1
|
Mahofa E, El Meragawi S, Vilayatteri MA, Dwivedi S, Panda MR, Jovanović P, van Duin ACT, Freeman B, Tanksale A, Majumder M. Manipulating Intrapore Energy Barriers in Graphene Oxide Nanochannels for Targeted Removal of Short-Chain PFAS. ACS NANO 2025; 19:14742-14755. [PMID: 40195029 DOI: 10.1021/acsnano.4c15413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Removal of per- and polyfluoroalkyl substances (PFAS) from water has become a research topic of interest in recent times. However, it is very challenging to remove short-chain (
Collapse
Affiliation(s)
- Eubert Mahofa
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| | - Sally El Meragawi
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| | - Muhammed A Vilayatteri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| | - Swarit Dwivedi
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| | - Petar Jovanović
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benny Freeman
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Akshat Tanksale
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing of 2D Materials, Monash University, 20 Research Way, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Gogoi M, Goswami R, Borah AR, Phukan L, Hazarika S. Enantioselective Membranes for Pharmaceutical Applications: A Comprehensive Review. Biomed Chromatogr 2025; 39:e6043. [PMID: 39557451 DOI: 10.1002/bmc.6043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
In the past decade, significant advances have been made in the field of chiral separation, which is crucial for biological and pharmaceutical applications. Enantioselective membranes have emerged as a promising platform for efficient chiral separation due to their unique properties such as large surface area, tunable pore size, and high selectivity. These membranes are particularly effective in separating enantiomers because of their ability to facilitate selective interactions between the membrane material and chiral molecules. This article provides a comprehensive review of the recent progress in enantioselective membranes for chiral separation. Key topics discussed include various membrane fabrication methods, functionalization approaches, and the characterization of membrane properties, specifically in the context of applications like drug delivery, biomolecule separation, and pharmaceutical analysis. Furthermore, the review addresses the current challenges, potential solutions, and future prospects in this rapidly evolving field, highlighting the direction for upcoming research.
Collapse
Affiliation(s)
- Monti Gogoi
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rajiv Goswami
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lachit Phukan
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
5
|
Nemati S, Hosseinpour Y, Alavi A, Nojavan S. Maltodextrin-modified graphene oxide composite membrane applied to the enantioseparation of amino acids. J Chromatogr A 2024; 1732:465217. [PMID: 39106666 DOI: 10.1016/j.chroma.2024.465217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The separation of enantiomers using chiral membranes has garnered much research interest. In this study, the enantioseparation of amino acids using chiral membranes, namely graphene oxide-ethylenediamine-maltodextrin (GO-EDA-MD) and GO-EDA-hydroxypropyl-MD (GO-EDA-HP-MD), was evaluated. HP-MD and MD were investigated as chiral selectors due to their inherent chirality. Various characterization techniques, including atomic force microscopy, Fourier transform infrared spectrometry, field emission scanning electron microscopy, water contact angle analysis, tensile properties, and thermal gravimetric analysis were employed to analyze the membrane structures. The evaluation of enantioseparation performance was conducted by employing tryptophan, phenylalanine, and tyrosine enantiomers. Optimal conditions for enantiomer separation were achived using a GO-EDA-HP-MD chiral composite (1.75 wt%), a feed concentration of 10 mg/L for each enantiomer, a separation time of 15 min, and a membrane effective surface area of 1.0 cm2. Also, the bovine serum albumin rejection was 90.0 %, and the water flux reached 37.1 L m-2 h-1. The highest enantiomeric excess (ee.%) values were 46.33 %, 76.97 %, and 73.04 % for tryptophan, phenylalanine, and tyrosine, respectively. The impact of voltage on ee.% and substance flux was also explored. This membrane was able to separate enantiomers successfully.
Collapse
Affiliation(s)
- Sara Nemati
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Yasaman Hosseinpour
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Ali Alavi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
7
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
8
|
Ma M, Zhang Y, Huang F, Xu Y. Chiral hydroxyl-controlled covalent organic framework-modified stationary phase for chromatographic enantioseparation. Mikrochim Acta 2024; 191:203. [PMID: 38492084 DOI: 10.1007/s00604-024-06289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-β-cyclodextrin (UB-β-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-β-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-β-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-β-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-β-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yanli Zhang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China.
| |
Collapse
|
9
|
Zheng C, Wu X, Liu M, Lan Y, Liu Q, Cai E, Liao Z, Shen J. Photothermal-enhanced in situ supramolecular hydrogel promotes bacteria-infected wound healing in diabetes. SMART MEDICINE 2024; 3:e20230047. [PMID: 39188513 PMCID: PMC11236056 DOI: 10.1002/smmd.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 08/28/2024]
Abstract
Bacterial infection can impede the healing of chronic wounds, particularly diabetic wounds. The high-sugar environment of diabetic wounds creates a favorable condition for bacterial growth, posing a challenge to wound healing. In clinical treatment, the irregular shape of the wound and the poor mechanical properties of traditional gel adjuvants make them susceptible to mechanical shear and compression, leading to morphological changes and fractures, and difficult to adapt to irregular wounds. Traditional gel adjuvants are prepared in advance, while in situ gel is formed at the site of administration after drug delivery in a liquid state, which can better fit the shape of the wound. Therefore, this study developed an in situ HA/GCA/Fe2+-GOx gel using a photothermal-enhanced Fenton reaction to promote the generation of hydroxyl radicals (·OH). The generation of ·OH has an antibacterial effect while promoting the formation of the gel, achieving a dual effect. The addition of double-bonded adamantane (Ada) interacts with the host-guest effect of graphene oxide and the double-bond polymerization of HAMA gel, making the entire gel system more complete. At the same time, the storage modulus (G') of the gel increased from 130 to 330 Pa, enhancing the mechanical properties of the gel. This enables the gel to have better injectability and self-healing effects. The addition of GOx can consume glucose at the wound site, providing a good microenvironment for the repair of diabetic wounds. The gel has good biocompatibility and in a diabetic rat wound model infected with S. aureus, it can effectively kill bacteria at the wound site and promote wound repair. Meanwhile, the inflammation of wounds treated with HA/GCA/Fe2+-GOx + NIR was lighter compared to untreated wounds. Therefore, this study provides a promising strategy for treating bacterial-infected diabetic wounds.
Collapse
Affiliation(s)
- Chen Zheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Xuan Wu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Ming Liu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yulong Lan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Qian Liu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Erya Cai
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Jianliang Shen
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
10
|
Ji Y, Dong S, Huang Y, Yue C, Zhu H, Wu D, Zhao J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. MEMBRANES 2024; 14:32. [PMID: 38392659 PMCID: PMC10890694 DOI: 10.3390/membranes14020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.
Collapse
Affiliation(s)
- Yufan Ji
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Shurui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiping Huang
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Changhai Yue
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Hao Zhu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Dan Wu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
12
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
13
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
14
|
Wang F, Pizzi D, Lu Y, He K, Thurecht KJ, Hill MR, Marriott PJ, Banaszak Holl MM, Kempe K, Wang H. A Homochiral Poly(2-oxazoline)-based Membrane for Efficient Enantioselective Separation. Angew Chem Int Ed Engl 2023; 62:e202212139. [PMID: 36577702 PMCID: PMC10107185 DOI: 10.1002/anie.202212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32 mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - David Pizzi
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University3052ParkvilleVICAustralia
| | - Yizhihao Lu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences100190BeijingP. R. China
| | - Kaiqiang He
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and NanotechnologyARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of Queensland4072St. LuciaQLDAustralia
| | - Matthew R. Hill
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | | | - Mark M. Banaszak Holl
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Kristian Kempe
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University3052ParkvilleVICAustralia
- Materials Science and EngineeringMonash University3800ClaytonVictoriaAustralia
| | - Huanting Wang
- Department of Chemical and Biological EngineeringMonash University3800ClaytonVictoriaAustralia
| |
Collapse
|
15
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Li X, Jiao C, Zhang X, Li X, Song X, Zhang Z, Jiang H. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Hu Q, Zhu C, Yan W, Wang Y, Cui S, Chen X, Liu B. Coordination-Assistant Chiral Agent Anchoring on Amphiphilic Graphitic Phase Carbon Nitride Membrane for Multiple Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50235-50245. [PMID: 36315245 DOI: 10.1021/acsami.2c15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Membranes composed of two-dimensional (2D) materials suffer from low stability and structural swelling and are usually restricted to applications in aqueous systems. Among various 2D materials, graphitic phase carbon nitride (GCN, g-C3N4) has shown great application potential owing to its structural tunability. Herein, we develop a coordination-assisted strategy to regulate the GCN layer spacing and chemical environment via copper ion (Cu2+) coordination-assisted intercalation of enantiopure (1S,2S)-(-)-1,2-diphenyl-1,2-ethanediamine (DPE) between GCN nanosheets. The obtained GCN-Cu-DPE membrane is continuous and intact, free of cracks and pinholes, stable under acidic and alkaline conditions, and exhibits water permeability above 215 L m-2 h-1 bar-1 and a high rejection rate to dye molecules. The membrane is amphiphilicity and thus allows both polar solvent (water) and nonpolar solvent (hexane) to freely pass through. Remarkably, the permeation rate is proportional to the viscosity of the solvent. Benefiting from the chiral space between nanosheets, the GCN-Cu-DPE membrane shows selective permeation of aspartic acid racemate in aqueous systems and limonene racemate in the organic phase. Our work demonstrates a general and promising strategy for chiral membrane fabrication toward high-value-added chiral separation, especially in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qing Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Chaofeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wen Yan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Songlin Cui
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Xihai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Bo Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
19
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Enantioselective nanofiltration using predictive process modeling: Bridging the gap between materials development and process requirements. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
|
22
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang X, Wu J, Liu X, Qiu X, Cao L, Ji Y. Enhanced Chiral Recognition Abilities of Cyclodextrin Covalent Organic Frameworks via Chiral/Achiral Functional Modification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25928-25936. [PMID: 35609238 DOI: 10.1021/acsami.2c05572] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Cyclodextrin covalent organic frameworks (β-CD COFs) show great potential in enantioseparation due to their uniformly distributed chiral recognition sites and good chemical stability. The hydroxyl and amino groups of β-CD COFs enable facile post-modification to introduce the desired functionality into the frameworks. In this study, we perform post-modification of β-CD COFBPDA with 1,4-butane sultone and [(3R,4R)-4-acetyloxy-2,5-dioxooxolan-3-yl] acetate to construct two kinds of novel functional β-CD COFs. The capillary columns prepared with these two functional β-CD COFs separated chiral dihydropyridines and fluoroquinolones with excellent selectivity and repeatability in capillary electrochromatography, while β-CD COFBPDA-modified capillary columns did not present the chiral recognition ability for these drugs. The mechanism of chiral recognition and the enhanced enantioselectivity of functional β-CD COFs were further demonstrated by molecular docking simulation. The divergent chiral separation performances of β-CD COFs suggest that the introduction of functional groups enables the modification of β-CD COF properties and tuning of its chiral recognition abilities for the diversity of enantioseparation.
Collapse
Affiliation(s)
- Xuehua Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiaqi Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xue Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xin Qiu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Liqin Cao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
24
|
Bai X, Ke J, Qiu X, Liu H, Ji Y, Chen J. Ethylenediamine-β-cyclodextrin modified graphene oxide nanocomposite membranes for highly efficient chiral separation of tryptophan and propranolol enantiomers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Liu W, Li Y, Xu L, Wang G, Ma X, Wang Y. Biomimic Heterostructured Graphene Oxide Membranes via Supramolecular-Mediated Intercalation Assembly for Efficient Water Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200461. [PMID: 35384313 DOI: 10.1002/smll.202200461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) lamellar membranes have attracted increasing attention for efficient water purification. However, the low water-permeability, structural failure in aqua and high production cost have significantly restricted their practical large-scale applications. Inspired by the structures of glomerular filtration barrier (GFB) and nacre, a high-performance biomimic membrane via supramolecular-mediated intercalation assembly is reported, where rod-shaped cyclodextrin (CD) functionalized attapulgite (ATP-CD) is intercalated into CD-modified graphene oxide (GO-CD) lamellar channels, followed by locking adjacent ATP-CD and GO-CD through tannic acid (TA) and CD supramolecular networks. The formed GFB-like heterostructure endows the membrane with excellent water transport capability and the bionic "brick and mortar" nacre configuration boosts its anti-swelling stability simultaneously. The heterostructured GO membranes (≈100 nm) fabricated in this way exhibit a good water permeability of 55.6 L m-2 h-1 bar-1 (≈20-fold higher than GO membrane) maintaining excellent dye rejection of >99% during 480 h immersion. Given the low-cost materials (ATP, CD, and TA) and the modification generality, this economic strategy can hopefully achieve large-scale membrane fabrication and afford high applicability, which promotes the practical engineering applications of such 2D material membranes.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Linlin Xu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Qinghai, 810007, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Retarded transport properties of graphene oxide based chiral separation membranes modified with dipeptide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Luo H, Bai X, Liu H, Qiu X, Chen J, Ji Y. β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|