1
|
Jia H, Zeng C, Lim HS, Simmons A, Zhang Y, Weber MH, Engelhard MH, Gao P, Niu C, Xu Z, Zhang JG, Xu W. Important Role of Ion Flux Regulated by Separators in Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311312. [PMID: 38145390 DOI: 10.1002/adma.202311312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.
Collapse
Affiliation(s)
- Hao Jia
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chao Zeng
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Hyung-Seok Lim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ashley Simmons
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yuepeng Zhang
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Marc H Weber
- Institute of Materials Research, Washington State University, Pullman, WA, 99164, USA
| | - Mark H Engelhard
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peiyuan Gao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chaojiang Niu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhijie Xu
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ji-Guang Zhang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wu Xu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
2
|
Luo L, Ma K, Song X, Zhao Y, Tang J, Zheng Z, Zhang J. A Magnesium Carbonate Hydroxide Nanofiber/Poly(Vinylidene Fluoride) Composite Membrane for High-Rate and High-Safety Lithium-Ion Batteries. Polymers (Basel) 2023; 15:4120. [PMID: 37896363 PMCID: PMC10611082 DOI: 10.3390/polym15204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Simultaneously high-rate and high-safety lithium-ion batteries (LIBs) have long been the research focus in both academia and industry. In this study, a multifunctional composite membrane fabricated by incorporating poly(vinylidene fluoride) (PVDF) with magnesium carbonate hydroxide (MCH) nanofibers was reported for the first time. Compared to commercial polypropylene (PP) membranes and neat PVDF membranes, the composite membrane exhibits various excellent properties, including higher porosity (85.9%) and electrolyte wettability (539.8%), better ionic conductivity (1.4 mS·cm-1), and lower interfacial resistance (93.3 Ω). It can remain dimensionally stable up to 180 °C, preventing LIBs from fast internal short-circuiting at the beginning of a thermal runaway situation. When a coin cell assembled with this composite membrane was tested at a high temperature (100 °C), it showed superior charge-discharge performance across 100 cycles. Furthermore, this composite membrane demonstrated greatly improved flame retardancy compared with PP and PVDF membranes. We anticipate that this multifunctional membrane will be a promising separator candidate for next-generation LIBs and other energy storage devices, in order to meet rate and safety requirements.
Collapse
Affiliation(s)
- Lin Luo
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China; (L.L.); (K.M.); (X.S.)
| | - Kang Ma
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China; (L.L.); (K.M.); (X.S.)
| | - Xin Song
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China; (L.L.); (K.M.); (X.S.)
| | - Yuling Zhao
- State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Jie Tang
- National Institute for Materials Science, Tsukuba 305–0047, Japan;
| | - Zongmin Zheng
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China; (L.L.); (K.M.); (X.S.)
| | - Jianmin Zhang
- College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao 266071, China; (L.L.); (K.M.); (X.S.)
| |
Collapse
|
3
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Lee H, Lee D. Composite Membrane Containing Titania Nanofibers for Battery Separators Used in Lithium-Ion Batteries. MEMBRANES 2023; 13:membranes13050499. [PMID: 37233560 DOI: 10.3390/membranes13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
In order to improve the electrochemical performance of lithium-ion batteries, a new kind of composite membrane made using inorganic nanofibers has been developed via electrospinning and the solvent-nonsolvent exchange process. The resultant membranes present free-standing and flexible properties and have a continuous network structure of inorganic nanofibers within polymer coatings. Results show that polymer-coated inorganic nanofiber membranes have better wettability and thermal stability than those of a commercial membrane separator. The presence of inorganic nanofibers in the polymer matrix enhances the electrochemical properties of battery separators. This results in lower interfacial resistance and higher ionic conductivity, leading to the good discharge capacity and cycling performance of battery cells assembled using polymer-coated inorganic nanofiber membranes. This provides a promising solution via which to improve conventional battery separators for the high performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Hun Lee
- Applied Chemistry, Division of Energy & Optical Technology Convergence, College of Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Deokwoo Lee
- Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Maia BA, Magalhães N, Cunha E, Braga MH, Santos RM, Correia N. Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers (Basel) 2022; 14:403. [PMID: 35160393 PMCID: PMC8839412 DOI: 10.3390/polym14030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state electrolytes are a promising family of materials for the next generation of high-energy rechargeable lithium batteries. Polymer electrolytes (PEs) have been widely investigated due to their main advantages, which include easy processability, high safety, good mechanical flexibility, and low weight. This review presents recent scientific advances in the design of versatile polymer-based electrolytes and composite electrolytes, underlining the current limitations and remaining challenges while highlighting their technical accomplishments. The recent advances in PEs as a promising application in structural batteries are also emphasized.
Collapse
Affiliation(s)
- Beatriz Arouca Maia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Chemical Engineering Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Natália Magalhães
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Eunice Cunha
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Maria Helena Braga
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Engineering Physics Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Raquel M. Santos
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| | - Nuno Correia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| |
Collapse
|
6
|
Uniform and porous nacre-like cellulose nanofibrils/nanoclay composite membrane as separator for highly safe and advanced Li-ion battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|