1
|
Mahdavi H, Olorunyomi JF, Eden NT, Doherty CM, Acharya D, Smith SJ, Mulet X, Hill MR. Design and Development of a Self-Supporting ZIF-62 Glass MOF Membrane with Enhanced Molecular Sieving for High H 2 Separation Efficiency. ACS OMEGA 2025; 10:7441-7451. [PMID: 40028122 PMCID: PMC11865976 DOI: 10.1021/acsomega.5c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The purpose of this study was to design and develop a self-supporting glass MOF membrane (GMM) including its design, fabrication under different heat treatment temperatures, analysis of its physical-chemical properties, and assessment of its separation performance. Glass MOFs preserve metal-ligand bonding structures similar to their crystalline counterparts, providing intrinsic gas separation properties alongside the benefits of amorphous materials, including reduced grain boundaries and ease of processing. In this work, ZIF-62 was melted and then cooled to fabricate GMMs using vitrification to enhance molecular sieving. This study systematically examines the impact of varying thermal treatment temperatures (400-475 °C) on the physical and chemical transformations of GMMs, revealing their effects on the porosity, defect formation, and molecular sieving performance through advanced characterization techniques (e.g., solid-state nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy (XPS), He pycnometry, and positron annihilation lifetime spectroscopy (PALS)). The optimal GMM exhibits an impressive separation performance, particularly for H2 separation. The GMM at 4 bar and 25 °C exhibited He, H2, CO2, N2, and CH4 gas permeations of 576.37, 509.23, 146.07, 3.45, and 2.28 barrer, respectively. The ideal selectivities of H2/CH4, CO2/N2, CO2/CH4, H2/N2, and H2/CO2 gas pairs were 223.47, 42.37, 64.10, 147.71, and 3.49, respectively, which significantly exceed earlier reported values for ZIF-62 membranes, demonstrating the significant potential for GMMs as high-performance molecular sieve membranes, particularly for H2 separation. This work by optimizing the vitrification process through systematic temperature control highlights GMM's ability to achieve high selectivity and permeability, positioning it as a promising candidate for industrial gas separation applications.
Collapse
Affiliation(s)
- Hamidreza Mahdavi
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Joseph F. Olorunyomi
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Applied Chemistry
and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nathan T. Eden
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Cara M. Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Durga Acharya
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Stefan J.D. Smith
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Applied Chemistry
and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew R. Hill
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Sun Y. UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. MEMBRANES 2025; 15:8. [PMID: 39852249 PMCID: PMC11767111 DOI: 10.3390/membranes15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Metal-organic frameworks (MOFs) have been recognized as promising materials for membrane-based separation technologies due to their exceptional porosity, structural tunability, and chemical stability. This review presents a comprehensive discussion of the advancements in structure engineering and design strategies that have been employed to optimize UiO-66 membranes for enhanced separation performance. Various synthesis methods for UiO-66 membranes are explored, with a focus on modulated approaches that incorporate different modulators to fine-tune nucleation rates and crystallization processes. The influence of preferred orientation, membrane thickness, pore size, pore surface chemistry, and hierarchical structures on the separation performance is concluded. By providing a consolidated overview of current research efforts and future directions in UiO-66 membrane development, this review aims to inspire further advancements in the field of separation technologies.
Collapse
Affiliation(s)
- Yanwei Sun
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Yan T, Sharif A, Zhang Z, Wang H, Yang J, He C, Lu J, Zhou L, He G. Asymmetric Pore Windows in Pillar-Layered Metal-Organic Framework Membranes for H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65456-65468. [PMID: 39546618 DOI: 10.1021/acsami.4c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In this study, a novel ultramicroporous pillar-layered Ni-LAP-NH2 [Ni2(l-asp)2(Pz-NH2)] (l-asp = l-aspartic acid, Pz-NH2 = aminopyrazine) membranes on porous α-Al2O3 tubes with high performance and good thermal stability was first fabricated using isostructural Ni-LAP[Ni2(l-asp)2(Pz)] (Pz = pyrazine) crystals as seeds. Utilizing the principle of reticular chemistry, here, we introduced the active amino side group into the Ni-LAP frameworks by replacing the pillar-layered ligand Pz with Pz -NH2 while maintaining the original Ni-LAP small pore size, and the amino side group induced a "steric hindrance" effect and the physical adsorption affinity, which synergistically delayed CO2 penetration. It was found that the preferential (111) orientation Ni-LAP-NH2 membrane (Z10) exhibited a high H2/CO2 separation performance with a separation factor of 41.7 and H2 permeance of 9.08 × 10-8 mol·m-2·s-1·Pa-1 under optimal conditions. These MOF materials demonstrated potential for industrial H2 purification due to their tunable pore structure and remarkable stability. Moreover, this strategy offers an effective approach to tailoring pillar-layered MOF membranes with targeted molecular sieving ability.
Collapse
Affiliation(s)
- Tao Yan
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Xiangtan Electrochemical Scientific Co., Ltd., Xiangtan 411100, China
| | - Asad Sharif
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hongbo Wang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liang Zhou
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
4
|
Bi W, Han L, Liu Y, Li L. The Key to MOF Membrane Fabrication and Application: the Trade-off between Crystallization and Film Formation. Chemistry 2024; 30:e202401868. [PMID: 39136607 DOI: 10.1002/chem.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.
Collapse
Affiliation(s)
- Wendie Bi
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Linxuan Han
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yutao Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030024, China
| |
Collapse
|
5
|
Seong J, Nam KJ, An H, Yu S, Shin JH, Kim KC, Kang SG, Reddy KSSVP, Hong DY, Kim SJ, Lee JS. Highly Permeable Mixed Matrix Membranes for Gas Separation via Dual Defect-Engineered Zeolitic Imidazolate Framework-8. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401594. [PMID: 38860544 DOI: 10.1002/smll.202401594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Defect engineering of metal-organic frameworks (MOFs) is a promising strategy for tailoring the interfacial characteristics between MOFs and polymers, aiming to create high-performance mixed matrix membranes (MMMs). This study introduces a new approach using dual defective alkylamine (AA)-modulated zeolitic imidazolate framework-8 (DAZIF-8), to develop high-flux MMMs. Tributylamine (TBA) and triethylamine (TEA) monodentate ligands coordinate with zinc ions in varying compositions. A mixture of Zn(CH3COO)2·2H2O:2-methylimidazole (Mim):AA in a 1:1.75:5 molar ratio facilitates high-yield coordination between Zn and multiple organic ligands, including Zn-Mim, Zn-TEA, and Zn-TBA (>80%). Remarkably, DAZIF-8 containing 3 mol% TBA and 2 mol% TEA exhibits exceptional characteristics, such as a Brunauer-Emmett-Teller surface area of 1745 m2 g-1 and enhanced framework rigidity. Furthermore, dual Zn-AA coordination sites on the framework's outer surface enhance compatibility with the polyimide (PI) matrix through electron donor-acceptor interactions, enabling the fabrication of high-loading MMMs with excellent mechanical durability. Importantly, the PI/DAZIF-8 (60/40 w/w) MMM demonstrates an unprecedented 759% enhancement in ethylene (C2H4) permeability (281 Barrer) with a moderate ethylene/ethane (C2H4/C2H6) selectivity of 2.95 compared to the PI, surpassing the polymeric upper limit for C2H4/C2H6 separation.
Collapse
Affiliation(s)
- Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ju Ho Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Gu Kang
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - K S S V Prasad Reddy
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Do-Young Hong
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
6
|
Sun Y, Liu Y. Oriented Metal-Organic Framework Membranes for Molecular Separations. Chemistry 2024; 30:e202304162. [PMID: 38695867 DOI: 10.1002/chem.202304162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 06/15/2024]
Abstract
Metal-organic framework (MOF) membranes, which are recognized as state-of-the-art platforms applied in various separation processes, have attracted widespread attention. Nonetheless, to overcome the trade-off between permeability and selectivity, which is crucial for achieving efficient separation, it is important to rationally design and manipulate MOF membrane structure. Given remarkable advances in the past decade, a timely summary of recent advancement in this field has become indispensable. This review introduces major strategies for fabricating oriented MOF membranes, including in situ growth, contra-diffusion method, interface-assisted approach, and laminated nanosheet assembly. New insights into their updated progress and potential are elucidated. Of particular note, recent development and emerging applications of oriented MOF membranes, illustrating their potential to address environmental and energy challenges, are highlighted. Finally, remaining challenges facing their bath production and practical applications are discussed.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Wang C, Yan J, Chen S, Liu Y. High-Valence Metal-Organic Framework Materials Constructed from Metal-Oxo Clusters: Opportunities and Challenges. Chempluschem 2023; 88:e202200462. [PMID: 36790800 DOI: 10.1002/cplu.202200462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Metal-organic framework (MOF), which possesses stable framework structure constructed by highly connected metal-oxo cluster nodes and organic linkers, has shown great promise in gas storage, adsorption, and separation, owing to the high surface areas, tunable pore aperture, and rich functional groups. In this review article, we summarized recent progress made in synthesizing high-valence MOF (e. g., UiO-66, MIL-125, PCN-22, and MIP-207) with metal-oxo cluster as metal source. Of particular note, recent breakthroughs in the preparation of UiO-66 and MIL-125 membranes with the corresponding Zr6 -oxo and Ti8 -oxo cluster sources (e. g., Zr6 O4 (OH)4 (OAc)12 and Ti8 O8 (OOCR)16 clusters) possessing superior separation performance were highlighted. In the end, an outlook on the preparation of versatile high-valence MOF membranes with the corresponding metal-oxo clusters as metal sources was highlighted.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology Linggong Road 2 Ganjingzi District, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Sun Y, Yan J, Gao Y, Ji T, Chen S, Wang C, Lu P, Li Y, Liu Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-Organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202216697. [PMID: 36790362 DOI: 10.1002/anie.202216697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2 /N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2 -UiO-66 membrane showing superb H2 /CO2 separation performance with H2 permeance of 1230 GPU and H2 /CO2 selectivity of 41.3, was prepared with the above synthetic procedure.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China.,School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
9
|
Cheng X, Liao Y, Lei Z, Li J, Fan X, Xiao X. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Yan J, Ji T, Sun Y, Meng S, Wang C, Liu Y. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sun Y, Liu L, Ji T, Yan J, Liu Y. Complete twin suppression in oriented NH 2-MIL-125 film via facile coordination modulation. Chem Commun (Camb) 2022; 58:8822-8825. [PMID: 35848496 DOI: 10.1039/d2cc03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complete suppression of twin crystal formation in oriented metal-organic framework (MOF) film remains a great challenge. In this study, we successfully avoided the twin generation in c-oriented NH2-MIL-125 film through simple competitive metal ion-based coordination modulation. Simultaneously, relevant mechanism associated with twin suppression was elucidated.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Liangliang Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China. .,Dalian Key Laboratory of Membrane Materials and Membrane Processes Dalian University of Technology Dalian, 116024, China
| |
Collapse
|
12
|
Ultrathin Ni-Co nanosheets with disparate-CO2-affinity nanodomains in membranes to improve gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Yan J, Sun Y, Ji T, Zhang C, Liu L, Liu Y. Room-temperature synthesis of defect-engineered Zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Wang C, Sun Y, Li L, Krishna R, Ji T, Chen S, Yan J, Liu Y. Titanium‐Oxo Cluster Assisted Fabrication of a Defect‐Rich Ti‐MOF Membrane Showing Versatile Gas‐Separation Performance. Angew Chem Int Ed Engl 2022; 61:e202203663. [DOI: 10.1002/anie.202203663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Wang
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| | - Yanwei Sun
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| | - Libo Li
- College of Chemistry and Chemical Engineering Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan 030024 China
| | - Rajamani Krishna
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam, Science Park 904 1098 XH Amsterdam The Netherlands
| | - Taotao Ji
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| | - Sixing Chen
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| | - Jiahui Yan
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| | - Yi Liu
- School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes Dalian University of Technology Linggong Road 2, Ganjingzi District Dalian 116024 China
| |
Collapse
|
15
|
Li B, You X, Wu H, Li R, Xiao K, Ren Y, Wang H, Song S, Wang Y, Pu Y, Huang X, Jiang Z. A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Wang C, Sun Y, Li L, Krishna R, Ji T, Chen S, Yan J, Liu Y. Titanium‐Oxo Cluster Assisted Fabrication of a Defect‐Rich Ti‐MOF Membrane Showing Versatile Gas‐Separation Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering CHINA
| | - Yanwei Sun
- Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering CHINA
| | - Libo Li
- Taiyuan University of Technology College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization CHINA
| | - Rajamani Krishna
- University of Amsterdam: Universiteit van Amsterdam Van ‘t Hoff Institute for Molecular Sciences CHINA
| | - Taotao Ji
- Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering CHINA
| | - Sixing Chen
- Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering CHINA
| | - Jiahui Yan
- Dalian University of Technology State Key Laboratory of Fine Chemicals, School of Chemical Engineering CHINA
| | - Yi Liu
- Dalian University of Technology School of Chemical Engineering Linggong Road 2 116024 Dalian CHINA
| |
Collapse
|
17
|
Wei R, Liu X, Zhou Z, Chen C, Yuan Y, Li Z, Li X, Dong X, Lu D, Han Y, Lai Z. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. SCIENCE ADVANCES 2022; 8:eabm6741. [PMID: 35171662 PMCID: PMC8849294 DOI: 10.1126/sciadv.abm6741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
Zeolitic imidazolate framework 8 (ZIF-8) is effective for C3H6/C3H8 separation because of the "sieving effect" of a six-membered (6-M) window. Here, we demonstrate that ZIF-8 is a versatile material that could effectively separate C2H4 from C2H6 via its 4-M window along the <100> direction. We established a facile and environmentally friendly carbon nanotube (CNT)-induced oriented membrane (CNT-OM) approach to fabricate a {100}-oriented ZIF-8 membrane (100-M). In this approach, 2-methyimidazole was anchored onto the CNT surface followed by 3-hour in situ growth in aqueous solution at room temperature. The obtained 100-M, whose 4-M window is aligned along the transport pathway, showed ~3 times higher C2H4/C2H6 selectivity than a randomly oriented membrane. Thus, this work demonstrates that the membrane orientation plays an important role in tuning selectivity toward different gas pairs. Furthermore, 100-M exhibited excellent mechanical stability that could sustain the separation performance after bending at a curvature of ~109 m-1.
Collapse
Affiliation(s)
- Ruicong Wei
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiaowei Liu
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zongyao Zhou
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cailing Chen
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Youyou Yuan
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhen Li
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiang Li
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xinglong Dong
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dongwei Lu
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Corresponding author.
| |
Collapse
|
18
|
Yang Q, Wang Y, Tang X, Zhang Q, Dai S, Peng H, Lin Y, Tian Z, Lu Z, Chen L. Ligand Defect Density Regulation in Metal-Organic Frameworks by Functional Group Engineering on Linkers. NANO LETTERS 2022; 22:838-845. [PMID: 35005972 DOI: 10.1021/acs.nanolett.1c04574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defects in solid materials vitally determine their physicochemical properties; however, facile regulation of the defect density is still a challenge. Herein, we demonstrate that the ligand defect density of metal-organic frameworks (MOFs) with a UiO-66 structural prototype is precisely regulated by tuning the linker groups (X = OMe, Me, H, F). Detailed analyses reveal that the ligand defect concentration is positively correlated with the electronegativity of linker groups, and Ce-UiO-66-F, constructed by F-containing ligands and Ce-oxo nodes, possesses the superior ligand defect density (>25%) and identifiable irregular periodicity. The increase in ligand defect density results in the reduction of the valence state and the coordination number of Ce sites in Ce-UiO-66-X, and this merit further validates the relationship between the defective structure and catalytic performance of CO2 cycloaddition reaction. This facile, efficient, and reliable strategy may also be applicable to precisely constructing the defect density of porous materials in the future.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yinming Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Huaitao Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhiyi Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
19
|
Fabrication of highly (110)-Oriented ZIF-8 membrane at low temperature using nanosheet seed layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|