1
|
Zhang Z, Zhou Z, Feng S, Wu L, Gao S. Preparation and performance of MXene-based electric field-responsive separation membranes. DESALINATION 2025; 601:118582. [DOI: 10.1016/j.desal.2025.118582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
|
2
|
Arshad Z, Baig N, Ali SA. Tailoring Nanofiltration Membranes by Incorporating Zwitterionic Quaternary Ammonium Terpolymer to Enhance Performance. Chem Asian J 2025; 20:e202401391. [PMID: 39891523 DOI: 10.1002/asia.202401391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Designing nanofiltration membranes with unique characteristics and properties is an emerging trend for water treatment research. Herein, we introduced the unique example of the aliphatic diethylenetriamine-based nanofiltration membranes and tuned its selectivity by adding the terpolymer. To enhance the permeability of the salts while maintaining the rejection of the dye Eriochrome black T (EBT), a novel cationic/zwitterionic terpolymer of Diallyldimethylammonium chloride (DADMAC), 3-(N,N-diallyl-N-methylammonio)propanesulfonate (DAMAPS), and N,N-diallyldodecane-1,12-diamine (DADA) was rationally synthesized and in situ grafted via interfacial polymerization (IP) in the polyamide active layer of the membrane. The incorporation of poly-(DADMAC-co-DAMAPS-co-DADA) polymer into the diethylenetriamine polyamide active layer results in 5.8 times increase in water flux while still retaining an outstanding rejection rate of ~99.9 % for EBT. Furthermore, it exhibited enhanced salt permeability for NaCl, MgCl2, Na2SO4, and MgSO4. The grafted polymer increased the hydrophilicity of the membrane and strengthened stability for long-term working conditions. Thus, the aliphatic diethylenetriamine membranes have great potential for desalination, and their active layer can be tuned with the zwitterionic moieties to enhance the salt permeability and keep the EBT rejection higher than 99 %, which makes these membranes valuable for environmental and textile applications.
Collapse
Affiliation(s)
- Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- The Applied Chemistry and Engineering Research Center of Excellence (ACER CoE) Mohammed VI Polytechnic University (UM6P) Lot 660, Hay Moulay Rachid, Benguerir., 43150, Morocco
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, KFUPM, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Tang F, Yang J, Lin L, Liu Z, Wang Q, Ma W, Shang H, Wu H, He A. A capillary effect-inspired sponge-structured carboxymethyl cellulose aerogel layer-modified membrane for efficient separation of dye/salt under ultra-low-pressure. Int J Biol Macromol 2024; 282:137516. [PMID: 39532160 DOI: 10.1016/j.ijbiomac.2024.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
In the field of wastewater treatment, the efficient separation of dyes/salts and the high-pressure drive easily results in concentration polarization and membrane contamination. In this study, inspired by the capillary effect of natural sponge structure, an aerogel layer with a bionic three-dimensional mesh porous sponge structure was designed to construct an ultra-low-pressure membrane. With the assistance of tannic acid, the carboxymethyl cellulose (CMC) aerogel layer were constructed on the surface of polyvinylidene fluoride (PVDF) membrane using the layer-by-layer cross-linking and freeze-drying methods. The unique three-dimensional mesh structure of the aerogel provides a capillary effect that accelerates the rapid transport of water molecules. The introduction of polypyrrole (PPy) to the aerogel improves the mechanical properties of the aerogel, helping avoid the collapse during the separation process. Meanwhile, the formed PPy improves the membrane separation performance. The results showed, that under near-zero pressure conditions, the modified membrane had excellent dye/salt separation performance (dye rejection >99 %, salt rejection <10 %) and high flux of pure water (101.3 L·m-2·h-1). Moreover, the membrane also maintained good long-term stability. The study demonstrated the potential of using membrane for dye/salt separation applications by constructing bionic sponge-structured aerogels having capillary effect and good mechanical strength on membrane.
Collapse
Affiliation(s)
- Fengling Tang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qiying Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wensong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huiyang Shang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hao Wu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Aishan He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Anuradha, Joshi US, Jewrajka SK. Low Fouling Molecular Selective Channels through Self-assembly of Cross-linked Block Copolymer Micelles for Selective Separation of Dye and Salt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61344-61359. [PMID: 39437335 DOI: 10.1021/acsami.4c14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the solvent-evaporation and ionic cross-linking mediated self-assembly of the shell cross-linked micelles of the amphiphilic triblock copolymer containing middle poly(methyl methacrylate) block (hydrophobic) and poly(2-dimethylamino)ethyl methacrylate end blocks (hydrophilic) on the membrane substrate to create molecular selective channels. The formation of selective channels on the substrate is attributed to the local increase of micelle concentration upon solvent evaporation, which leads to the core-core hydrophobic interaction. The post-ionic cross-linking of the shell part further reduces the intermicelle distance, thereby creating interstices for selective separation. The TUF-1:1 membrane prepared by the self-assembly of the cross-linked micelles (triblock copolymer:halide-terminated PEG-based = 1:1 w w-1) and by the post-ionic cross-linking shows molecular weight cutoff of 3000 g mol-1 and pure water permeance of 52 L m-2 h-1 bar-1. The membrane shows 99.5-99.9% rejection of Congo red and Direct red-80 in the presence or absence of salts and Na2SO4 to dye separation factor of about 900. The added functionality (PEG) in the micelle structure provides good fouling-resistant properties toward dye and bovine serum albumin. This work provides the membrane formation mechanism and the advantages of the membrane for fractionation and resource recovery applications.
Collapse
Affiliation(s)
- Anuradha
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Urvashi S Joshi
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Ren K, Lu X, Zheng S, Zhang H, Gu J. Fabrication of hollow fiber composite membranes via opposite transmission reaction method for dye/salt separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134856. [PMID: 38870854 DOI: 10.1016/j.jhazmat.2024.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
The separation layer prepared by the conventional coating-crosslinking method is typically thick and prone to forming defective macropores, significantly affecting the water permeability and dye/salt separation performance of membranes. This work presented a novel method to prepare hollow fiber composite membranes for dye/salt separation based on the opposite transmission reaction of crosslinker. In this method, the macromolecule in situ reacted with a small-molecule crosslinker at the openings of membrane pore channels, forming a separation layer with discontinuous sheet-like and granular structure. Compared to the conventional forward coating-crosslinking method, the separation layer prepared by the opposite transmission reaction method exhibited an ultra-thin thickness of 29.1 nm. Consequently, the composite membrane exhibited a high water permeability of 72.7 L·m-2·h-1·bar-1, which was 2.3 times higher than that of conventional methods. Moreover, the prepared composite membrane presented a more uniformed pore structure, completely retaining the VBB (100%) with a low Na2SO4 rejection of 4.3%, demonstrating excellent dye/salt separation performance. Additionally, the prepared composite membrane exhibited superior anti-fouling properties compared to that prepared by the conventional method. Therefore, the opposite transmission reaction method proposed in this study held promising applications in the preparation of hollow fiber composite membranes for efficient dye/salt separation.
Collapse
Affiliation(s)
- Kai Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; State Key Laboratory of Membranes Materials and Membrane Applications, Tianjin Motimo Membrane Tech. Co., Ltd, No.60.11th Street, TEDA, Tianjin 300457, PR China.
| | - Shuyun Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Hao Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jie Gu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
6
|
Deng W, Zhang Z, Liu L, Zhou Z, Wu L. Tannin-assisted interfacial polymerization towards COF membranes for efficient dye separation. RSC Adv 2024; 14:16510-16519. [PMID: 38769964 PMCID: PMC11104732 DOI: 10.1039/d4ra02838d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Membrane separation has been shown to have significant potential in addressing the global shortage of clean water. Covalent organic frameworks (COFs) have gained significant attention in the field of membrane separation due to their structural stability and controllable pore size. Here, a modification of polyethersulfone ultrafiltration membranes with TA-assisted COFs is prepared by interfacial polymerization and co-deposition. Intriguingly, in comparison to the conventional COF synthesis method, the interfacial polymerization reaction used n-butanol as the oil-phase monomer to prevent substrate corrosion. More importantly, the TA-assisted co-deposition not only introduces a large number of environmentally friendly hydrophilic groups to enhance the hydrophilicity of the membrane surface, but also the phenolic hydroxyl group contained in TA generates a quinone group upon oxidation. This group can undergo a Michael addition reaction with the amine group, followed by interfacial polymerization to regulate the COFs pore size. Consequently, the optimized membrane exhibited a high permeation flux of 122.03 L m-2 h-1 bar-1 without altering the pore size structure of the original membranes and demonstrated separation performance for various dyes (Mw: 300-1300 g mol-1), with a retention rate of over 98%. Despite multiple filtrations of methyl blue dye, the membrane prepared by simple rinsing still exhibited high retention rates (>98%) with exceptional stability and retention performance. The optimized membrane demonstrated good hydrophilicity and dye separation performance, indicated promising potential for dye separation applications.
Collapse
Affiliation(s)
- Weishan Deng
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zekun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
7
|
Zhou Z, Zhang Z, Feng S, Liu L, Deng W, Wu L. Effective separation of dyes/salts by sulfonated covalent organic framework membranes based on phenolamine network conditioning. RSC Adv 2024; 14:14593-14605. [PMID: 38708106 PMCID: PMC11066737 DOI: 10.1039/d4ra01736f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
This study developed a modified polyacrylonitrile (PAN) membrane controlled by a phenol-amine network and enhanced with a sulfonated covalent organic framework (SCOF), aimed at improving the efficiency of textile wastewater treatment. Utilizing a phenol-amine network control strategy allows for precise manipulation of interfacial reactions in the synthesis of SCOF, achieving highly uniform modification on the surface of the PAN membrane. This modified membrane demonstrated high rejection of over 98% for various water-soluble dyes, including Alcian blue 8GX, Coomassie Brilliant Blue G250, methyl blue, congo red, and rose bengal, and also exhibited specific selectivity in processing salt-containing wastewater. By adjusting the deposition time of the phenol-amine and the concentration of SCOF monomers, optimal retention performance and permeate flux were achieved, effectively separating dyes and salts. This research provides a new and effective solution for treating textile wastewater, especially in separating and recovering dyes and salts, offering broad application prospects in environmental management and water resource management, and highlighting its significant practical implications.
Collapse
Affiliation(s)
- Zekun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital Zhengzhou Henan 450003 China
| | - Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Weishan Deng
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
8
|
Joshi US, Anuradha, Jewrajka SK. Tight ultrafiltration and loose nanofiltration membranes by concentration polarization-driven fast layer-by-layer self-assembly for fractionation of dye/salt. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Dually charged polyamide nanofiltration membrane incorporated UiO-66-(NH2)2: Synergistic rejection of divalent cations and anions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Sun W, Zhang N, Li Q, Li X, Chen S, Zong L, Baikeli Y, Lv E, Deng H, Zhang X, Baqiah H. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Recent Advanced Development of Acid-Resistant Thin-Film Composite Nanofiltration Membrane Preparation and Separation Performance in Acidic Environments. SEPARATIONS 2022. [DOI: 10.3390/separations10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Membrane filtration technology has attracted extensive attention in academia and industry due to its advantages of eco-friendliness related to environmental protection and high efficiency. Polyamide thin-film composite nanofiltration (PA TFC NF) membranes have been widely used due to their high separation performance. Non-acid-resistant PA TFC NF membranes face tremendous challenges in an acidic environment. Novel and relatively acid-resistant polysulfonamide-based and triazine-based TFC NF membranes have been developed, but these have a serious trade-off in terms of permeability and selectivity. Hence, how to improve acid resistance of TFC NF membranes and their separation performance in acidic environments is a pivotal issue for the design and preparation of these membranes. This review first highlights current strategies for improving the acid resistance of PA TFC NF membranes by regulating the composition and structure of the separation layer of the membrane performed by manipulating and optimizing the construction method and then summarizes the separation performances of these acid-resistant TFC NF membranes in acidic environments, as studied in recent years.
Collapse
|
12
|
Zhang H, Li Y, Miao J, Zhu X, Yang J, Zhang Q, Yang Y, Zhao J, Hu Y, Zhao Y, Chen L. N-Oxide Zwitterion Functionalized Positively Charged Polyamide Composite Membranes for Nanofiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16094-16103. [PMID: 36512334 DOI: 10.1021/acs.langmuir.2c02750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-Oxide zwitterionic polyethyleneimine (ZPEI), a new kind of aqueous phase monomer synthesized by commercially branched polyethyleneimine (PEI) via oxidation reaction, was prepared for fabrication of thin-film composite (TFC) polyamide membranes via interfacial polymerization. The main factors, including the monomer concentration and immersion time of the aqueous phase and organic phase, were investigated. Compared with PEI-TFC membranes, the obtained optimal defect-free ZPEI-TFC membranes exhibited a lower roughness (3.3 ± 0.3 nm), a better surface hydrophilicity, and a smaller pore size (238 Da of MWCO). The positively charged ZPEI-TFC membranes (isoelectric point at pH 8.05) showed higher rejections toward both divalent cationic (MgCl2, 93.0%) and anionic (Na2SO4, 96.1%) salts with a water permeation flux of up to 81.0 L·m-2·h-1 at 6 bar, which surpassed currently reported membranes. More importantly, mainly owing to N-oxide zwitterion with strong hydration capability, ZPEI-TFC membranes displayed a high flux recovery ratio (97.0%) toward a model protein contaminant (bovine serum albumin), indicating good anti-fouling properties. Therefore, the novel N-oxide zwitterion functionalized positively charged nanofiltration membranes provide an alternative for water desalination and sewage reclamation.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Junping Miao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Xinran Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Qinglei Zhang
- Beijing Origin Water Membrane Technology Company Limited, Beijing101400, China
| | - Yanfu Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
13
|
Zhao A, Zhang M, Bao Y, Zhao L, Liu G, Jiang Y, Zhang P, Cao X. Loose nanofiltration membrane constructed via interfacial polymerization using porous organic cage RCC3 for dye/salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Zeng H, Guo J, Zhang Y, Xing D, Yang F, Huang J, Huang S, Shao L. Green glycerol tailored composite membranes with boosted nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Facile and Novel Fabrication of High-Performance Loose Nanofiltration Membranes for Textile Wastewater Recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
N-methylglucamine modified poly (vinyl chloride) support assists the construction of uniform dually charged nanofiltration membrane via interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Tight UF membranes with ultrahigh water flux prepared by in-situ growing ZIF particles in NIPS process for greatly enhanced dye removal efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Cao Y, Wan Y, Chen C, Luo J. Preparation of acid-resistant nanofiltration membrane with dually charged separation layer for enhanced salts removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Luo X, Feng S, Zhang Z, Liu L, Wu L, Zhang C. Fabrication of nanofiltration membranes via covalent layer-by-layer self-assembly for charged organic pollutants treatment. JOURNAL OF MATERIALS SCIENCE 2022; 57:9002-9017. [DOI: 10.1007/s10853-022-07218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 01/15/2025]
|
22
|
Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, Mamba BB, Li F, Ma J, Shao L. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153051. [PMID: 35032526 DOI: 10.1016/j.scitotenv.2022.153051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The extraction of valuable target ions through monovalent cation exchange membranes (MCEMs) has been increasingly attracting in modern energy and environmental fields. However, the separation performance of MCEMs in terms of the permselectivity and cation fluxes, is typically restricted by membrane architecture and applied materials. Recently, mussel-inspired surface modification methods have been deployed in new membrane fabrications with special surface characteristics and functions. Herein, a facile layer-by-layer assembly method was designed to construct a series of de novo positively-charged tannic acid/polyethyleneimine (TA/PEI) membranes containing a negatively-charged support membrane and a TA/PEI selective layer. Notably, the peculiar support membrane with a much dense structure and abundant cation exchange groups can enable our TA/PEI membranes to possess high total cation fluxes. The selective layer with vast positive charges ensures mussel-inspired TA/PEI assembled positively-charged membranes to have a high permselectivity. Most importantly, compared with the separation performance of the state-of-the-art MCEMs, the superior separation performance of our developed new MCEMs at 5 mA·cm-2 and 10 mA·cm-2 is beyond the current "Upper Bound" plot between Na+ flux and the permselectivity (Na+/Mg2+), which opens new avenues for the construction of MCEMs. Furthermore, high purity of Li+ (95.37%) can be obtained through deploying mussel-inspired TA/PEI assembled positively-charged membranes with high permselectivity of Li+/Mg2+ (13.72), proving its great potentials in the field of resource recovery towards sustainability.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jikun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Zhang
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Richard Motlhaletsi Moutloali
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Feiran Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin 150001, PR China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Department of Chemical Engineering, Zhengzhou University, Zhengzhou 450002, China..
| |
Collapse
|
23
|
Bai L, Wang M, Li Z, Yang H, Peng Z, Zhao Y. Fabrication of a novel composite nanofiltration membrane with excellent acid resistance and water flux via the selective bond dissociation method. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Xu N, Han J, Feng Y, Xiao C. Polyacrylonitrile/poly(acrylic acid) layer-by-layer superimposed composite nanofiber membrane with low iron ion leaching-out and stable methylene blue-removing performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Guo BB, Zhu CY, Xu ZK. Surface and Interface Engineering for Advanced Nanofiltration Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Nature-inspired green method decorated MXene-based composite membrane for high-efficiency oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
29
|
Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Zhang F, Tan L, Gong L, Liu S, Fang W, Wang Z, Gao S, Jin J. Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Dutta S, Srivastava SK, Gupta B, Gupta AK. Hollow Polyaniline Microsphere/MnO 2/Fe 3O 4 Nanocomposites in Adsorptive Removal of Toxic Dyes from Contaminated Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54324-54338. [PMID: 34727690 DOI: 10.1021/acsami.1c15096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dyes are considered as recalcitrant compounds and are not easily removed through conventional water treatment processes. The present study demonstrated the fabrication of polyaniline hollow microsphere (PNHM)/MnO2/Fe3O4 composites by in situ deposition of MnO2 and Fe3O4 nanoparticles on the surface of PNHM. The physicochemical characteristics and adsorption behavior of the prepared PNHM/MnO2/Fe3O4 composites towards the removal of toxic methyl green (MG) and Congo red (CR) dyes have been investigated. The characterization study revealed the successful synthesis of the prepared PNHM/MnO2/Fe3O4 adsorbent with a high Brunauer-Emmett-Teller (BET) surface area of 191.79 m2/g. The batch adsorption study showed about 88 and 98% adsorption efficiencies for MG and CR dyes, respectively, at an optimum dose of 1 g/L of PNHM/MnO2/Fe3O4 at pH ∼6.75 at room temperature (303 ± 3 K). The adsorption phenomena of MG and CR dyes were well described by the Elovich and pseudo-second-order kinetics, respectively, and Freundlich isotherm model. The thermodynamics study shows that the adsorption reactions were endothermic and spontaneous in nature. The maximum adsorption capacity (Qmax) for MG and CR dyes was observed as 1142.13 and 599.49 mg/g, respectively. The responsible adsorption mechanisms involved in dye removal were electrostatic interaction, ion exchange, and the formation of the covalent bonds. The coexisting ion study revealed that the presence of phosphate co-ion considerably reduced the CR dye removal efficiency. However, the desorption-regeneration study demonstrated the successful reuse of the spent PNHM/MnO2/Fe3O4 material for the adsorption of MG and CR dyes for several cycles. Given the aforementioned findings, the PNHM/MnO2/Fe3O4 nanocomposites could be considered as a promising adsorbent for the remediation of dye-contaminated water.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
32
|
Construction of Loose Positively Charged NF Membrane by Layer-by-Layer Grafting of Polyphenol and Polyethyleneimine on the PES/Fe Substrate for Dye/Salt Separation. MEMBRANES 2021; 11:membranes11090699. [PMID: 34564516 PMCID: PMC8469134 DOI: 10.3390/membranes11090699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The effective separation of dyes and inorganic salts is highly desirable for recycling inorganic salts and water resource in printing and dyeing wastewater treatment. In this work, tannic acid (TA) and polyethyleneimine (PEI) were grafted on the PES/Fe ultrafiltration membrane via the coordination assembly and Michael addition strategy to fabricated a loose nanofiltration membrane (LNM). The effect of PEI concentration on membrane morphologies and properties was systematically investigated. The membrane surface becomes more hydrophilic and transforms into positive charge after the PEI grafting. The optimized PES/Fe-TA-PEI membrane possesses high pure water flux (124.6 L·m−2·h−1) and excellent dye rejections (98.5%, 99.8%, 98.4%, and 86.4% for Congo red, Eriochrome black T, Alcian blue 8GX, and Bromophenol blue, respectively) under 2 bar operation pressure. Meanwhile, the LNM showed a high Alcian blue 8GX rejection (>98.4%) and low NaCl rejection (<5.3%) for the dye/salt mixed solutions separation. Moreover, the PES/Fe-TA-PEI LNM exhibited good antifouling performance and long-term performance stability. These results reveal that such LNM shows great potential for effective fractionation of dyes and salts and recycling of textile wastewater.
Collapse
|