1
|
Wang Z, Sun X, Liu Q, Xia C, Yin Q, Liu S, Lu X, Chen H. Amino-ionic liquid-assisted highly compatible mixed matrix membranes of ZIF-8 and PIM-1 for efficient CO 2/N 2 separation. Dalton Trans 2025; 54:6281-6289. [PMID: 40130581 DOI: 10.1039/d5dt00335k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Mixed matrix membranes (MMMs), which incorporate metal-organic framework (MOF) nanofillers within a polymer matrix, offer a highly promising solution for CO2 capture and separation. However, poor interfacial compatibility and filler aggregation in MMMs pose significant challenges to enhancing CO2/N2 separation performance. Here, we present a novel approach using amino-ionic liquid modification to optimize MMMs, where the modified AFIL promotes the formation of ZIF-8 with well-defined facets and sharp edges and enhances the compatibility between ZIF-8 particles and PIM-1 polymer matrixes for favorable CO2 affinity and selective CO2 transport. The resulting 10 wt% AFIL@ZIF-8/PIM-1 exhibits exceptional gas separation performance with a CO2 permeability of 7864 ± 262.2 Barrer and a CO2/N2 selectivity of 29.66 ± 1.96. More importantly, the incorporation of AFIL into the ZIF-8 pores significantly enhances the thermal stability and aging resistance of AFIL@ZIF-8/PIM-1 MMMs via structural support and hydrogen bonding interactions. This work provides a practical approach for developing hybrid membranes for CO2/N2 separation, showcasing improved overall performance and strong interfacial compatibility.
Collapse
Affiliation(s)
- Zhaojie Wang
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinle Sun
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qinglong Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Caifeng Xia
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qikang Yin
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Siyuan Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqing Lu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
2
|
Chen YT, Hsien NW, Hsu SW. Plasmonic Nanocrystal-MOF Nanocomposites as Highly Active Photocatalysts and Highly Sensitive Sensors for CO 2 Reduction over a Wide Range of Solar Wavelengths. SMALL METHODS 2025:e2500081. [PMID: 40103495 DOI: 10.1002/smtd.202500081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Plasmonic nanocrystals have the potential to be widely used in green energy-related applications, due to their excellent optical properties and high reactivity over a wide range of solar wavelengths. Another benefit of using plasmonic nanocrystals for optical applications is that these nanocrystals strongly enhance Raman scattering and are therefore widely used in sensors. Recently, nanocomposites of porous materials deposited on plasmonic nanocrystals are demonstrated to enhance chemical reactivity by concentrating reactants on the surface of plasmonic nanocrystals. Here, three different plasmonic nanocrystals producing plasmonic responses within 400-900 nm are used as templates, and MOF-801 (Zr-based MOF) is produced on these nanocrystals as photocatalysts for the CO2 reduction reaction. Using nanocomposites as CO2 reduction reaction photocatalysts, the CO2 conversion rate can reach >50% within 30 min. The CO2 reduction reactivity of nanocomposites can be improved by the composition and morphology of plasmonic nanocrystals (increased by 40-50%), due to stronger synergistic effects and higher surface area to volume ratio. This report demonstrates that by controlling the plasmonic responses of nanocrystals, it is possible to realize photocatalysts that can be used for CO2 reduction reactions over a wide range of solar wavelengths.
Collapse
Affiliation(s)
- Yen-Teng Chen
- Department of Chemical Engineering, National Cheng Kung University, Taiwan, No. 1 University Road, East Dist., Tainan City, 70101, Taiwan, ROC
| | - Nai-Wen Hsien
- Department of Chemical Engineering, National Cheng Kung University, Taiwan, No. 1 University Road, East Dist., Tainan City, 70101, Taiwan, ROC
| | - Su-Wen Hsu
- Department of Chemical Engineering, National Cheng Kung University, Taiwan, No. 1 University Road, East Dist., Tainan City, 70101, Taiwan, ROC
| |
Collapse
|
3
|
Azizi K, Shahhosseini S, Esfahani HJ. Synthesis and characterization of advanced Ad-UiO-66@NGO composite for efficient CO 2 capture and CO 2/N 2 adsorption selectivity. ENVIRONMENTAL RESEARCH 2025; 268:120819. [PMID: 39800291 DOI: 10.1016/j.envres.2025.120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO2 adsorption capacity of the composite and improve its CO2/N2 separation selectivity. The samples were characterized using XRD, FT-IR, TGA, FE-SEM, and nitrogen adsorption and desorption analysis. The composites' gas uptake capacity toward pure CO2 and N2 adsorption were tested at various temperatures and pressure ranges of 1-9 bar. The resulting amino-defective UiO-66/NGO composite containing 15 wt% of amine-modified GO, displayed the highest CO2 uptake capacity of 15.13 mmol/g at 298 K and 9 bar, representing a remarkable 48% increase compared to the pristine MOF. Furthermore, isotherm and kinetic modeling showed a high level of agreement between the experimental data and the Freundlich and Elovich models, as indicated by their R2 values of 0.998 and 0.973, respectively. Moreover, the thermodynamic evaluation confirmed the exothermic and the spontaneity of the reaction. Furthermore, the adsorbent's CO2/N2 selectivity was evaluated using the ideal adsorbed solution theory, revealing a remarkable selectivity value of 148. The regenerability evaluation through cyclic adsorption experiments showed that the optimized composite maintained CO2 adsorption reversibility at over 81.50% after 55 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Keywan Azizi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Heidar Javdani Esfahani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
5
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Oh NY, Lee SY, Lee J, Min HJ, Hosseini SS, Patel R, Kim JH. Material Aspects of Thin-Film Composite Membranes for CO 2/N 2 Separation: Metal-Organic Frameworks vs. Graphene Oxides vs. Ionic Liquids. Polymers (Basel) 2024; 16:2998. [PMID: 39518207 PMCID: PMC11548788 DOI: 10.3390/polym16212998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability-selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal-organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge. This review discusses recent advancements in TFC membranes for CO2/N2 separation, focusing on material structure, polymer-additive interaction, interface and separation properties. Specifically, we examine membranes operating under dry conditions to clearly assess the impact of additives on membrane properties and performance. Additionally, we provide a perspective on future research directions for designing high-performance membrane materials.
Collapse
Affiliation(s)
- Na Yeong Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - So Youn Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Jiwon Lee
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hyo Jun Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| |
Collapse
|
7
|
Noorani N, Mehrdad A, Shamszadeh P. PVC-based mixed-matrix membranes based on IL@AC/NH 2-MIL-101 nanocomposites for improved CO 2 separation performance. Sci Rep 2024; 14:23843. [PMID: 39394262 PMCID: PMC11470065 DOI: 10.1038/s41598-024-75617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Mixed matrix membranes (MMMs), an important class of organic-inorganic nanocomposite membranes, were developed to overcome some of the limitations of purely polymeric membranes. In this study to improve the separation performance of polyvinyl chloride (PVC) membranes, mixed matrix membranes (MMMs) were prepared from incorporating choline prolinate based ionic liquid (IL) in a the coke/metal-organic framework (MOF) (NH2-MIL-101(Cr)) as a filler in polyvinyl chloride (PVC), which can be viewed as a potential solution to the trade-off problem with polymeric membranes because of the combination of the processing versatility of polymers and the high gas separation capability. Coke/MOF/PVC and IL@AC/MOF/PVC MMMs with different filler loadings of 5, 10, and 15 wt% were prepared using solution casting method and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDX) analyses, and Brunauer-Emmett-Teller (BET) surface area test. The porous structure of MMMs nanocomposites causes to which coke/MOF composite effectively accelerate gas diffusion in the PVC matrix. The permeability date was measured at 288.15, 298.15, 308.15 and 318.15 K and pressure up to 4 bar for CO2 and N2. According to the outcome, the addition of the IL([Cho][Pro]) filler, the permeability of the AC/MOF/PVC MMMs is increased compared to the pure PVC membrane. The MMMs have the highest gas separation efficiency and performance above Robson's Upper Bound from 2008.
Collapse
Affiliation(s)
- Narmin Noorani
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Abbas Mehrdad
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Parastoo Shamszadeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Su W, Xiang Y, Dai Y, Wang Y, Zhong S, Li J. Challenges and recent advances in MOF-based gas separation membranes. Chem Commun (Camb) 2024; 60:7124-7135. [PMID: 38913155 DOI: 10.1039/d4cc02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Membrane-based gas separation, characterized by a small footprint, low energy consumption and no pollution, has gained widespread attention as an environmentally friendly alternative to traditional gas separation. Metal-organic-frameworks (MOFs) are considered to be one of the most promising membrane-based gas separation materials because of their large specific surface area and high porosity. One of the hottest studies at the moment is how to utilize the characteristics of MOFs to prepare higher performance gas separation membranes. This paper provides a review of gas separation membranes used in recent years. Firstly, the synthesis methods of MOFs and MOF membranes are briefly introduced. Then, methods to improve the membrane properties of MOFs are described in detail, and include applications of lamellar MOFs, ionic liquid (IL) spin coating, functionalization of MOFs, defect engineering and mixed fillers. In addition, the challenges of MOF-based gas separation membranes are presented, including pore size, environmental disturbances, plasticization, interfacial compatibility, and so on. Finally, based on the current development status of the MOF membranes, the development prospects of MOF gas separation membranes are discussed. It is hoped to provide reliable and complete ideas for researchers to prepare high-performance gas separation membranes in the future.
Collapse
Affiliation(s)
- Wenjun Su
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Suyue Zhong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
9
|
Mashhadikhan S, Amooghin AE, Masoomi MY, Sanaeepur H, Garcia H. Defect-Engineered Metal-Organic Framework/Polyimide Mixed Matrix Membrane for CO 2 Separation. Chemistry 2024; 30:e202401181. [PMID: 38700479 DOI: 10.1002/chem.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Defect-engineered metal-organic frameworks (MOFs) with outstanding structural and chemical features have become excellent candidates for specific separation applications. The introduction of structural defects in MOFs as an efficient approach to manipulate their functionality provides excellent opportunities for the preparation of MOF-based mixed matrix membranes (MMMs). However, the use of this strategy to adjust the properties and develop the separation performance of gas separation membranes is still in its early stages. Here, a novel defect-engineered MOF (quasi ZrFum or Q-ZrFum) was synthesized via a controlled thermal deligandation process and incorporated into a CO2-philic 6FDA-durene polyimide (PI) matrix to form Q-ZrFum loaded MMMs. Defect-engineered MOFs and fabricated MMMs were investigated regarding their characteristic properties and separation performance. The incorporation of defects into the MOF structure increases the pore size and provides unsaturated active metal sites that positively affect CO2 molecule transport. The interfacial compatibility between the Q-ZrFum particles and the PI matrix increases via the deligandation process, which improves the mechanical strength of Q-ZrFum loaded membranes. MMM containing 5 wt.% of defect-engineered Q-ZrFum exhibits excellent CO2 permeability of 1308 Barrer, which increased by 99 % compared to the pure PI membrane (656 Barrer) at a feed pressure of 2 bar. CO2/CH4 and CO2/N2 selectivity reached 44 and 26.6 which increased by about 70 and 16 %, respectively. This study emphasizes that defect-engineered MOFs can be promising candidates for use as fillers in the preparation of MMMs for the future development of membrane-based gas separation applications.
Collapse
Affiliation(s)
- Samaneh Mashhadikhan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Hermenegildo Garcia
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Universitat Politècnica de València, Av. De los naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
10
|
Mohsenpour Tehrani M, Chehrazi E. Metal-Organic-Frameworks Based Mixed-Matrix Membranes for CO 2 Separation: An Applicable-Conceptual Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32906-32929. [PMID: 38907700 DOI: 10.1021/acsami.4c06914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.
Collapse
Affiliation(s)
- Melika Mohsenpour Tehrani
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
11
|
Liu L, Jiang K, Chen Q, Liu L. On the Diffusion of Ionic Liquids in ILs@ZIF-8 Composite Materials: A Density Functional Theory Study. Molecules 2024; 29:1697. [PMID: 38675516 PMCID: PMC11052405 DOI: 10.3390/molecules29081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, composite materials consisting of ionic liquids (ILs) and metal-organic frameworks (MOFs) have attracted a great deal of attention due to their fantastic properties. Many theoretical studies have been performed on their special structures and gas separation applications. Yet, the mechanism for the diffusion of ILs inside MOF channels still remains unclear. Here, the DFT calculations (e.g., rigid and relaxed potential energy surface, PES, scan) together with frontier orbital analysis, natural charge analysis, and energy decomposition analysis were performed to investigate the diffusion behavior of a typical IL, [C4mim][PF6], into the ZIF-8 SOD cage. The PES profiles indicate that it is quite difficult for the cation [C4min]+ to diffuse into the cage of ZIF-8 through the pristine pores because of the large imidazole steric hindrance, which results in a large energy barrier of ca. 40 kcal·mol-1 at the least. Interestingly, the PES reveals that a successful diffusion could be obtained by thermal contributions, which enlarge the pore size through swing effects at higher temperatures. For example, both [C4mim]+ and [PF6]- could easily diffuse through the channel of the ZIF-8 SOD cage when the pore size was increased to 6.9 Å. Subsequently, electronic structure analyses reveal that the main interactions between [PF6]- or [C4mim]+ and ZIF-8 are the steric repulsion interactions. Finally, the effects of the amounts of [C4mim][PF6] on the ZIF-8 structures were investigated, and the results show that two pairs of [C4mim][PF6] per SOD cage are the most stable in terms of the interaction between energies and structural changes. With these findings, we propose that the high-temperature technique could be employed during the synthesis of IL@MOF membranes, to enrich their family members and their industrial applications.
Collapse
Affiliation(s)
- Longlong Liu
- Center for Computational Chemistry, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (L.L.)
| | - Kun Jiang
- Center for Computational Chemistry, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (L.L.)
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Lei Liu
- Center for Computational Chemistry, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (L.L.)
| |
Collapse
|
12
|
Mizrahi Rodriguez K, Lin S, Wu AX, Storme KR, Joo T, Grosz AF, Roy N, Syar D, Benedetti FM, Smith ZP. Penetrant-induced plasticization in microporous polymer membranes. Chem Soc Rev 2024; 53:2435-2529. [PMID: 38294167 DOI: 10.1039/d3cs00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.
Collapse
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kayla R Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aristotle F Grosz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Hong W, Lian Z, Jiang H, Chen J, Zhang Z, Ni Z. Progress in advanced electrospun membranes for CO 2 capture: Feedstock, design, and trend. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120026. [PMID: 38184873 DOI: 10.1016/j.jenvman.2024.120026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The emission of large amounts of carbon dioxide has caused serious environmental problems and hindered the construction of a green and low-carbon society. Efficient carbon dioxide capture has become an important means to slow down global climate warming and achieve effective utilization of carbon dioxide. Membranes synthesized by electrospinning technology are becoming promising carbon capture materials due to their unique characteristics. This review describes the features of membranes prepared from available raw materials and presents their application performances in carbon capture. The preparation methods of various types of membrane materials with excellent capture performance are summarized, and the effects of electrospinning parameters on electrospun fibers are systematically analyzed. Furthermore, recommendations and expectations for further development of electrospun membranes for carbon capture applications are given. These works provide important references for an in-depth understanding of the development status of electrospun membranes in the field of carbon capture and for expanding future research.
Collapse
Affiliation(s)
- Wenpeng Hong
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Zhengru Lian
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Haifeng Jiang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China.
| | - Jie Chen
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Zongyuan Zhang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| | - Zhenjia Ni
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin, 132012, PR China
| |
Collapse
|
14
|
Mulk WU, Hassan Shah MU, Shah SN, Zhang QJ, Khan AL, Sheikh M, Younas M, Rezakazemi M. Enhancing CO 2 separation from N 2 mixtures using hydrophobic porous supports immobilized with tributyl-tetradecyl-phosphonium chloride [P 44414][Cl]. ENVIRONMENTAL RESEARCH 2023; 237:116879. [PMID: 37579965 DOI: 10.1016/j.envres.2023.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.
Collapse
Affiliation(s)
- Waqad Ul Mulk
- Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology, Taxila, 47080, Rawalpindi, Pakistan; Department of Mechanical Engineering, Universiti Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical, and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Syed Nasir Shah
- Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
| | - Qi-Jun Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Mahdi Sheikh
- Chemical Engineering Department, Escola D'Enginyeria de Barcelona Est (EEBE), Universitat Politécnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besós, 08930 Barcelona, Spain
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical, and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
15
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
16
|
Ferrari HZ, Rodrigues DM, Bernard FL, dos Santos LM, Roux CL, Micoud P, Martin F, Einloft S. A new class of fillers in mixed matrix membranes: use of synthetic silico-metallic mineral particles (SSMMP) as a highly selective component for CO2/N2 separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
17
|
Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Zhang Y, Duan Y, Wu H, Xu H, Pei F, Shi L, Wang J, Yi Q. Ionic-Liquid-Assisted One-Step Construction of Mesoporous Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2491-2499. [PMID: 36745709 DOI: 10.1021/acs.langmuir.2c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synthesis of ionic-mesoporous-metal-organic frameworks (ionic-meso-MOFs) has received considerable interest in the fields of macromolecular adsorption, acid-base catalysis, ionic conductivity, etc.; yet, their synthesis still presents significant difficulties. In this study, functionalized mesoporous MIL-101-ILs (Cr) was facilely constructed via an in situ self-assembly method by using aromatic-anion-functionalized ionic liquids (ILs) as competitive ligands. It has been demonstrated that the inclusion of an aromatic moiety into an IL improves the coordination ability and is advantageous for the anchoring of ILs on Cr3+ via amino-metal coordination. Thus, ionic-meso-MOFs with a specific surface area of 441.9-624.9 cm2/g and an average pore diameter of 5.5 to 8.4 nm were successfully synthesized. Because of the presence of open Lewis acidic metal sites on the MOFs and basic active sites on the ILs, the resulting ionic-meso-MOFs demonstrated both an acid-base cooperative effect and a mesoporous structure, indicating a high potential for acid-base catalysis. This in situ synthesis procedure for ionic mesoporous MOFs offers a simple method for developing and fabricating multifunctional mesoporous materials.
Collapse
Affiliation(s)
- Yuke Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yuanyuan Duan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - Haonan Wu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongxue Xu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Feng Pei
- Hubei Yihua Chemical Technology R&D Co.ltd, Yichang 443208, P. R. China
| | - Lijuan Shi
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jiancheng Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - Qun Yi
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Hubei Yihua Chemical Technology R&D Co.ltd, Yichang 443208, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
19
|
Advances in Metal-Organic Frameworks for Efficient Separation and Purification of Natural Gas. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
20
|
Habib N, Durak Ö, Uzun A, Keskin S. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ali SA, Shah SN, Shah MUH, Younas M. Synthesis and performance evaluation of copper and magnesium-based metal organic framework supported ionic liquid membrane for CO 2/N 2 separation. CHEMOSPHERE 2023; 311:136913. [PMID: 36272624 DOI: 10.1016/j.chemosphere.2022.136913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The CO2 emission is enhancing drastically because of the continuous emission from industries and transport sector. Although the CO2 emission had decreased in the first half of 2020 by 8.8% due to COVID-19 restrictions however, it is again on the rise and it might exceed the estimated level in 2030. The current methods used for CO2 separation have serious operational and environmental constraints. To overcome these problems we have devised a supported ionic liquid membrane (SILM) incorporated with the blend of bimetallic metal-organic framework (MOF) of copper and magnesium ions (CuxMgx) and Trihexyltetradecylphosphonium chloride [P66614] [Cl] ionic liquid (IL). CuxMgx MOF were synthesized and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray analysis (EDX). CuxMgx MOF with [P66614] [Cl] IL were immobilized on a flat sheet of polytetrafluoroethylene (PTFE) membrane. Single gas permeation tests of membranes loaded with 0.2/0.8 wt/wt% MOF/IL solution showed the highest CO2 permeability of 2937 Barrer and CO2/N2 selectivity of 33.26. The performance of SILM was also investigated with different water loadings of (30 wt % and 50 wt %) in addition to MOF/IL solution and at different feed pressure varying from 0.5 to 2 bars. Membranes showed enhancement in CO2 permeability to 3738 and 4628 Barrer whereas CO2/N2 selectivity decreased to 23.53 and 21.8 with membranes loaded with 30 and 50 wt % water, respectively, at a feed pressure of 2 bar. The gas permeation results show that the incorporation of CuxMgx MOF with IL in polymeric membrane enhances the CO2/N2 separation under humid conditions but slightly decreases CO2/N2 selectivity with an increase in feed pressure. The SILM synthesized in this research is highly viable for industrial flue gases because of the incorporation of phosphonium-based ILs that have high thermal stability.
Collapse
Affiliation(s)
- Syed Awais Ali
- Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology, Taxila, 47080, Rawalpindi, Pakistan
| | - Syed Nasir Shah
- Department of Energy Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology Taxila, 47080, Rawalpindi, Pakistan
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, 25120, Peshawar, Pakistan.
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, 25120, Peshawar, Pakistan; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
23
|
Ferraro G, Astorino C, Bartoli M, Martis A, Lettieri S, Pirri CF, Bocchini S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO 2 Separation. MEMBRANES 2022; 12:1262. [PMID: 36557169 PMCID: PMC9786291 DOI: 10.3390/membranes12121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
Membranes with high CO2 solubility are essential for developing a separation technology with low carbon footprint. To this end, physical blend membranes of [BMIM][Ac] and [BMIM][Succ] as Ionic Liquids (ILs) and PIM-1 as the polymer were prepared trying to combine the high permeability properties of PIM-1 with the high CO2 solubility of the chosen ILs. Membranes with a PIM-1/[BMIM][Ac] 4/1 ratio nearly double their CO2 solubility at 0.8 bar (0.86 cm3 (STP)/cm3 cmHg), while other ratios still maintain similar solubilities to PIM-1 (0.47 cm3 (STP)/cm3 cmHg). Moreover, CO2 permeability of PIM-1/[BMIM][Ac] blended membranes were between 1050 and 2090 Barrer for 2/1 and 10/1 ratio, lower than PIM-1 membrane, but still highly permeable. The here presented self-standing and mechanically resistant blend membranes have yet a lower permeability compared to PIM-1 yet an improved CO2 solubility, which eventually will translate in higher CO2/N2 selectivity. These promising preliminary results will allow us to select and optimize the best performing PIM-1/ILs blends to develop outstanding membranes for an improved gas separation technology.
Collapse
Affiliation(s)
- Giuseppe Ferraro
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Dipartimento di Chimica Generale ed Organica Applicata, Università di Torino, Corso Massimo D’Azeglio 48, 10125 Turin, Italy
| | - Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Alberto Martis
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
24
|
Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Li G, Kujawski W, Knozowska K, Kujawa J. Pebax® 2533/PVDF thin film mixed matrix membranes containing MIL-101 (Fe)/GO composite for CO 2 capture. RSC Adv 2022; 12:29124-29136. [PMID: 36320736 PMCID: PMC9555015 DOI: 10.1039/d2ra05095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
MIL-101 (Fe) and MIL-GO composites were successfully synthesized and used as fillers for the preparation of Pebax® 2533/PVDF thin film MMMs for CO2/N2 separation. The defect-free Pebax® 2533/PVDF thin film MMMs were fabricated by casting the Pebax solution containing fillers on the PVDF support. The presence of GO nanosheets in the reaction solution did not destroy the crystal structure of MIL-101 (Fe). However, the BET surface area and total pore volume of MIL-GO decreased dramatically, comparing with MIL-101 (Fe). The incorporation of MIL-GO-2 into Pebax matrix simultaneously increased the CO2 permeability and the CO2/N2 ideal selectivity of Pebax® 2533/PVDF thin film MMMs mainly owing to the porous structure of MIL-GO-2, and the tortuous diffusion pathways created by GO nanosheets. MMMs containing 9.1 wt% MIL-GO-2 exhibited the highest CO2 permeability equal to 303 barrer (1 barrer = 10-10 cm3 (STP) cm cm-2 s-1 cmHg-1) and the highest CO2/N2 ideal selectivity equal to 24. Pebax-based MMMs containing composite fillers showed higher gas separation performance than the Pebax-based MMMs containing single filler (GO or MOFs). Therefore, the synthesis and utilization of 3D@2D composite filler demonstrated great potential in the preparation of high-performance MMMs for gas separation processes.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Katarzyna Knozowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Joanna Kujawa
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| |
Collapse
|
26
|
Niu Z, Luo W, Mu P, Li J. Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Habib N, Durak O, Zeeshan M, Uzun A, Keskin S. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Pan Y, Chen G, Liu J, Li J, Chen X, Zhu H, Liu G, Zhang G, Jin W. PDMS thin-film composite membrane fabricated by ultraviolet crosslinking acryloyloxy-terminated monomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Roohollahi H, Zeinalzadeh H, Kazemian H. Recent Advances in Adsorption and Separation of Methane and Carbon Dioxide Greenhouse Gases Using Metal–Organic Framework-Based Composites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Roohollahi
- Department of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, 7718897111, Iran
| | - Hossein Zeinalzadeh
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Hossein Kazemian
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Department of Chemistry, Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
31
|
Sasikumar B, Arthanareeswaran G. Interfacial design of polysulfone/Cu-BTC membrane using [Bmim][Tf2N] and [Dmim][Cl] RTILs for CO2 separation: Performance assessment for single and mixed gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Budd PM, Foster AB. Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Mao X, Wu Y, Zhang X, Cai Y, Wu B, Chen K, Ji L. Separation of durene and prehnitene by metal-organic framework UiO-66. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Zhang Z, Cao X, Geng C, Sun Y, He Y, Qiao Z, Zhong C. Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Li L, Lin J, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Understanding of Surface Roughness Boosting Segregation Behavior at the ZIF-8/Ionic Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4175-4187. [PMID: 35349284 DOI: 10.1021/acs.langmuir.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we perform a series of classical molecular dynamics simulations for two different [HEMIM][DCA] and [BMIM][BF4] ionic liquids (ILs) on the ZIF-8 surface to explore the interfacial properties of metal-organic framework (MOFs)/IL composite materials at the molecular level. Our simulation results reveal that the interfacial structures of anions and cations on the ZIF-8 surface are dominated by the surface roughness due to the steric hindrance, which is extremely different from the driving mechanism based on solid-ion interactions of ILs on flat solid surfaces. At the ZIF-8/IL interfaces, the open sodalite (SOD) cages of the ZIF-8 surface can block most of the large-size cations outside and significantly boost the segregation behavior of anions and cations. In comparison with the [BMIM][BF4] IL, the [HEMIM][DCA] IL has much more anions entering into the open SOD cages owing to the combination of stronger ZIF-8-[DCA]- interactions and more ordered arrangement of [DCA]- anions on the ZIF-8 surface. Furthermore, more and stronger ZIF-8-[BF4]- hydrogen bonds (HBs) are found to exist on the cage edges than the ZIF-8-[DCA]- HBs, further preventing [BF4]- anions from entering into SOD cages. By more detailed analyses, we find that the hydrophobic interaction has an important influence on the interfacial structures of the side chains of [HEMIM]+ and [BMIM]+ cations, while the π-π stacking interaction plays a key role in determining the interfacial structures of the imidazolium rings of both cations. Our simulation results in this work provide a molecular-level understanding of the underlying driving mechanism on segregation behavior at the ZIF-8/IL interfaces.
Collapse
Affiliation(s)
- Li Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
36
|
Ma Y, He X, Xu S, Yu Y, Zhang C, Meng J, Zeng L, Tang K. Enhanced 2-D MOFs nanosheets/PES-g-PEG mixed matrix membrane for efficient CO2 separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Xiong S, Pan C, Dai G, Liu C, Tan Z, Chen C, Yang S, Ruan X, Tang J, Yu G. Interfacial co-weaving of AO-PIM-1 and ZIF-8 in composite membranes for enhanced H2 purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
A mixed matrix membrane for enhanced CO2/N2 separation via aligning hierarchical porous zeolite with a polyethersulfone based comb-like polymer. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Li T, Wang Y, Wang X, Cheng C, Zhang K, Yang J, Han G, Wang Z, Wang X, Wang L. Desalination Characteristics of Cellulose Acetate FO Membrane Incorporated with ZIF-8 Nanoparticles. MEMBRANES 2022; 12:122. [PMID: 35207046 PMCID: PMC8877917 DOI: 10.3390/membranes12020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis membranes have a wide range of applications in the field of water treatment. However, the application of seawater desalination is restricted, so the research of forward osmosis membranes for seawater desalination poses new challenges. In this study, zeolitic imidazolate framework-8 (ZIF-8) was synthesized by a mechanical stirring method, and its crystal structure, surface morphology, functional group characteristics, thermochemical stability, pore size distribution and specific surface area were analyzed. The cellulose acetate (CA)/ZIF-8 mixed matrix forward osmosis membrane was prepared by using the synthesized ZIF-8 as a modified additive. The effects of the additive ZIF-8 content, coagulation bath temperature, mixing temperature and heat treatment temperature on the properties of the CA/ZIF-8 forward osmosis membrane were systematically studied, and the causes were analyzed to determine the best membrane preparation parameters. The structure of the CA membrane and CA/ZIF-8 mixed matrix forward osmosis membranes prepared under the optimal conditions were characterized by Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), contact angle and Atomic force microscope (AFM). Finally, the properties of the HTI membrane (Membrane manufactured by Hydration Technology Innovations Inc.), CA forward osmosis membrane and CA/ZIF-8 mixed matrix forward osmosis membrane were compared under laboratory conditions. For the CA membrane, the water flux and reverse salt flux reached 48.85 L·m-2·h-1 and 3.4 g·m-2·h-1, respectively. The reverse salt flux and water flux of the CA/ZIF-8 membrane are 2.84 g·m-2·h-1 and 50.14 L·m-2·h-1, respectively. ZIF-8 has a promising application in seawater desalination.
Collapse
Affiliation(s)
- Tong Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Yuhong Wang
- National Center of Ocean Standards and Metrology, Tianjin 300112, China;
| | - Xinyan Wang
- Shandong Zhaojin Motian Co., Ltd., Zhaoyuan 265400, China;
| | - Caixia Cheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Kaifeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Guangshuo Han
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| | - Xiuju Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
| | - Liguo Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; (T.L.); (C.C.); (K.Z.); (J.Y.); (G.H.); (Z.W.)
| |
Collapse
|
40
|
Song Y, Lu X, Liu Z, Liu W, Gai L, Gao X, Ma H. Efficient Removal of Cr(VI) by TiO 2 Based Micro-Nano Reactor via the Synergy of Adsorption and Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:291. [PMID: 35055308 PMCID: PMC8778119 DOI: 10.3390/nano12020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
Abstract
The low-toxicity treatment of chromium-containing wastewater represents an important way of addressing key environmental problems. In this study, a core-shell structural ZIF-8@TiO2 photocatalyst was synthesized by a simple one-step hydrothermal method. The obtained composite photocatalyst possessed improved photocatalytic activity compared with TiO2. The results indicated that the optimized ZIF-8@TiO2 composite exhibited the highest removal efficiency with 93.1% of Cr(VI) after 120 min under UV-vis irradiation. The removal curves and XPS results indicated that the adsorbed Cr(VI) on the ZIF-8 during the dark process was preferentially reduced. The superior removal efficiency of ZIF-8@TiO2 is attributed to the combination of both high adsorption of ZIF-8, which attracted Cr(VI) on the composite surface, and the high separation efficiency of photo-induced electron-hole pairs. For the mixture of wastewater that contained methyl orange and Cr(VI), 97.1% of MO and 99.7% of Cr(VI) were removed after 5 min and 60 min light irradiation, respectively. The high removal efficiency of multiple pollutants provides promising applications in the field of Cr(VI) contaminated industrial wastewater treatment.
Collapse
Affiliation(s)
- Yu Song
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Xi Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Zhibao Liu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA;
| | - Ligang Gai
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Xiang Gao
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Z.L.); (L.G.)
| |
Collapse
|