS, where x represents the degree of branching. In comparison with the analogous polymers bearing sulfonated branched arms, B-x-SPAEKS showed a reduced water affinity, resulting in less swelling and lower proton conductivity. The water uptake, swelling ratio (in-plane), and proton conductivity of B-10-SPAEKS at 80 °C were 52.2%, 57.7%, and 23.6% lower than their counterparts, respectively. However, further analysis revealed that B-x-SPAEKS featured significantly better proton conduction under the same water content due to the formation of larger hydrophilic clusters (∼10 nm) that promoted efficient proton transportation. B-12.5-SPAEKS exhibited a proton conductivity of 138.8 mS cm-1 and a swelling ratio (in-plane) of only 11.6% at 80 °C, both of which were superior to Nafion 117. In addition, a decent single-cell performance of B-12.5-SPAEKS was also achieved. Consequently, the decoration of sulfonic acid groups on the branched centers represents a very promising strategy, enabling outstanding proton conductivity and dimensional stability simultaneously even with low water content.
Collapse
Affiliation(s)
- Yunji Xie
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, D-76131 Karlsruhe, Germany
| | - Di Liu
- Laboratory of High Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Anna Ringuette
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, D-76131 Karlsruhe, Germany
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Li W, Yang F, Lin Z, Sun R, Chen L, Xie Y, Pang J, Jiang Z. Semi-crystalline sulfonated poly(ether ketone) proton exchange membranes: The trade-off of facile synthesis and performance. J Colloid Interface Sci 2023; 645:493-501. [PMID: 37159991 DOI: 10.1016/j.jcis.2023.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Improving the performance of proton exchange membranes (PEMs) through the synthesis of sulfonated polymers with elaborate molecular structures has received extensive approval. However, the tedious synthetic process and consequently high costs restrain their possible substitution for Nafion, a classic PEM material. Herein, a series of semi-crystalline sulfonated poly(ether ketone)s with fluorene-based units were prepared via direct copolymerization of commercially available monomers and followed post-sulfonation, namely SPEK-FD-x, where × represents the molar ratio of the fluorene-containing monomer to the employed bisphenol monomers. The entire synthetic pathway was facile without involving hardly accessible materials. Subsequently, various properties of SPEK-FD-x membranes were investigated and further compared with Nafion 117. Due to the formation of the well-defined hydrophilic-hydrophobic microphase separation morphology and the reinforcement of the PEK crystalline regions, the SPEK-FD-x membranes exhibited outstanding proton conductivity, resistance for methanol permeation, as well as dimensional, thermal, oxidative, and mechanical stability. Among them, the overall behavior of the SPEK-FD-25 membrane was comparable to or even greater than that of Nafion 117, most importantly, it also performed decently in both H2/air fuel cells and direct methanol fuel cells. Therefore, with the straightforward synthesis and superior performance, the SPEK-FD-x membranes may serve as a promising alternative to Nafion.
Collapse
Affiliation(s)
- Wenying Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ziyu Lin
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ruiyin Sun
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Liyuan Chen
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Yunji Xie
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131 Karlsruhe, Germany.
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China.
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| |
Collapse
|
5
|
Xie Y, Ringuette A, Liu D, Pang J, Mutlu H, Voll D, Théato P. Sulfonated branched poly(arylene ether ketone sulfone) proton exchange membranes: Effects of degree of branching and ion exchange capacity. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Poly(vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: The effect of functionalization agents for CNT on pervaporation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Liu D, Xie Y, Zhong J, Yang F, Pang J, Jiang Z. High methanol resistance semi-crystalline sulfonated poly(ether ketone) proton exchange membrane for direct methanol fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Yang X, Kim JH, Kim YJ. Enhanced proton conductivity of poly(ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Liu L, Liu T, Ding F, Zhang H, Zheng J, Li Y. Exploration of the Polarization Curve for Proton-Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58838-58847. [PMID: 34851081 DOI: 10.1021/acsami.1c20289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The polarization curve is the most important profile to evaluate the performance of proton-exchange membrane fuel cells (PEMFCs). To explore the important thermodynamic parameters and their correlation with the composition, fabrication, and operational settings, a comprehensive data set consisting of 446 polarization curves from 191 perfluorosulfonate and 255 sulfonated hydrocarbon-based PEMs is collected. Then, a Markov chain Monte Carlo simulation within the Bayesian frame provides higher than 93% confidence to extract six important thermodynamic parameters including open-circuit potential, the transfer coefficient, the current loss, the reference exchange current density, the internal resistance, and the limiting current density. An extreme gradient boosting algorithm affords a mean determinative coefficient of 0.89 to predict the whole polarization curve and a confidence of 94% to predict the peak power density (PPD). Both approaches to explore the polarization curve for PEMFCs show good robustness in the blind test. Overall, the PPD is positively correlated with the ion-exchange capacity of the polymer, operational temperature, and humidity and is negatively affected by internal resistance, membrane thickness, and the loading of the catalyst. The flow rate of fuels can effectively enhance them, while the increase of catalyst loading or fuel concentration shows deleterious impacts.
Collapse
Affiliation(s)
- Lunyang Liu
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tingli Liu
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fang Ding
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhang
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jifu Zheng
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yunqi Li
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials & Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Kim M, Ko H, Nam SY, Kim K. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Polymers (Basel) 2021; 13:3520. [PMID: 34685282 PMCID: PMC8539910 DOI: 10.3390/polym13203520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.
Collapse
Affiliation(s)
| | | | | | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (H.K.); (S.Y.N.)
| |
Collapse
|
14
|
Neelakandan S, Wang L, Zhang B, Ni J, Hu M, Gao C, Wong WY, Wang L. Branched Polymer Materials as Proton Exchange Membranes for Fuel Cell Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1964524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sivasubramaniyan Neelakandan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Li Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Boping Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiangpeng Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Meishao Hu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Chunmei Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Wai-Yeung Wong
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnique University, Hong Kong, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Rowlett JR, Shaver AT, Mecham S, Riffle JS, McGrath JE. Membrane properties of trisulfonated hydrophilic and partially fluorinated hydrophobic multiblock copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|